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Available at: http://www.pmf.ni.ac.rs/filomat

Fixed Point Theorems of Generalized Greguš Type in
Quasi-Metric Spaces for Two Pairs of Mappings Satisfying

Common Coincidence Range Property

Valeriu Popaa, Dan Popaa

a‘Vasile Alecsandri‘ University of Bacău,157 Calea Mărăşeşti, Bacău, 600115, România

Abstract. The purpose of this paper is to prove some general fixed point theorems for two pairs of
mappings satisfying implicit relations of generalized Greguš type in quasi-metric spaces without the notion
of sequence and inequality. As applications we obtain new results for mappings satisfying contractive /
extensive conditions of integral type and in G-metric spaces.

1. Introduction

Let X be a nonempty set and f,g be self mappings of X. We say that x ∈ X is a coincidence point of f and
1 if f x = 1x. The set of all coincidence points of f and 1 is denoted by C( f , 1). A point w ∈ X is said to be a
point of coincidence of f and 1 if there exists x ∈ X such that w = f x = 1x.

In [16] Jungck introduced the notion of compatible mappings. In [17] Jungck generalize to notion of
compatible mappings and introduce the notion of weakly compatible mappings.

Definition 1.1. [17] Let f and 1 be self mappings of a nonempty set X. f and 1 are said to be weakly
compatible if f1u = 1 f u for u ∈ C( f , 1).

Definition 1.2. Let X be a nonempty set. A quasi-metric on X is a function Q : X × X→ R+ such that
(Q1) Q(x, y) = 0 if and only if x = y
(Q2) Q(x, y) ≤ Q(x, z) + Q(z, y) for all x, y, z ∈ X.
A quasi-metric space is a nonempty set X with a quasi-metric and is denoted by (X,Q).

Some fixed point theorems in quasi-metric spaces are proved in [10],[15],[27],[29],[30] and other papers.
Several fixed point theorems and common fixed point theorems have been unified considering a general
condition by an implicit relation in [22],[23] and other papers.

2. Preliminaries

Greguš [9] proved the following theorem:
Theorem 2.1 Let C be a nonempty closed subset in Banach space X and let T be a self mapping of X satisfying

2010 Mathematics Subject Classification. Primary 54H25; Secondary 47H10
Keywords. metric space, fixed point, coincidence range property
Received: 26 September 2020; Accepted: 14 October 2020
Communicated by Vladimir Rakočević
Email addresses: vpopa@ub.ro (Valeriu Popa), popavdan@yahoo.com (Dan Popa)



V. Popa, D. Popa / Filomat 34:11 (2020), 3561–3566 3562

the inequality: ‖ Tx − Ty ‖ ≤ a ‖ x − y ‖ + b ‖ x − Tx ‖ + c ‖ y − Ty ‖ for all x, y ∈ X where a, b, c ≥ 0 and
a + b + c = 1. Then T has a unique fixed point.

Some authors have generalized Theorem 2.1 in [3], [6], [7], [8], [21]. Some fixed point theorems for
mappings satisfying implicit relations of Greguš type are proved in [27].

In 2007 Sintunavarat and Kuman introduced the notion of common limit range property for a pair of
mappings.

Recently Imdad et al. [11] extend the notion of common limit range property for two pairs of self
mappings.

Definition 2.1. The pairs (A,S) and (B,T) of self mappings of a metric spaces (X, d) are said to satisfy the
CLR(S,T) − property [11] if there exists two sequences {xn} and {yn} in X such that

lim
n→∞

(Axn) = lim
n→∞

(Sxn) = lim
n→∞

(
Byn

)
= lim

n→∞

(
Tyn

)
= t

for some t ∈ S(X)
⋂

T(X).
Other results in this topic are obtained in [12],[13],[14] and other papers. In [13] and [14], using implicit

relations, the authors unified some common fixed point theorems for pairs of mappings satisfying common
limit range property.

In these results and others there exist convergent sequences in X.
Quite recently, the present authors introduced in [28] the notion of coincidence range property in metric

spaces. Similar with Definition 1.5[28] we define coincidence range property in quasi metric spaces.
Definition 2.2. Let A,S and T be self mappings of a quasi metric space (X,Q). (A,S) and T satisfy

coincidence range property with respect to T,denoted by CRP(A,S)T − property, if there exists u ∈ C(A,S) with
Au ∈ T(X).

Example 2.1. Let X = [1,∞) and Ax = x2 + 1/2 , Sx = x + 1/2 , Tx = x. Then Tx = [1,∞). If Ax = Sx then
x = 1 and z = 1 = A1 = S1; 1 ∈ T(X).

An altering distance [18] is a mapping Ψ : [0,∞)→ [0,∞) such that
(Ψ1) : Ψ is increasing and continuous,
(Ψ2) : Ψ(t) = 0 if and only if t = 0. Some fixed point theorems involving altering distance have been

published in [26],[31] and other papers.
Definition 2.3 A weakly altering distance is a mapping Ψ : [0,∞)→ [0,∞) which satisfy
(Ψ1) : Ψ is increasing,
(Ψ2) : Ψ(t) = 0 if and only if t = 0.
Remark 2.1. Every altering distance is a weak altering distance and conversely is not true.
Example 2.2.

Ψ(t) =

{
t if t ∈ [0, 1)

et if t ∈ [1,∞)

The purpose of this paper is to prove some fixed point theorems for two pairs (A,S) and (B,T) of
mappings in quasi-metric spaces satisfying CRP(A,S)T − property and an implicit relation of generalized
Greguš type without the notions of sequence and inequality. As applications we obtain new results for
mappings satisfying conditions of integral type and in G-metric spaces.

3. Implicit relations

Definition 3.1. Let F be the set of all functions F : R6
+ → R satisfying the following conditions:

(FG) : F(t, 0, 0, t, t, 0) = 0, for every t > 0
(FC) : F(t, t, 0, 0, t, t) = 0, for every t > 0.
Example 3.1. F(t1, ..., t6) = t1 −max{t2, t3, ..., t6}

Example 3.2. F(t1, ..., t6) = t1 −max{t2, t3, t4,
t5+t6

2 }

Example 3.3. F(t1, ..., t6) = t1 −max{t2, t3 + t4,
t5+t6

2 }

Example 3.4. F(t1, ..., t6) = t1 − a max{t2, t3, t4} − b max{t5, t6}where a, b ≥ 0 and a + b = 1.
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Example 3.5. F(t1, ..., t6) = t1 − a max{t2, t4} − b max{t3, t5} − c max{t5, t6}where a, b, c ≥ 0 and a + b + c = 1.
Example 3.6. F(t1, ..., t6) = t1 −max{

√
t2t3,

√
t4t5,

√
t5t6}.

Example 3.7. F(t1, ..., t6) = t2
1 − a t1max{t2, t3, t4} + b max{t2

5, t
2
6}where a ≥ 0 and a + b = 1.

Example 3.8. F(t1, ..., t6) = t1 − a t2 − b t3 − c t4 − d t5 − e t6 , where a, b, c, d, e > 0 and a + d + e = 1 and
c + d = 1.

4. Main result:

Lemma 4.1 [1] Let f , 1 be weakly compatible self mappings of a nonempty set X. If f and 1 have a
unique point of coincidence w = f x = 1x for some x ∈ X then w is the unique fixed point of f and 1.

Theorem 4.1 Let A,B,S,T be self mappings of a quasi-metric space (X,Q) such that
(4.1)F(Ψ(Q(Ax,By)),Ψ(Q(Sx,Ty)),Ψ(Q(Sx,Ax)),Ψ(Q(Ty,By)),Ψ(Q(Sx,By)),Ψ(Q(Ax,Ty)) , 0 for all x, y

with Ax , By and some F ∈ FG
⋂

FC and Ψ is an weakly altering distance.
If (A,S) and T satisfy CRP(A,S)T − property, then C(B,T) , Φ.

Moreover, if (A,S) and (B,T) are weakly compatible, then A,B,S,T have a unique common fixed point.
Proof. Since (A,S) and T satisfy CRP(A,S)T − property, there exist u ∈ X such that z = Au = Su with z ∈ T(x).
Hence, there exist v ∈ X such that z = Tv. Suppose that Au , Bv, then by (4.1) we obtain
F(Ψ(Q(Au,Bv)), Ψ(Q(Su,Tv)), Ψ(Q(Su,Au)),Ψ(Q(Tv,Bv)),Ψ(Q(Su,Bv)),Ψ(Q(Au,Tv)) , 0,
F(Ψ(Q(z,Bu)), 0, 0,Ψ(Q(z,Bv)),Ψ(Q(z,Bv)), 0) , 0
a contradiction of FG.
Hence z = Bv = Tv = Au = Su.

If Au = Bv then z = Au = Su = Bv = Tv. Hence z is a common point of coincidence of (A,S) and (B,T).
Suppose that there exists an other point of coincidence for (A,S) z′ , z with z′ = Aw = Sw, then Aw , Bw.
By (4.1) we obtain
F(Ψ(Q(z, z′)), Ψ(Q(z, z′)), 0, 0, Ψ(Q(z, z′)), Ψ(Q(z, z′))) , 0, a contradiction of FC.
Hence Ψ(Q(z, z′)) = 0 which implies z = z′ , and z is the unique point of coincidence of A and S. Similarly,
z is the unique common fixed point of A,S, and B and T.
If Ψ(t) = t by Theorem 4.1 we obtain

Theorem 4.2. Let A,B,S and T self mappings of quasi-metric space (X,Q) satisfying.
(4.2) F(Q(Ax,By),Q(Sx,Ty),Q(Sx,Ax),Q(Ty,By),Q(Sx,By),Q(Ax,Ty)) , 0. for all x, y ∈ X with Ax , By and
some F ∈ FG

⋂
FC.

If (A,S) and T satisfy CRP(A,S)T − property, then C(B,T) , Φ.
Moreover, if (A,S) and (B,T) are weakly compatible then A,B,S,T have a unique common fixed point.
By Example 3.1 and Theorem 4.1 we obtain
Theorem 4.3 Let A,B,S,T be self mappings of a quasi-metric space (X,Q) satisfying Ψ(Q(Ax,By)) , max{

Ψ(Q(Sx,Ty), Ψ(Q(Sx,Ax)), Ψ(Q(Ty,By)), Ψ(Q(Sx,By)), Ψ(Q(Ax,Ty))} for all x, y ∈ X and Ax , By and Ψ is
an weakly altering distance. If (A,S) and T satisfy CRP(A,S)T − property then C(B,T) , Φ.

Moreover, if (A,S) and (B,T) are weakly compatible, then A,B,S,T have a unique common fixed point.
By Theorem 4.3 and Example 3.1 we obtain
Theorem 4.4 Let A,B,S and T be self mappings of a quasi-metric space (X,Q) satisfying Q(Ax,By) ,

max{Q(Sx,Ty),Q(Sx,Ax),Q(Ty,By),Q(Sx,By),Q(Ax,Ty)}for all x, y ∈ X with Ax , By.
If (A,S) and T satisfy CRP(A,S)T − property then C(B,T) , Φ.
Moreover, if (A,S) and (B,T) are weakly compatible , then A,B,S and T have a unique common fixed

point.
Remark 4.1. 1) By Theorem 4.1 and 4.2 for ” < ” and ” > ” instead of ” , ” we obtain new results for

strict contractive and extensive mappings.
2)By Theorem 4.3 and 4.4 and Example 3.2 - 3.8 we obtain new particular results for contractive and
extensive mappings.

Example 4.1 Let X = [0, 1] and Q(x, y) = |x− y|. Then (X,Q) is a quasi-metric space. Let be the following
mappings: Ax = 0, Sx = x

x+2 , Bx = x
5 , Tx = x with T(X) = [0, 1]. Sx = Ax implies x = 0 and 0 ∈ [0, 1] = T(X).

Hence (A,S),T satisfy CRP(A,S)T − property. On the other hand AS0 = SA0 and BT0 = TB0, hence (A,S) and
(B,T) are weakly compatible.
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On the other hand
(Q(Ax,By)) = |0 − y

5 | =
y
5 and Q(Ty,By) = |y − y

5 | =
4y
5 If Ax , By implies y , 0, then Q(Ax,By) < Q(Ty,By)

which implies Q(Ax,By) < max{Q(Sx,Ty),Q(Sx,Ax),Q(Ty,By),Q(Sx,By),Q(Ax,Ty)} ,
Q(Ax,By) −max{Q(Sx,Ty),Q(Sx,Ax),Q(Ty,By),Q(Sx,By),Q(Ax,By)} , 0.

By Theorem 4.4 and Example 3.1 , A,B,S,T have a unique common fixed point z = 0.

5. Applications

5.1. Fixed point results for two pairs of mappings in G-metric spaces

In [4], [5] Dhage introduced a new class of generalized metric space named D-metric space. Mustafa and
Sims [19],[20] proved that most of claims concerning the fundamental topological structure on D-metric
spaces are incorrect and introduced an appropriate notion of generalized metric space named G-metric
spaces.

Definition 5.1 [20] Let X be a nonempty set and G : X3
→ R+ ba a function satisfying the following

properties:
(G1) : G(x, y, z) = 0 if x = y = z
(G2) : 0 < G(x, x, y) for all x, y ∈ X with x , y.
(G3) : G(x, y, y) ≤ G(x, y, z) for all x, y, z ∈ X with y , z.
(G4) : G(x, y, z) = G(y, z, x)... simetry in all three variable).
(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X.
The function G(x, y, z) is called a G −metric on X and the pair (X,G) is called a G-metric space.

Remark 5.1. If G(x, y, z) = 0 then x = y = z.
Lemma 5.1 ([25]) If (X,G) is a G-metric space and Q(x, y) = G(x, y, y), then Q(x, y) is a quasi-metric on X.

Theorem 5.1 Let (X,G) be a G-metric space and A,B,S and T be self mappings of X such that
(5.1) F(G(Ax,By,By),G(Sx,Ty,Ty),G(Sx,Ax,Ax),G(Ty,By,By),G(Sx,By,By),G(Ax,Ty,Ty)) , 0 for all x, y ∈
X with Ax , By and F ∈ FG

⋂
FC.

If (A,S) and T satisfy CRP(A,S)T − property, the C(B,T) , 0.
Moreover,if (A,S) and (B,T) are weakly compatible, then A,B,S,T have a unique common fixed point.

Proof. As in Lemma 5.1 (X,Q) is a quasi-metric space with Q(x, y) = G(x, y, y) Then
G(Ax,By,By) = Q(Ax,By),G(Sx,Ty,Ty) = Q(Sx,Ty),G(Sx,Ax,Ax) = Q(Sx,Ax),

G(Ty,By,By) = Q(Ty,By), G(Sx,By,By) = Q(Sx,By), G(Ax,Ty,Ty) = Q(Ax,Ty)).
By 5.1 we obtain
F(Q(Ax,By)),Q(Sx,Ty),Q(Sx,Ax),Q(Ty,By),Q(Sx,By),Q(Ax,Ty)) , 0 which is inequality 4.2 by Theo-

rem 4.2. Hence all conditions of Theorem 4.3 are satisfied and Theorem 5.1 follows by Theorem 4.2.
Remark 5.2

1)Similarly, by Theorem 4.2 and 4.3 we obtain new results.
2) If in Theorem 5.1 we have ” < ” or ” > ” instead of ” , ” we obtain new results for contractive and

extensive mappings.
3) By Examples 3.1-3.8 we obtain new particular results.

5.2. Fixed point results for two pairs of mappings satisfying a condition of integral type

In [2] Branciari established the following fixed point theorem which opened the way to the study of
fixed points for mappings satisfying a condition of integral type.

Theorem 5.2 Let (X, d) be a complete metric space c ∈ (0, 1) and f : (X, d) → (X, d) be a mapping such
that

d( f x, f y)∫
0

h(t)dt ≤ c

d(x,y)∫
0

h(t)dt
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where h : [0,∞)→ [0,∞) is a Lebesgue measurable mappings which is summable (i,e. with finite integral)

on each compact subset of [0,∞) such that for ε > 0,
ε∫

0
h(t)dt > 0. Then f has a unique fixed point.

Recently, there exists a vast literature in this topic.

Lemma 5.2 Let h : (0,∞)→ (0,∞) as in Theorem 5.2. Then Ψ(t) =
t∫

0
h(x)dx is a weakly altering distance.

Proof. The proof follows by the first part of Lemma 2.5[25].
Let (X,Q) be a quasi-metric spaces and Ψ(t) as in Lemma 5.2, then

(5.2) Ψ(Q(Ax,By)) =

Q(Ax,By)∫
0

h(t)dt, Ψ(Q(Sx,Ty)) =

Q(Sx,Ty)∫
0

h(t)dt

Ψ(Q(Sx,Ax)) =

Q(Sx,Ax)∫
0

h(t)dt, Ψ(Q(Ty,By)) =

Q(Ty,By)∫
0

h(t)dt

Ψ(Q(Sx,By)) =

Q(Sx,By)∫
0

h(t)dt, Ψ(Q(Ax,Ty)) =

Q(Ax,Ty)∫
0

h(t)dt

Theorem 5.3. Let (X,Q) be a quasi-metric space and A,B,S,T self mappings of X such that

(5.3) F(

Q(Ax,By)∫
0

h(t)dt,

Q(Sx,Ty)∫
0

h(t)dt,

Q(Sx,Ax)∫
0

h(t)dt,

Q(Ty,By)∫
0

h(t)dt,

Q(Sx,By)∫
0

h(t)dt,

Q(Ax,Ty)∫
0

h(t)dt) , 0

for all x, y ∈ X with Ax , By and some F ∈ FG
⋂

FC.
If (A,S) and T satisfy CRP(A,S)T − property, then C(B,T) , 0.

Moreover, if (A,S) and (B,T) are weakly compatible then A,B,S,T have a unique common fixed point.
Proof. By (5.2) and (5.3) we obtain

(5.3) F(Ψ(Q(Ax,By)),Ψ(Q(Sx,Ty)),Ψ(Q(Sx,Ax)),Ψ(Q(Ty,By)),Ψ(Q(Sx,By)),Ψ(Q(Ax,Ty)))) , 0

for all x, y ∈ X with Ax , By and F ∈ FG
⋂

FC and Ψ is a weakly altering distance. By Theorem 4.1 we have
obtained Theorem 5.2.

Remark 5.3
1)Similarly, by Theorem 4.4, we obtain a new result.
2)If in Theorem 5.3 we have ” < ” or ” > ” instead of ” , ” we obtain new results for strict contractive and
strict extensive pairs of mappings.
3)By Examples 3.1-3.8 we have obtained new particular results.
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