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Abstract. Kernel methods are a class of machine learning algorithms which learn and discover patterns in
a high (possibly infinite) dimensional feature space obtained by often nonlinear, possibly infinite mapping
of an input space. A major problem with kernel methods is their time complexity. For a data set with n
input points a time complexity of a kernel method is O(n3), which is intractable for a large data set. A
method based on a random Nyström features is an approximation method that is able to reduce the time
complexity to O(np2 + p3) where p is the number of randomly selected input data points. A time complexity
of O(p3) comes from the fact that a spectral decomposition needs to be performed on a p × p Gram matrix,
and if p is a large number even an approximate algorithm is time consuming. In this paper we will apply
the randomized SVD method instead of the spectral decomposition and further reduce the time complexity.
An input parameters of a randomized SVD algorithm are p × p Gram matrix and a number m < p. In
this case time complexity is O(nm2 + p2m + m3), and linear regression is performed on a m-dimensional
random features. We will prove that the error of a predictor, learned via this method is almost the same in
expectation as the error of a kernel predictor. Aditionally, we will empirically show that this predictor is
better than the ONE that uses only Nyström method.

1. Introduction

Kernel methods [14, 16, 19] are a class of machine learning algorithms that learn patterns in a high
(possibly infinite) dimensional feature spaces obtained by usually nonlinear mapping of the input space: φ :
RD
→ F. This mapping is often unknown and computationally intractable due to the infinite dimensionality.

Kernel methods produce machine learning models defined as f (x, λ, b) =
∑

i λk(xi, x) + b, which do not
depend explicitly on unknown mapping, but are a linear combination of kernel functions defined on the
input space which actually represent and inner product in the feature space: k(x, y) = φ(x)Tφ(y). In this
way, computationally intractable computation of the inner product in a high or infinite dimensional feature
space, is substituted with the computation of a kernel function in the input space. An intrinsic part of every
kernel method is the kernel matrix containing values of a kernel function, a positive semi definite matrix
of size n × n, when n is the number of examples. Another positive side of kernel methods is the separation
of learning algorithm and the space in which the learning is performed because the choice of kernel is the
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choice of the vector space in which the feature vectors belong. That means that we can design good kernels
on input examples independently of designing good learning algorithm. Additionally, the input examples
do not need to be vectors, we can define kernels on graphs, on images, on strings etc [15, 22]. However,
on the negative side kernel methods usually require time complexity that is cubic in the number of data
points which is too expensive for large data sets. Time complexity required just for computation of a kernel
matrix is squared. Also space complexity is O(n2) which is intractable for a number of applications. Well
known solution to this problem involve an approximation of a kernel matrix [2, 10].

Randomization methods which approximate kernel matrix using a random subset of an input set,
represent a popular solution to both time and space complexity of kernel methods. Of these methods
Nyström method achieves good results both in practice and theoretically. In Nyström method [3, 6, 20] we
randomly select m (where m < n) columns of a kernel matrix and approximate the entire matrix based on
this columns. Main advantage of this algorithm is its time complexity which is reduced to O(nm2 + m3).
Space complexity is also reduced to O(nm) because it does not require the computation of the entire matrix.

The authors in [12] is proposed a fast method of computing random features which in turn gives rise
to the fast learning algorithms. Specifically, an input space is mapped using some random function and
its elements are called random features. This approach appears with diferent formulations in [13] [21]
[7]. For example, a consequence of a Nyström method applied on a kernel matrix is an m-dimensional
random feature vector computed for each input vector, and this random vectors are called random Nyström
features [21]. An arbitrary number m < n represents both the size of a random subset of an input set and
the dimension of random feature vectors.

The main idea is that using p (where p > m) randomly selected columns of a kernel matrix for a construc-
tion of m-dimensional random feature vectors will produce better results then using only m columns, all the
while keeping time complexity linear in n. This is in contrast to the Nyström method which uses m selected
columns to derive m-dimensional features. Authors from [8] used this idea, and combined the Nyström
method with a randomized SVD [5]. Using only Nyström method will require performing SVD on a p × p
symmetric submatrix of a kernel matrix and it will produce p-dimensional random features. However if
a randomized SVD is applied as in [8] algorithm will produce m-dimensional random features. This also
allows the algorithm to keep the time complexity linear in n. In this paper we will perform theoretical
analysis of this approximation method as applied on a least squares regression problem. Additionally,
we will show theoretically that this algorithm with sub quadratic complexity exhibits the same predictive
performance as the kernel regression. We will show that we can choose p so that the expected error of
approximate kernel regression is approximately the same as the kernel regression error. Furthermore, we
demonstrate on real world data sets that m-dimensional random features derived from p randomly selected
input points produce better results than random Nyström features.

This paper is structured as follows. In the Section II, we review the method of random Nyström features
with and without a randomized SVD and its application to linear regression. Proof that the estimator
learned on random features defined in the section II is close to the kernel estimator learned on the original
input set is presented in the Section III. Finally, experimental results and conclusion are described in the
final two sections.

2. Fast kernel regression

In this section we will describe the algorithm for fast approximate kernel regression. Let us assume that
the input data set is the following set:

T = {(xi ∈ Rd, yi ∈ R)}i=1,n (1)

The algorithm consists of two main steps. In the first step each feature vector is mapped into a m-
dimensional random feature vector, called random view. In the second step linear regression is applied.
Now we will briefly explain a Nyström method, used for a construction of m-dimensional random features
and its extension that combines it with a randomized SVD.
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2.1. Nyström features
Random features are low dimensional vectors derived from an input set using some random mapping.

Every input vector is mapped into its corresponding random feature vector. Several types of random
features are present in the literature such as Random Fourier features [12] or random Nyström features [21].
Their main advantage is the usage of kernels with time complexity linear in the number of points.

Assume that we have data set {(xi ∈ Rd)n
i=1} and a kernel (positive semi definite function) k : Rd

×Rd
→ R.

Gram matrix Ki j = k(xi, x j) = 〈Φ(xi),Φ(x j)〉 represents a n × n positive semi definite matrix. Function Φ(x)
maps data from Rd into the high dimensional feature space. In random feature method, every input vector
xi is mapped into the m-dimensional random feature vector ri so that rT

i r j approximates k(xi, x j). Nyström
method is a random matrix approximation method and when applied on a Gram matrix K its consequence
are random features. Specifically for a given m � n Nyström algorithm samples m data vectors {x̂i}i=1,m
from the input set. Approximation matrix K̃ is computed in the following way:

K ≈ K̃ := k(x1:n, x̂1:m)k(x̂1:m, x̂1:m)+k(x1:n, x̂1:m)T (2)

where k(x̂1:m, x̂1:m)+ = V̂D̂−1V̂T is a pseudo inverse of k(x̂1:m, x̂1:m), where columns of V̂ are eigenvectors and
diagonal elements of matrix D̂ are eigenvalues of the matrix k(x̂1:m, x̂1:m). We define a random feature vector
ri in the following way

ri = D̂−1/2V̂Tk(x1:n, x̂1:m)T. (3)

According to expression (2) K̃i j = rT
i r j. Therefore, random vector ri approximates Φ(xi). Furthermore,

authors in [11] called the vector ri random Nyström feature vector or random Nyström view. Mapping
z(xi) = ri is called a random Nyström mapping.

Training linear regression on this data set is the same as training it on the kernel regression model, where
instead of the kernel matrix its Nyström approximation is used.

Algorithm 1 NF algorithm. [5, 11]
1: procedure SC(T, k,m)
2: Input: data set T = {(xi ∈ Rd, yi ∈ R)}i=1,n ;
3: Input: kernel k ;
4: Input: number of sampled feature vectors for Nyström method m ;
5: Sample a random permutation perm from 1,n;
6: for i = 1,m do
7: x̂i = xpermi ; (* Sampling m data vectors {x̂i}i=1,m; *)
8: end for
9: (V̂, D̂) = ei1(k(x̂1:m, x̂1:m)); (* Perform eigendecomposition of k(x̂1:m, x̂1:m) = V̂D̂V̂T *)

10: for i = 1,n do
11: ri = D̂−1/2V̂Tk(x1:n, x̂1:m)T; (* Nyström features *)
12: end for
13: (* Lines 9–12 will be modified in our algorithm 2 *)
14: Perform linear regression on (ri, yi) i = 1,n;
15: Output: Linear regressor.
16: end procedure

2.2. Randomized eigenvalue decomposition
Now we will briefly explain randomized decomposition that is used in an extension of the Nyström

method. Assume that we have a real symmetric matrix W ∈ Rp×p. In our paper we will apply this algorithm
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on matrix derived during Nyström method from sampled rows and columns (W = k(x̂1:p, x̂1:p) where x̂1:p
are p sampled data points). Our goal is to perform an eigenvalue decomposition of W. Time complexity
of eigenvalue decomposition is O(p3). Using the algorithm from [5] approximate decomposition can be
computed with time complexity of O(pm2 + m3) with the use of a random matrix of dimension p×m where
m is an input parameter. Randomized method for eigenvalue decomposition consists of several steps:

• Generate Gaussian random matrix Ω ∈ Rp×(m+l), where l is a small oversampling parameter (usually
5).

• Construct a matrix Y = WΩ ∈ Rp×(m+l). Oversampling parameter l is chosen because it increases the
chances for the matrix Y to span the m-dimensional subspace of W.

• We perform a QR decomposition on a matrix Y. Matrix Q gives us the following approximation
W ≈ QQTW from which follows W ≈ QQTWQQT.

• Generate a matrix B = QTWQ and perform eigenvalue decomposition on a matrix B = UΛUT.

• Columns of QV are approximate eigenvectors of W and diagonal elements of Λ are approximate
eigenvalues of W.

• A matrix V is derived from approximate eigenvectors of W associated with m largest approximate
eigenvalues Therefore W = VΛmVT where Λm contains largest approximate eigenvalues.

In the next section we will show how to apply this algorithms into the Nyström method. Instead of sampling
m data vectors from input data set we sample p > m data vectors and perform combination of a Nyström
method and a randomized eigenvalue decomposition to derive m-dimensional random feature vectors.

2.3. Random feature vectors using a combination of a Nyström method and a randomized eigenvalue decomposition
Assume that we have data set {(xi ∈ Rd)n

i=1} and a kernel (positive semi definite function) k : Rd
×Rd

→ R.
For a given p� n Nyström algorithm samples p feature vectors {x̂i}i=1,l from the input set. Recall that from
a Nyström method, the following matrix is an approximation of a Gram matrix (Ki j = k(xi, x j)):

K̃ := k(x1:n, x̂1:p)k(x̂1:p, x̂1:p)+k(x1:n, x̂1:p)T.

From it we derive p-dimensional Nyström features ri = D̂−1/2V̂Tk(x1:n, x̂1:p)T. However our goal is to map
input vectors into the m-dimensional space while steel using p-sampled data points, where p > m. Even
though we add another approximation, we wish to keep the main property of random Nyström features,
that for each error ε there is a large enough p so that the error achieved by the m-dimensional feature vectors
(derived from p sampled points) is smaller than ε.

In order to produce m-dimensional random vectors we propose to use the randomized eigenvalue
decomposition for the computation of the pseudo inverse and therefore kernel matrix approximation as in
[8]:

K ≈ L := k(x1:n, x̂1:p)k(x̂1:p, x̂1:p)∗k(x1:n, x̂1:p)T

where k(x̂1:p, x̂1:p)∗ = V̂D̂−1V̂T is an approximate pseudo inverse of k(x̂1:p, x̂1:p), where columns of V̂ ∈ Rp×m

are approximate eigenvectors and diagonal elements of matrix D̂ ∈ Rm×m are approximate eigenvalues of
the matrix k(x̂1:p, x̂1:p). Approximate eigenvalues and eigenvectors are computed using randomized SVD
(2.2). We will call this matrix a RNyström kernel matrix, and this method a RNyström method or more
specifically RNyström (p, m) method. Therefore random features which we will call RNyström features are
computed as follows:

ri = D̂−1/2V̂Tk(x1:n, x̂1:p)T

Finally we apply linear regression algorithm which we will call RNyström kernel regression. Putting it all
together we get an algorithm (2).

In the following section, theorem (3.7), we show that the approximate predictor (predictor learned on
random features) is close enough to the original one (the best overall predictor).
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Algorithm 2 RNF algorithm.
1: procedure SC(T, k, p,m, l)
2: Input: data set T = {(xi ∈ Rd, yi ∈ R)}i=1,n ;
3: Input: kernel k ;
4: Input: a number of sampled feature vectors p, and a random feature vector dimension m ;
5: Sample a random permutation perm from 1,n;
6: for i = 1, p do
7: x̂i = xpermi ; (* Sampling m data vectors {x̂i}i=1,p; *)
8: end for
9: Compute Ω ∈ Rp×(m+l) random Gaussian matrix;

10: W = k(x̂1:p, x̂1:p);
11: Y = WΩ;
12: (Q,R) = qr(Y); (* Compute QR decomposition of Y *)
13: B = QTWQ;
14: (U,Λ) = ei1(B); (* Compute eigendecomposition of a matrix B = UΛUT *)
15: V̂ = QU;
16: D̂ = Λ;
17: for i = 1,n do
18: ri = D̂−1/2V̂Tk(x1:n, x̂1:p)T; (* RNyström features *)
19: end for
20: (* Lines 9–19 are modified lines 9–12 from the algorithm 1 *)
21: Perform linear regression on (ri, yi) i = 1,n;
22: Output: Linear regressor.
23: end procedure

3. Analysis of an approximate error

In the case of a regression with RNyström features, the original kernel matrix is replaced with the RNyström
kernel matrix L. We are not comparing directly the approximation to the original kernel matrix but instead
we are analyzing the quality of the regression (i. e. in sample error) that uses this approximation. We will
prove that the expected in sample error of the RNyström method (expectation of ||(L + nλI)−1Lz − z||2,with
the respect to the distribution of the approximation) is almost the same as the in-sample error of the kernel
regression ||(K + nλI)−1Kz − z||2, where L is the RNyström approximation of K.

We first list two theorems which we will use to prove the lemma on bound of the approximate matrix
product.

Theorem 3.1. [4] Let C be a finite set of positive semi-definite matrices of dimension n. Sample (X1, . . . ,Xp) from
C uniformly at random without replacement and sample (Y1, . . . ,Yp) from C uniformly at random with replacement.
Now let f be a convex function on C. Then:

EX[ f (
∑

i

Xi)] ≤ EY[ f (
∑

i

Yi)]

Theorem 3.2. (Matrix Bernstein) [9] Consider an independent sequence (Yk)k≥1 of symmetric positive semi-definite
random matrices that satisfy

EYk = 0 and ||Yk|| ≤ R for each index k

Let σ2 = ||
∑

k EY2
k ||. Then for all t ≥ 0,

P(λmax(
∑

k

Yk) ≥ t) ≤ d exp
( −t2

3σ2 + 2Rt

)
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E
[
λmax(

∑
k

Yk)
]
≤ σ

√
3 log d + R log d

Now, we define the lemma that analysis the approximation of the matrix product. For an n-dimensional
matrix 1

n ΨTΨ and its approximation 1
p ΨT

SΨT
S where ΨS only contains p chosen columns of Ψ, lemma gives

the bound on an expectation of the spectral norm of their difference. We will apply this result in the
proof of the theorem (3.7), where we will use it to proove the monotonicity of the regularised RNyström
approximation of kernel matrix.

The lemma setting is very similar to the [1], however the prof is slightly different, and, in our opinion,
simpler. We used the newer version of Bernstein theorem from [9], while in [1] theorem from [17, 18] is
used. Also instead of the result from [17, 18] we used the theorem (3.1).

Lemma 3.3. Let Ψ ∈ Rn×r be such that for every row i is ||Ψ(i, :)|| ≤ R. Let S ⊂ {1, 2, . . . ,n} be a random subset with
elements chosen at random without replacement. Then

E[
1
n

ΨTΨ −
1
p

ΨT
SΨT

S ] ≤

√
R2

p
λmax(

1
n

ΨTΨ)3 log n +
1
p
λmax(

1
n

ΨTΨ) log n

Proof. We consider the matrix A = 1
n ΨTΨ − 1

p ΨT
SΨT

S = 1
n
∑

i=1,n ψiψT
i −

1
p
∑

i∈S ψiψT
i where ψi represents the

i-th row of a matrix Ψ. For the matrix A we know that E[A] = 0. Let B = 1
n ΨTΨ − 1

p ΨT
J ΨT

J be a random
matrix derived in the similar way as matrix A with one difference: J ⊂ {1, 2, . . . ,n} is a random subset with
elements chosen at random with replacement. Therefore the matrix B can be expressed in the following
way B = 1

n
∑

i=1,n ψiψT
i −

1
p
∑

i∈J ψiψT
i = 1

n
∑

i=1,n ψiψT
i −

1
p
∑

i=1,n
∑

j=1,p z j
iψiψT

i where (P(z j
i ) = 1

n )(∀i, j)
From the theorem 3.1 and the fact that every norm is a convex function we have:

E[||A||] ≤ E[||B||]

We use this result because of its simplicity while in [1] they used the result from [17, 18]. We can write the
matrix B in the following form:

B =
1
n

∑
i=1,n

ψiψ
T
i −

1
p

∑
i=1,n

∑
j=1,p

z j
iψiψ

T
i

=
1
n

1
p

∑
i=1,n

∑
j=1,p

ψiψ
T
i −

1
p

∑
i=1,n

∑
j=1,p

z j
iψiψ

T
i

=
∑
j=1,p

M j (4)

where M j = 1
p
∑

i=1,n z j
i (

1
n ΨTΨ − ψiψT

i ) Here we used the newer result from [9], while in [1] the result from
[17, 18] is used. According to [1] follows

E[M j] = 0

||

∑
j∈1,p

E[M2
j ]|| =

R2

p
λmax(

1
n

ΨTΨ) (5)

Now we can apply the theorem (3.2) to obtain:

E[||B||] ≤

√
R2

p
λmax(

1
n

ΨTΨ)3 log n +
1
p
λmax(

1
n

ΨTΨ) log n

from which follows the desired bound.
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Now, we will prove a lemma about the bound of the eigenvalues of a matrix necessary for the proof of the
theorem on bounds of in sample error.This lemma shows that the matrix defined in a special way is smaller
than the identity matrix. In the proof of the theorem (3.7) a matrix, derived from a kernel matrix, will have
the structure that satisfies the following lemma, so we will use lemma’s result to prove the monotonicity of
the regularized RNyström approximation.

Lemma 3.4. Let Φ ∈ Rn×n and γ > 0. Then for a matrix Ψ = Φ( 1
n ΦTΦ + γI)−

1
2 :

1
n

ΨTΨ � I

Proof. From γ > 0
1
n

ΦTΦ �
1
n

ΦTΦ + γI

From the fact that for any matrices X,Y,Z from X � Y follows ZTXZ � ZTYZ we have:

(
1
n

ΦTΦ + γI)−
1
2

1
n

ΦTΦ(
1
n

ΦTΦ + γI)−
1
2 T
� (

1
n

ΦTΦ + γI)−
1
2 (

1
n

ΦTΦ + γI)(
1
n

ΦTΦ + γI)−
1
2 T

1
n

(Φ(
1
n

ΦTΦ + γI)−
1
2 )TΦ(

1
n

ΦTΦ + γI)−
1
2 � I

1
n

ΨTΨ � I

Corollary 3.5. Let Φ ∈ Rn×n and γ > 0. Then from a matrix Ψ = Φ( 1
n ΦTΦ + γI)−

1
2 and for a random subset

S ⊂ {1, 2, . . . ,n} follows that every eigenvalue of a matrix 1
n ΨTΨ − 1

p ΨT
SΨS � I is from a segment [0, 1].

Since the RNyström approximation of the kernel matrix extends the Nyström method with the application
of the randomized SVD we will list here a theorem on the bound of the expected error of randomized SVD:

Theorem 3.6. [8] In a randomized SVD (2.2) of a matrix W ∈ Rp×p, where we compute k approximate eigenvalues
and where l is an oversampling parameter (typically a small arbitrary number), the expected error ||W − QQTW||
(with respect to the randomness in the Gaussian random matrix) is upper bounded by

(

√
k

l − 1
+

e
√

k + l

l
√

p − k
)||WWT

||

Now we have listed all lemmas and theorems that are necessary for the proof of a our main result. We will
extend the theorem from [1] because we are extending the Nyström approximation with the randomized
SVD. Both Nyström approximation and RNyström approximation use the p randomly sampled columns to
approximate the matrix.

he in sample error of the RNystomr kernel regression can be arbitrarily close to the in sample error
of the original kernel regression, by selecting proper lower bound on the number of sampled columns.
That means that if we substitute kernel matrix in a kernel regerssion with an approximate one we get
approximately the same predictor. For example, the bound on the number of selected columns on a data
set of 1000 elements (a subset of a calHousing data set, see table (1)) with an error δ = 0.1 is around a 100.

Theorem 3.7. Let λ > 0 and let z ∈ Rn and K ∈ Rn×n be a vector of output observations and a kernel matrix
derived from input data points respectively. Assume d = n||dia1(K(K + nλI)−1)||∞ and R2 = ||K||. Define the estimate
zK = (K + nλI)−1Kz. Assume S is a uniform random subset of p > k indices in {1, 2, . . . ,n} and consider L as
approximate kernel matrix based on RNyström (p, k) method and an oversampling parameter l, with the approximate

estimate zL = (L + nλI)−1Lz. For every δ ∈ (0, 1) and p ≥ 2
(

log n
√

6d log n
10δ + tR2λδ

2

)
for t = 1 +

√
k

l−1 + e
√

k+l
l the

following is true
1
n

E[||zL − z||2] ≤ (1 + 6δ)
1
n
||z − zK||

2
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Proof. Because K is a kernel matrix there exist a matrix Φ ∈ Rn×n such that K = ΦΦT. Approximate
kernel matrix L based on a combination of a Nyström method and randomized eigenvalue decomposition
can be written in the following way L = K(:,S)Q(QTK(S,S)Q)−1QTK(S, :) where Q is derived from a QR
decomposition on a matrix K(S,S)Ω (where Ω is a Gaussian random matrix of p × (l + k) dimension) as in
RSVD 2.2. Matrix K(:,S) can be written in the following way K(:,S) = ΦΦT

S where ΦS = Φ(S, :). Let

Łγ = ΦΦT
SQ(QTΦSΦT

SQ + pγI)−1QTΦSΦT

be a regularized kernel matrix approximation. We can write Lγ = ΦNγΦ
T where Nγ = ΦT

SQ(QTΦSΦT
SQ +

pγI)−1QTΦS. Using Sherman—Morrison—Woodbury identity we get:

Nγ = ΦT
SQ(QTΦSΦT

SQ + pγI)−1QTΦS

= ΦT
SQ(QTΦS(QTΦS)T + pγI)−1QTΦS

= (QTΦS)T(QTΦS)((QTΦS)T(QTΦS) + pγI)−1

= ΦT
SQQTΦS(ΦT

SQQTΦS + pγI)−1

= I − γ(
1
p

ΦT
SQQTΦS + γI)−1

(6)

Using Sherman-–Morrison—-Woodbury identity approximate in sample error can be computed in the
following way:

1
n
||z − zLγ || =

1
n
||z − (Lγ + nλI)−1Lγz||

= nλ2
||(Lγ + nλI)−1z||

= nλ2zT(ΦNγΦ
T + nλI)−2z (7)

Both function γ → Nγ and in sample prediction error are matrix non decreasing functions. Therefore in
order to find an upper bound for on error ||z − zL||

2 it is enough to find an upper bound for ||z − zLγ || for any
γ > 0 because L = L0. Furthermore in order to find an upper bound for ||z − zLγ || for any γ > 0 it is enough
to find a matrix lower bound for Nγ.

Let Ψ = Φ( 1
n ΦTΦ+γI)−

1
2 and matrix derived by sampling rows of Ψ is ΨS = ΦS( 1

n ΦTΦ+γI)−
1
2 . This implies:

ΨTΨ = (
1
n

ΦTΦ + γI)−
1
2 ΦTΦ(

1
n

ΦTΦ + γI)−
1
2

ΨT
SΨS = (

1
n

ΦTΦ + γI)−
1
2 ΦT

SΦS(
1
n

ΦTΦ + γI)−
1
2

ΨT
SQQTΨS = (

1
n

ΦTΦ + γI)−
1
2 ΦT

SQQTΦS(
1
n

ΦTΦ + γI)−
1
2 (8)

Applying this to the expression of Nγ we get for X = ( 1
n ΦTΦ + γI)

1
2
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Nγ = I − γ(
1
p

ΦT
SQQTΦS + γI)−1

= I − γ(
1
p

ΦT
SQQTΦS + γI +

1
n

ΦTΦ −
1
n

ΦTΦ)−1

= I − γ(XX −
1
n

XX−1ΦTΦX−1X +
1
p

XX−1ΦT
SQQTΦSX−1X)−1

= I − γ(
1
n

ΦTΦ + γI)−
1
2 (I −

1
n

ΨTΨ +
1
p

ΨT
SQQTΨS)−1(

1
n

ΦTΦ + γI)−
1
2 (9)

We define tS,Q = λmax( 1
n ΨTΨ − 1

p ΨT
SQQTΨS). According to the corollary (3.5) we know that 0 ≤ tS,Q ≤ 1.

This implies:

1
n

ΨTΨ −
1
p

ΨT
SQQTΨS � tS,QI

(1 − tS,Q)I � I −
1
n

ΨTΨ +
1
p

ΨT
SQQTΨS

(I −
1
n

ΨTΨ +
1
p

ΨT
SQQTΨS)−1

�
1

1 − tS,Q
I (10)

From this it follows that

I −Nγ = γ(
1
n

ΦTΦ + γI)−
1
2 (I −

1
n

ΨTΨ +
1
p

ΨT
SQQTΨS)−1(

1
n

ΦTΦ + γI)−
1
2

�
γ

1 − tS,Q
(
1
n

ΦTΦ + γI)−1 (11)

From this we obtain that K − Lγ = Φ(I −Nγ)ΦT
�

nγ
1−tS,Q

I. Assume that γ
λ(1−tS,Q) ≤ 1, and we get

(Lγ + nλI)−1
� (1 −

γ

λ(1 − tS,Q)
)−1(K + nλI)−1

Applying this to the in sample approximate error we get

1
n
||z − zLγ ||

2 = λ2zT(Lγ + nλI)−2z

≤ nλ2(1 −
γ

λ(1 − tS,Q)
)−2zT(K + nλI)−2z

= (1 −
γ

λ(1 − tS,Q)
)−2 1

n
||z − zK||

2 (12)

Using the fact that (1 − ε
2 )−2
≤ 1 + 3ε where ε ∈ (0, 1) we have

1
n
||z − zLγ ||

2
≤ (1 + 6

γ

λ(1 − tS,Q)
)
1
n
||z − zK||

2

This implies:
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1
n

E[||z − zLγ ||
2] ≤ (1 + 6

γ

λ(1 − E[tS,Q])
)
1
n
||z − zK||

2

Now we need to find an upper bound for E[tS,Q].

E[tS,Q] = E[||
1
n

ΨTΨ −
1
p

ΨT
SQQTΨS||]

= E[||
1
n

ΨTΨ −
1
p

ΨT
SΨS +

1
p

ΨT
SΨS −

1
p

ΨT
SQQTΨS||]

≤ E[||
1
n

ΨTΨ −
1
p

ΨT
SΨS||] +

1
p

E[||ΨT
SΨS −ΨT

SQQTΨS||] (13)

Now find an upper bound on E[||ΨT
SΨS −ΨT

SQQTΨS||]:

E[||ΨT
SΨS −ΨT

SQQTΨS||] ≤ E[||(I −QQT)ΨSΨT
S ||]

= ES[EQ[(I −QQT)ΨSΨT
S ]]

≤ ES[(1 +

√
k

l − 1
+

e
√

k + l

l
√

p − k
)
1
γ
||ΦSΦT

S ||] (14)

The last inequality is derived using theorem (3.6).

E[||ΨT
SΨS −ΨT

SQQTΨS||] ≤
1
γ

(1 +

√
k

l − 1
+

e
√

k + l

l
√

p − k
)ES[||ΦSΦT

S ||]

≤
1
γ

(1 +

√
k

l − 1
+

e
√

k + l
l

)||ΦΦT
||

(15)

Applying lemma (3.3) and using ([1]) for γ ≤ λ we get:

E[||
1
n

ΨTΨ −
1
p

ΨT
SΨS||] ≤

√
1
p
λγ−1d3 log n

1
p

log n

E[||
1
n

ΨTΨ −
1
p

ΨT
SΨS||] ≤

√
3

k + 1
λγ−1d log n

1
p

log n

Combining final two results we have

E[tS,Q] ≤

√
3

k + 1
λγ−1d log n

1
p

log n +
1

pγ
(1 +

√
k

l − 1
+

e
√

k + l
l

)R2.

Plugging in t = 1 +
√

k
l−1 + e

√
k+l
l we get

E[tS,Q] ≤

√
3

k + 1
λγ−1d log n

1
p

log n +
tR2

pγ
.

For p ≥ 2
(

log n
√

6d log n
10δ + tR2λδ

2

)
and for γ = λδ

2 (for which is γ ≤ λ) we get
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E[tS,Q] ≤
1
2

Since γ
λ(1−E[tS,Q]) ≤ δ ≤ 1 it follows

1
n

E[||z − zLγ ||
2] ≤ (1 + 6

γ

λ(1 − E[tS,Q])
)
1
n
||z − zK||

2

from which the desired result is derived 1
n E[||z − zLγ ||

2] ≤ (1 + 6δ) 1
n ||z − zK||

2.

4. Experimental results

Table 1: Data sets
Data Set Instances Attributes

cal housing 1) 7154 40
abalone 2) 2089 6
bank8 1) 4096 8

bank32 1) 4096 32
sarcos2 3) 44484 21
sarcos3 3) 44484 21
sarcos4 3) 44484 21
sarcos53) 44484 21
sarcos6 3) 44484 21
sarcos7 3) 44484 21

red wine quality 2) 4898 12
white wine quality 2) 4898 12

Combined Cycle Power Plant Data Set 2) 9568 4
Facebook Comment Volume Dataset 2) 40949 54
Gas Turbine CO and NOx Emission 2) 36733 11
SGEMM GPU kernel performance 2) 241600 18

Superconductivty Data 2) 21263 81
census8H 1) 22784 8

census16H 1) 22784 16
kin 1) 8192 33

pumadynH 1) 8192 33
pumadynM 1) 8192 33

In this section we evaluate the performance of our RNF (derived from a RNyström method, algorithm
2) against NF (derived from a Nyström method, algorithm 1).

We compare algorithms on real world data sets 1) 3) 2), see table (1):

• Abalone 1) data set can be used to train a model for deriving age prediction from the abalon’s
measurements. The number of rings of the shell’s cut that are seen through the microscope, determines
the age of the abalone. However, since this is a time consuming process, this dataset contains other
measurements, which are easier to obtain, and which are then used in order to predict the age.

• CalHousing 1) data set is used to train model for predicting the household price in California. It
contains the following attributes median house value, median income, housing median age, total
rooms, total bedrooms, population, households, latitude, and longitude.

1) http://www.dcc.fc.up.pt/ ltorgo/Regression/DataSets.html
2) https://archive.ics.uci.edu/ml/datasets.html
3) http://www.gaussianprocess.org/gpml/data/
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• Bank8 (8 continuous attributes) and bank32 (32 continues attributes) 1) is a family of datasets synthet-
ically generated from a simulation of how bank customers choose their banks. The model is trained
to predict the rejection value, which is the fraction of people that leave the bank because all the open
tellers have full queues.

• The sarcos data 3) relates to an inverse dynamics problem for a locomotion of a SARCOS anthropo-
morphic robot arm. The model is trained to predict joint torques from a a 21-dimensional input space
(7 joint positions, 7 joint velocities, 7 joint accelerations). Sarcos-i refers to the prediction of the i-the
joint torque.

• Wine quality refers to two datasets that are related to the red and white variants of the Portuguese
”Vinho Verde” wine. The model is trained to predict wine quality from only physicochemical (inputs)
data. Grape types, wine brand, wine selling price, etc. data are not located in the data set.

• The Combined Cycle Power Plant 2) dataset is formed by collecting data from a Combined Cycle
Power Plant over 6 years, when the power plant was set to work with the full load. Attributes are
ambient variables Temperature (T), Ambient Pressure (AP), Relative Humidity (RH) and Exhaust
Vacuum (V) collected per hour and the predicted value is the net hourly electrical energy output (EP)
of the plant.

• The dataset Gas Turbine CO and NOx Emission 2) comes from the same power plant. However, this
data contains instances of 11 attributes which are sensor measures aggregated over an hour and are
used to predict the gas emissions.

• Facebook Comment Volume Dataset 2) contains features extracted from the facebook posts and the
predicted attribute is the number of comments the post will receive.

• SGEMM GPU kernel performance 2) data set contains the measurement of the running time of a
computation of a matrix-matrix product AB = C. Parameterized SGEMM GPU kernel is used and
tested on all feasible parameter combinations. All used matrices are the size 2048 x 2048. For each
tested combination, 4 runs were performed and their results are reported in milliseconds as the 4
last columns. We are using parameters as an input and the model is trained to predict the average
running time of the 4 reported times.

• Superconductivty Dataset 2) contains 81 features extracted from 21263 superconductors and in the
82nd column a critical temperature is stored. The model is trained to predict the critical temperature.

• Census 1) data set refers to two data sets census8(8 continuous attributes) and census16(16 continuous
attributes) was designed analysing the data from the US Census Bureau. The model is trained to
predict the median price of the house .

• Kin (Kinematics) 1) data set is collected by simulating the forward kinematics of an 8 link robot arm.
There are various variants of this data set and we are using the one with 32 attributes, which is known
to be highly non-linear and highly noisy.

• Pumadyn 1) data set is chosen from the family of datasets synthetically generated from a realistic
simulation of the dynamics of a Unimation Puma 560 robot arm. There are various variants of this
data set and we are using the one with 32 attributes, with 3 variants: highly non-linear and highly
noisy (H), or highly non-linear and medium noisy (M).

Some of the data sets are already divided into a training set and a test set.Those that are not we split in the
following way: first 80% of the data are used training and the remaining 20% for testing. We used Gaussian
kernel whose hyper parameters are selected using 5-fold cross validation for a 1000 labeled examples of
the training set. Dimension of random features is 10. In NF algorithm 10-dimensional random feature is
derived from 10 randomly selected items (columns in a Gram matrix). However in our algorithm RNF
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10-dimensional random feature is derived with additional approximation and not just Nyström method
from 50 selected items.

We show mean predictive error and its standard deviation computed on the testing sets and report
results in a table (2). Across all data sets RNF outperforms NF. Therefore, we note that better results are
achieved when using the combination of a Nyström method with a randomized SVD compared to the
Nyström method alone while at the same time the time complexity remains linear in the size of the data set.

Table 2: Performance comparison of RNF and NF algorithms on real world data sets. We show mean predictive error and its standard
deviation. Number of random features is 10, and the number of selected columns is 50.

Data Set NF RNF NF runtime (s) RNF runtime (s)
calHousing 0.672 ± 0.052 0.639 ± 0.032 0.048 0.048

abalone 0.640 ± 0.001 0.639 ± 0.000 0.006 0.007
bank32 0.510 ± 0.027 0.492 ± 0.005 0.014 0.014
bank8 0.059 ± 0.003 0.060 ± 0.003 0.009 0.009

sarcos2 0.307 ± 0.029 0.301 ± 0.020 0.047 0.047
sarcos3 0.248 ± 0.024 0.241 ± 0.025 0.047 0.047
sarcos4 0.083 ± 0.018 0.075 ± 0.008 0.047 0.047
sarcos5 0.498 ± 0.066 0.454 ± 0.037 0.047 0.047
sarcos6 0.694 ± 0.072 0.643 ± 0.038 0.047 0.047
sarcos7 0.101 ± 0.019 0.085 ± 0.007 0.047 0.047

red wine quality 0.913 ± 0.048 0.936 ± 0.057 0.005 0.004
white wine quality 0.931 ± 0.032 0.929 ± 0.014 0.007 0.007

Combined Cycle Power Plant Data Set 0.111 ± 0.042 0.086 ± 0.016 0.008 0.008
Facebook Comment Volume Dataset 1.131 ± 0.001 1.131 ± 0.001 0.082 0.081
Gas Turbine CO and NOx Emission 0.550 ± 0.178 0.393 ± 0.066 0.008 0.008
SGEMM GPU kernel performance 0.982 ± 0.091 0.946 ± 0.042 0.233 0.235

Superconductivty Data 1.630 ± 0.018 1.602 ± 0.018 0.059 0.060
census8H 1.596 ± 0.047 1.495 ± 0.031 0.025 0.024
census16H 1.728 ± 0.032 1.664 ± 0.025 0.031 0.030

kin 0.996 ± 0.003 0.997 ± 0.002 0.015 0.015
pumadynH 0.864 ± 0.017 0.841 ± 0.004 0.017 0.016
pumadynM 0.832 ± 0.016 0.807 ± 0.005 0.015 0.015

5. Conclusion

In this paper we have considered the problem of speeding up kernel regression using random Nyström
features. Kernel methods in general have a cubic time complexity, but when used in a combination with the
random features that complexity is linear. In the paper [1], it is proven that the in sample error of a regression
that uses Nyström features is arbitrarily close to the in sample error of the kernel regression for a large
enough number of sampled columns. Here, we analyzed the error of the regression that uses RNyström
features (a combination of the Nyström method and a randomized svd). The input set {(xi ∈ Rd)n

i=1} is
map into the set of m-dimensional random features {(ri ∈ Rm)n

i=1} derived from the set of p data vectors
{x̂i}i=1,p randomly sampled from the input set. RNyström feature is computed as ri = D̂−1/2V̂Tk(x1:n, x̂1:p)T,

where columns of V̂ ∈ Rp×m are approximate eigenvectors and diagonal elements of matrix D̂ ∈ Rm×m are
approximate eigenvalues of the matrix k(x̂1:p, x̂1:p), computed from a randomized eigenvalue decomposition.
Therefore, we added another approximation to the Nyström method, and we showed that the main property
of Nyström features is kept, i. e. that for each error ε there is a large enough p so that the error achieved
by the regressor learned from ri is smaller than the ε. Additionally, we showed empirically that using a
RNyström method is better for the construction of m-dimensional feature vectors than a Nyström method,
by comparing their performance on the real world datasets.
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