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Abstract. It is known that every digital covering map p : (E, κ) → (B, λ) has the unique path lifting
property. In this paper, we show that its inverse is true when the continuous surjective map p has no
conciliator point. Also, we prove that a digital (κ, λ)−continuous surjection p : (E, κ) → (B, λ) is a digital
covering map if and only if it is a local isomorphism, when all digital spaces are connected. Moreover, we
find out a loop criterion for a digital covering map to be a radius n covering map.

1. Introduction and Motivation

In image processing, computer graphics and modeling topology in medical image processing algorithms,
an object in the plane or 3-space is often approximated digitally by a set of pixels or voxels. Digital topology
deals with topological properties of this set of pixels or voxels that correspond to topological properties of the
original object. It provides theoretical foundations for important operations such as digitization, connected
component labeling and counting, boundary extraction, contour filling, and thinning. Digitization is
replacing an object by a discrete set of its points[16, 17].

In recent years, computing topological invariants has been of great importance in understanding the
shape of an arbitrary 2-dimensional (2D) or 3-dimensional (3D) object [13]. The most powerful invariant of
these objects is the fundamental group [20], which is unfortunately difficult to work with, although for 3D
objects, this problem is decidable but no practical algorithm has been found yet.

The digital fundamental group of a discrete object was introduced in Digital Topology by Kong and
Stout [15, 21]. Boxer [3] has shown how classical methods of Algebraic Topology may be used to construct
the digital fundamental group which is a useful tool for Image Analysis. Digital covering spaces are
important tools for computing fundamental groups of digital images. A digital covering space has been
introduced by Han [7]. Boxer [4] has developed further the topic of the digital covering space by deriving
digital analogs of classical results of Algebraic Topology concerning the existence and properties of digital
universal covering spaces. Boxer and Karaca [5, 6] have classified digital covering spaces by conjugacy
classes of image subgroups corresponding to a digital covering space.

Lots of researches in the digital covering theory are digitization of concepts in Topology and Algebraic
Topology. In Algebraic Topology, covering maps are local isomorphism (local homeomorphism) and also
satisfy all lifting problems. But the converse is not true. In fact, every local isomorphism is not necessarily a
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covering map and there are some maps in which enjoy various concepts of the lifting, but are not a covering
map.

Despite the locally complicated behavior of spaces in classical topology, digital images are locally simple
and this leads us to investigate conditions such that makes some concepts to be equivalent. For this, after
some reminders and preliminary results about the digital topology and the digital covering map, we
introduce notions “digital path lifting property”, “uniqueness of digital path lifts” and “unique digital path
lifting property” for a digitally continuous map and will compare them by some examples.

The digital path lifting property means that every digital path has a lifting started at a given point in
the appropriate fiber. By uniqueness of digital path lifts we mean that if a digital path has a lifting at a
given point, it must be unique. Eventually, a map has the unique digital path lifting property if it has both
of the digital path lifting property and the uniqueness of digital path lifts. Every digital covering map
has the unique digital path lifting property [7]. By proving some basic results about maps equipped with
such properties, we show that every continuous surjection with the unique digital path lifting property is a
covering map when it has no conciliator point and by some example will emphasis that these hypotheses
are essential. This shows that the digital covering theory is not a special case of the well known concept of
a graph covering projection because in covering graph theory a graph map is a covering graph if and only
if it has the unique path lifting property [1].

In classical topology, a covering map is a local isomorphism, but the inverse is not necessarily true.
Inspired by this, in all of researches it is claimed by a misplaced example that a digital local isomorphism
is not necessarily a covering map (for example see[9]). Here, we show that for connected digital images, a
digital continuous surjection is a digital covering map if and only if it is a digital local isomorphism. Also,
since digital versions of some fundamental theorems in Algebraic Topology are satisfied for radius 2 local
isomorphisms, this motivates us to find a loop criterion for a digital covering map to be a radius n local
isomorphism.

2. Notations and Preliminaries

Let Z be the set of integers. Then Zn is the set of lattice points in the n-dimensional Euclidean space.
Let X ⊆ Zn and let κ be some adjacency relation for the members of X. Then the pair (X, κ) is said to be a
(binary) digital image. For a positive integer u with 1 ≤ u ≤ n, an adjacency relation of a digital image in
Zn is defined as follows:
Two distinct points p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) in Zn are lu-adjacent [18] if there are at most u
distinct indices i such that |pi − qi| = 1 and for all indices j, p j = q j if |p j − q j| , 1. An lu-adjacency relation on
Zn can be denoted by the number of points that are lu-adjacent to a given point p ∈ Zn. For example,

• The l1-adjacent points of Z are called 2-adjacent.

• The l1-adjacent points ofZ2 are called 4-adjacent and the l2-adjacent points inZ2 are called 8-adjacent.

• The l1-adjacent, l2-adjacent and l3-adjacent points of Z3 are called 6-adjacent, 18-adjacent, and 26-
adjacent, respectively.

More general adjacency relations are studied in [12].
Let κ be an adjacency relation defined on Zn. A digital image X ⊆ Zn is κ-connected [19] if and only if

for every pair of different points x, y ∈ X, there is a set {x0, x1, ..., xr} of points of X such that x = x0, y = xr
and xi and xi+1 are κ-adjacent where i = 0, 1, ..., r − 1. A κ-component of a digital image X is a maximal
κ-connected subset of X.

Definition 2.1. Let X ⊆ Zn and Y ⊆ Zm be digital images with κ-adjacency and λ-adjacency, respectively.
A function f : X −→ Y is said to be (κ, λ)-continuous ([3, 19]) if for every κ-connected subset U of X, f (U)
is a λ-connected subset of Y. We say that such a function is digitally continuous.

The following proposition let us to interpret the digital continuity by the adjacency relations.



A. Pakdaman, M. Zakki / Filomat 34:12 (2020), 4005–4014 4007

Proposition 2.2. ([3, 18]) Let (X, κ) in Zn and (Y, λ) in Zm be digital images. A function f : X −→ Y is (κ, λ)-
continuous if and only if for every κ-adjacent points x0, x1 ∈ X, either f (x0) = f (x1) or f (x0) and f (x1) are λ-adjacent
in Y.

For a, b ∈ Zwith a < b, a digital interval [2] is the set of the form

[a, b]Z = {z ∈ Z|a ≤ z ≤ b}.

Definition 2.3. By a digital κ-path from x to y in digital image (X, κ), we mean a (2, κ)-continuous function
f : [0,m]Z −→ X such that f (0) = x and f (m) = y. If f (0) = f (m) then the κ-path is said to be closed, and f is
called a κ-loop.

Let f : [0,m− 1]Z −→ X ⊆ Zn be a (2, κ)-continuous function such that f (i) and f ( j) are κ-adjacent if and
only if j = i ± 1 mod m. Then f is called simple κ-loop and the set f ([0,m − 1]Z) is a simple closed κ-curve
containing m point which is denoted by SCn,m

κ . If f is a constant function, it is called a trivial loop.
If f : [0,m1]Z −→ X and 1 : [0,m2]Z −→ X are digital κ-paths with f (m1) = 1(0), then define the product

[14] ( f ∗ 1) : [0,m1 + m2]Z −→ X by

( f ∗ 1)(t) =

 f (t) i f t ∈ [0,m1]Z;
1(t −m1) i f t ∈ [m1,m1 + m2]Z.

Let (E, κ) be a digital image and let ε ∈ N. The κ-neighborhood [8] of e0 ∈ E with radius ε is the set
N(e0, ε) = {e ∈ E| lκ(e0, e) ≤ ε} ∪ {e0}, where lκ(e0, e) is the length of the shortest κ-path in E from e0 to e.

By the above notations, a function f : X −→ Y is a (κ, λ)-isomorphism [4], denoted by X
(κ,λ)
≈ Y, if f is

a (κ, λ)-continuous bijection and further f−1 : Y −→ X is (λ, κ)-continuous. If n = m and κ = λ, then f is
called κ-isomorphism.

Definition 2.4. ([3]) Let (X, κ) and (Y, λ) be digital images and let f , 1 : X −→ Y be (κ, λ)-continuous
functions. Suppose that there is a positive integer m and a function F : X × [0,m]Z −→ Y such that

• For all x ∈ X, F(x, 0) = f (x) and F(x,m) = 1(x);

• For all x ∈ X, the induced function Fx : [0,m]Z −→ Y defined by Fx(t) = F(x, t) for all t ∈ [0,m]Z is
(2, λ)-continuous; and

• For all t ∈ [0,m]Z, the induced function Ft : X −→ Y defined by Ft(x) = F(x, t) for all x ∈ X is
(κ, λ)-continuous.

Then F is called a digital (κ, λ)-homotopy between f and 1, denoted by f
(κ,λ)
' 1, and f and 1 are said to be

digital (κ, λ)-homotopic in Y by F.

Digital (κ, λ)-homotopy relation is an equivalence relation among digitally continuous functions f :
(X, κ) −→ (Y, λ) [3].

Let f and f ′ be κ-loops in the pointed digital image (X, x0). We say f ′ is a trivial extension of f if there
are sets of κ-paths { f1, f2, ..., fr} and {F1,F2, ...,Fp} in X such that

(1) r ≤ p;
(2) f = f1 ∗ f2 ∗ ... ∗ fr;
(3) f0 = F1 ∗ F2 ∗ ... ∗ Fp;
(4) There are indices 1 ≤ i1 < i2 < ... < ir ≤ p such that Fi j = f j, 1 ≤ j ≤ r and i < {i1, i2, ..., ir} implies Fi is a

trivial loop[3].
Two loops f , f ′ with the same base point x0 ∈ X belong to the same loop class [ f ]X if they have trivial

extensions that can be joined by a homotopy that keeps the endpoints fixed. Let πκ1 (X, x0) be the set of all
such classes, [ f ]X. The operation ∗ enables us to define an operation on πκ1 (X, x0) via

[ f ]X.[1]X = [ f ∗ 1]X.
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This operation is well defined, and makes
πκ1 (X, x0) into a group in which the identity element is the class [x0] of the constant loop x0 and the inverse

elements are given by [ f ]−1 = [ f−1], where f−1 : [0,m]Z −→ X is the loop defined by f−1(t) = f (m − t)[3].

Definition 2.5. ([8]) For two digital spaces (X, κ) inZn and (Y, λ) inZm, a (κ, λ)-continuous map h : X −→ Y
is called a local (κ, λ)-isomorphism if for every x ∈ X, h|Nκ(x;1) is a (κ, λ)-isomorphism onto Nλ(h(x); 1). If
n = m and κ = λ, then the map h is called a local κ-isomorphism.

For n ∈N, the map h is called a radius n local isomorphism [8] if the restriction map h|Nκ(x,n) : Nκ(x,n) −→
Nλ(h(x),n) is a (κ, λ)-isomorphism.

Definition 2.6. ([4, 7, 8]) Let (E, κ) and (B, λ) be digital images and p : E −→ B be a (κ, λ)-continuous
surjection map. The map p is called a (κ, λ)-covering map if and only if for each b ∈ B there exists an index
set M such that

(1) p−1(Nλ(b, 1)) =
⊔
i∈M

Nκ(ei, 1) with ei ∈ p−1(b);

(2) if i, j ∈M, i , j, then Nκ(ei, 1) ∩Nκ(e j, 1) = ∅;
(3) the restriction map p|Nκ(ei,1) : Nκ(ei, 1) −→ Nλ(b, 1) is a (κ, λ)-isomorphism for all i ∈M.

Moreover, (E; p; B) is said to be a (κ, λ)-covering and (E, κ) is called a digital (κ, λ)-covering space over
(B, λ). Also, Nλ(b, 1) is called an elementary λ-neighborhood of b.

It is notable that in the property (1) of the original definition of a digital covering map by Han [7],
there was Nλ(b, ε), for an ε ∈ N which is simplified by Boxer [4]. Also, we can replace (κ, λ)-continuous
surjection with surjection because surjective map p with the properties (1) and (3) of the definition is
(κ, λ)-continuous[11].

In this paper, all the digital spaces (X, κ) are assumed to be κ-connected.

3. Coverings are Derived from Unique Path Lifting

Like in Algebraic Topology, digital covering maps have also good behavior with lifting problems. In
this section, at first we list some results of the other papers about digital coverings and lifting problems
which are digitization of similar results in Algebraic Topology. Then by modification of the digital path
lifting and the unique path lifting, we show how digital covering maps can be derived from the unique
path lifting property.

Definition 3.1. ([7]) Let (E, κ), (B, λ) and (X, µ) be digital images, let p : E −→ B be a (κ, λ)-covering map, and
let f : X −→ B be (µ, λ)-continuous. A lifting of f with respect to p is a (µ, κ)-continuous map f̃ : X −→ E
such that p ◦ f̃ = f .

Theorem 3.2. ([7]) Let (E, κ) be a digital image and e0 ∈ E. Let (B, λ) be a digital image and b0 ∈ B. Let p : E −→ B
be a (κ, λ)-covering map such that p(e0) = b0. Then any λ-path α : [0,m]Z −→ B beginning at b0 has a unique lifting
to a path α̃ in E beginning at e0.

Remark 3.3. Although liftings are defined for digital (κ, λ)-covering maps, but for a (κ, λ)-continuous
surjection map p : (E, κ)→ (B, λ) and any digital path α in B, the lifting of αmeans a digital path α̃ in E such
that p ◦ α̃ = α [8].

Definition 3.4. Let p : (E, κ)→ (B, λ) be a (κ, λ)-continuous surjection map. We say that
(i) p has the digital path lifting property if for any digital path α in B and any e ∈ p−1(α(0)) there is a

lifting α̃ of α in E such that α̃(0) = e;
(ii) p has the uniqueness of digital path lifts property if any two paths α, β : [0,m]Z −→ E are equal if

p ◦ α = p ◦ β and α(0) = β(0);
(iii) p has the unique path lifting property (u.p.l, for abbreviation) if it has both the path lifting property

and the uniqueness of path lifts property.
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Example 3.5. By Theorem 3.2, every digital covering map has the u.p.l. Consider Z2 by 8-adjacency and
Z by 2-adjacency. Then the (8, 2)-continuous map pr1 : Z2

−→ Z defined by pr1((x, y)) = x has the digital
path lifting property, but does not have the uniqueness of digital path lifts property. For this, consider
α : [0, 2]Z −→ Z defined by α(k) = k, for k = 0, 1, 2. pr−1

1 (0) = {0} × Z and for every (0, j) ∈ pr−1
1 (0),

α̃ j : [0, 2]Z −→ Z2 defined by α̃ j(k) = (k, j) is a 8-path. Then α̃ j is the lifting of α beginning at (0, j) and hence
pr1 has the digital path lifting property. Now let

β, γ : [0, 2]Z −→ Z2

β(0) = (0, 0), β(1) = (1, 1), β(2) = (2, 0)
γ(0) = (0, 0), γ(1) = (1,−1), γ(2) = (2, 0).

Then pr1 ◦ β = pr1 ◦ γ and β(0) = γ(0), but β , γ. Therefore pr1 does not have the uniqueness of digital path
lifts property. Also, pr1 is not a digital (8, 2)-covering because for every e ∈ Z2, pr1|N8(e,1) is not injective.

Example 3.5 shows that a digitally continuous surjection with the path lifting property is not necessarily
a digital covering map. By the following example, we show that a digitally continuous surjection with the
uniqueness of digital path lifts property is not necessarily a digital covering map.

Example 3.6. Consider the map h : Z+
−→ SC2,4

8 =: (ci)i∈[0,3]Z given by h(i) = ci mod 4, where Z+ := {k ∈ Z|k ≥
0}. Let γ : [0, 1]Z −→ SC2,4

8 be defined by γ(0) = c0 and γ(1) = c3. Since 0 ∈ h−1(c0) and there is no lifting of γ
beginning at 0, h does not have the digital path lifting property.

Now, Let α, β : [0,m]Z −→ Z+ be two paths in which h ◦ α = h ◦ β and α(0) = β(0) = d. We show that
α = β. By contrary, suppose that there is a s ∈ [0,m]Z such that α(s) , β(s). We may assume that s is the
smallest t ∈ [0,m]Z such that α(t) , β(t). Thus we have the following:

α(s) , β(s),
α(t) = β(t), for all t ∈ [0, s − 1]Z,
h ◦ α(t) = h ◦ β(t), for all t ∈ [0,m]Z.

If k := α(s − 1) = β(s − 1), then we haveα(s) = k + 1,
β(s) = k − 1.

or

α(s) = k − 1,
β(s) = k + 1.

But h ◦ α(s) = h ◦ β(s) follows that h(k − 1) = h(k + 1) which is a contradiction because h( j) = h(k) if an only if
j = k mod 4.

In the following proposition, we give some basic properties of maps with the u.p.l which are essential
in our results and make proofs more shorter and simpler. For x, y ∈ (E, κ), by x κ

↔ y it means that x and y
are κ-adjacent.

Proposition 3.7. Let p : (E, κ)→ (B, λ) be a (κ, λ)-continuous surjection with the u.p.l. Then:

(i) If e κ
↔ e′ then p(e) , p(e′);

(ii) If e κ
↔ e′, e κ

↔ e′′ and e′ , e′′ then p(e′) , p(e′′);

(iii) If p(e) λ
↔ p(e′) then there is a unique element e′′ ∈ p−1(p(e′)) such that e κ

↔ e′′;

(iv) If p(e) λ
↔ b then there is a unique e′ ∈ p−1(b) such that e κ

↔ e′;

(v) If b λ
↔ b′ then for every e ∈ p−1(b) there is a unique element e′ ∈ p−1(b′) such that e κ

↔ e′.
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Proof. (i) Let α, β : [0, 1]Z −→ E be defined by α(0) = β(0) = e, α(1) = e and β(1) = e′ which are κ-pathes by
assumption. If p(e) = p(e′) then p ◦ α = p ◦ β while α , β. This is a contradiction and hence p(e) , p(e′).

(ii) Let α, β : [0, 1]Z −→ E be defined by α(0) = β(0) = e, α(1) = e′ and β(1) = e′′ which are κ-pathes by
assumption. If p(e′) = p(e′′) then p ◦ α = p ◦ β while α , β. Hence p(e′) , p(e′′).

(iii) Define α : [0, 1]Z −→ B by α(0) = p(e) and α(1) = p(e′) which is a λ-path. By the path lifting property,
there is a lifting α̃ : [0, 1]Z −→ E beginning at e. Since p ◦ α̃ = α, α̃(1) ∈ p−1(α(1)) = p−1(p(e′)). Now it is
sufficient to let e′′ = α̃(1) because α̃(0) κ

↔ α̃(1). Uniqueness comes from part (ii).
(iv) The proof is similar to the proof of (iii).
(v) This is also similar to (iii) because maps with the path lifting property are surjective.

Definition 3.8. Let p : (E, κ) → (B, λ) be a (κ, λ)-continuous map and e ∈ E. We say that e is a conciliator

point for p if there exist e′, e′′ ∈ Nκ(e, 1) for which e′ κ
= e′′ and p(e′) λ

↔ p(e′′).

In classical topology, every covering map has the u.p.l but every map with the u.p.l is not generally a
covering map [20]. In fact, the domain and the codomain in maps with the u.p.l that are not a covering
map have locally complicated behaviors and this will ruin it to be a covering map. We show that the u.p.l
is enough for a digital map without a conciliator point to be a digital covering map.

Theorem 3.9. A (κ, λ)-continuous surjection p : (E, κ) → (B, λ) is a digital (κ, λ)-covering if it has the u.p.l and
has no conciliator point.

Proof. Let b ∈ B and e ∈ p−1(Nλ(b, 1)). We show that e ∈
⊔
j∈J

Nκ(e j, 1), where p−1(b) = {e j} j∈J. If e ∈ p−1(b), then

e is one of the e j’s and the assertion is obvious. If e < p−1(b), then p(e) λ
↔ b and by Proposition 3.7, there is a

e j ∈ p−1(b) such that e κ
↔ e j which implies e ∈ Nκ(e j, 1), as desired.

If e ∈
⊔
j∈J

Nκ(e j, 1), then there is a j0 ∈ J such that e ∈ Nκ(e j0 , 1) and hence either e = e j0 or e κ
↔ e j0 which

implies that p(e) = b or p(e) λ
↔ b. This means p(e) ∈ Nλ(b, 1) and therefore e ∈ p−1(Nλ(b, 1)).

Let x ∈ Nκ(ei, 1) ∩Nκ(e j, 1), for i , j. Then x κ
↔ ei and x κ

↔ e j and by Proposition 3.7, b = p(ei) , p(e j) = b
which is a contradiction.

For every j ∈ J, the restriction map p|Nκ(e j,1) : Nκ(e j, 1) → Nλ(b, 1) is injective by Proposition 3.7, parts i
and ii and also is surjective by the part v. For continuity of (p|Nκ(e j,1))−1, let b′, b′′ ∈ Nλ(b, 1) be two λ-adjacent
points. Since p|Nκ(e j,1) is bijective, there are e′, e′′ ∈ Nκ(e j, 1) such thet p(e′) = b′ and p(e′′) = b′′. If e′ κ

= e′′ then
e j is a conciliator point of p which is a contradiction. Hence e′ κ

↔ e′′ and so (p|Nκ(e j,1))−1 is continuous.

In the following, we give an example of a continuous surjection with the u.p.l in which is not a digital
covering map. This shows that the absence of conciliator points is essential.

Example 3.10. Let E = Z, B = {b0 = (0, 0), b1 = (1, 0), b2 = (0, 1)} and p : E −→ B be defined by p(i) = bi mod 3.
Then p is a (2, 8)-continuous surjection that has the unique path lifting property and also p has some
conciliator points, for example −1, 1 are not 2-adjacent but b2 = p(−1) and b1 = p(1) are 8-adjacent. The
map p is not a digital (2, 8)-covering map because p does not satisfy the condition (3) of Definition 2.6: for
example, N2(0, 1) = {−1, 0, 1} and so the inverse of the restriction of p to N2(0, 1) is not (8, 2)-continuous,
because it maps two 8-adjacent points b1 and b2 in N8(b0, 1) = B to two distinct points of N2(0, 1) = {–1, 0, 1}
that are not 2-adjacent.

4. Coverings are Derived from Local Isomorphisms

Like what happened to covering maps and the u.p.l in classical topology, every covering map is a local
isomorphism, but every local isomorphism is not necessarily a covering map. Obviously and by definitions,
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every digital covering map is a local isomorphism. Han [9] gave an example showing that a continuous
surjective local isomorphism is not a covering map. We will find a gap in his example and will show that
in the digital topology, continuous surjective local isomorphisms are digital covering maps.

Example 4.1. ([9]) Assume

X = {q0 = (x1, y1), q1 = (x1 − 1, y1 + 1), q2 = (x1 − 2, y1 + 1), q3 = (x1 − 3, y1),

q4 = (x1 − 3, y1 − 1), q5 = (x1 − 2, y1 − 2), q6 = (x1 − 1, y1 − 1)} ⊆ (Z2, 8)

and
Y = {v0 = (a, b), v1 = (a − 1, b + 1), v2 = (a − 2, b), v3 = (a − 1, b − 1)} ⊆ (Z2, 8).

Han claimed that the map h : X −→ Y with h(qi) = vi(mod 4) is a local 8-isomorphism and is not a (8, 8)-
covering map because the third assumption in the definition of a covering map is not satisfied in point
v0. Although his assertion about the point v0 is true, but h is not 8-continuous and hence is not a local
isomorphism. In fact q0 and q6 are 8-adjacent, while h(q0) and h(q6) are not same or 8-adjacent.

Theorem 4.2. A (κ, λ)-continuous surjection map p : (E, κ)→ (B, λ) is a digital (κ, λ)-covering map if and only if
it is a local isomorphism.

Proof. By Theorem 3.9 it suffices to show that every local isomorphism has the u.p.l and has no conciliator
point. Let α : [0,m]Z −→ B be a digital λ-path with b0 = α(0). Since p is surjective, there exists an e0 ∈ p−1(b0)

and by assumption, p|Nκ(e0,1) : Nκ(e0, 1) → Nλ(b0, 1) is a (κ, λ)-isomorphism. Since α(0) λ
↔ α(1), there exists

an e1 ∈ p−1(α(1)) such that e1 ∈ Nκ(e0, 1). If α(0) = α(1), put e1 = e0. Inductively, there is an ei ∈ p−1(α(i)) such
that ei ∈ Nκ(ei−1, 1), for any 0 < i ≤ m. Now, define α̃ : [0,m]Z −→ E by α̃(i) = ei which is a κ-path because
α̃(i) = ei

κ
↔ ei−1 = α̃(i − 1). Since ei ∈ p−1(α(i)), α̃ is a lifting of α.

For the uniqueness of path lifts property, consider two paths α, β : [0,m]Z −→ E in which p ◦ α = p ◦ β
and α(0) = β(0). Assume that α , β. Since α(0) = β(0), the set {i ∈ [0,m];α(i) , β(i)} has minimum l. Hence
α(l) , β(l), while α(l − 1) = β(l − 1). But the map

p|Nκ(α(l−1),1) : Nκ(α(l − 1), 1)→ Nλ(p ◦ α(l − 1), 1)

is an isomorphism which implies that p ◦ α(l) , p ◦ β(l), for α(l), β(l) ∈ Nκ(α(l − 1), 1). This contradicts
p ◦ α = p ◦ β and therefore α = β.
Now, let e ∈ E be a conciliator point of the map p. Then, there are e′, e′′ ∈ Nκ(e, 1) such that e′ κ

= e′′ and

p(e′) λ
↔ p(e′′) which implies that the restricted map p|Nκ(e,1) : Nκ(e, 1) −→ Nλ(p(e), 1) is not an isomorphism.

This is a contradition and hence p has no conciliator point.

If in the definition of digital covering map, we replace the Nλ(b, 1) by Nλ(b,n), for n ∈N, the map is called
radius n covering map [10] and hence it is a radius n local isomorphism. Radius n coverings, particulary
radius 2 coverings are very important in the digital covering theory because some essential theorems in
Algebraic Topology are satisfied in digital topology if covering maps will be radius 2 covering maps.

Theorem 4.3. ([4, 5, 8, 10]) Let p : (E, κ) −→ (B, λ) be a (κ, λ)-covering map such that p(e0) = b0. Suppose that p
is a radius 2 local isomorphism. Then:

(1) For κ-paths α, β : [0,m]Z −→ E starting at e0, if there is a λ-homotopy in B from p ◦ α to p ◦ β that holds the
endpoints fixed, then α(m) = β(m), and there is a κ-homotopy in E from α to β that holds the endpoints fixed;

(2) The induced homomorphism p∗ : πκ1 (E, e0) −→ πλ1 (B, b0) is a monomorphism;
(3) For a given κ′-connected space X with x0 ∈ X, any (κ′, λ)-continuous map ϕ : (X, κ′) −→ (B, λ) with

ϕ(x0) = b0 has a digital lifting ϕ̃ : (X, κ′) −→ (E, κ) for which ϕ̃(x0) = e0 if and only ifϕ∗
(
πκ

′

1 (X, x0)
)
⊆ p∗

(
πκ1 (E, e0)

)
.

For more results in digital covering maps based on 2-radius property, see [4, 5, 8]. In the following, we
give a loop criterion for a digital covering to be a radius n covering map. But we need the next lemma.
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Lemma 4.4. Let p : (E, κ) −→ (B, λ) be a (κ, λ)-covering map, e ∈ E, e′ ∈ Nκ(e, 1) and e′ , e′′ ∈ Nκ(e, 2). Then
p(e′) , p(e′′).

Proof. Let b = p(e) and assume the contrary b′ := p(e′) = p(e′′). Since p|Nκ(e,1) is an isomorphism, e′′ ∈
Nκ(e, 2) − Nκ(e, 1) and hence there exists f ∈ Nκ(e, 1) such that e′′ κ

↔ f . Since p(e′) = p(e′′) κ
↔ p( f ) and

p|Nκ(e,1) is an isomorphism and also p(e′), p( f ) ∈ Nλ(b, 1), we have f κ
↔ e′. Now, p|Nκ( f ,1) is an isomorphism,

e′, e′′ ∈ Nκ( f , 1) and p(e′) = p(e′′) which is a contradiction.

Theorem 4.5. Let p : (E, κ) −→ (B, λ) be a (κ, λ)-covering map. p is a radius n covering map if and only if every
lifting of any simple λ-loop with length at most 2n + 1 is a simple κ-loop.

Proof. Let p be a radius n covering map and in the worst conditions, α : [0, 2n + 1]Z −→ B be a simple λ-loop
with length 2n + 1. Let b := α(0) and assume that e ∈ p−1(b). Consider two λ-paths α1, α2 : [0,n]Z −→ B
defined by α1(k) = α(k) and α2(k) = α(2n + 1 − k). In fact, α1 is α|[0,n] and α2 is (α|[n+1,2n])−1. Since
p|Nκ(e,n) : Nκ(e,n) −→ Nλ(b,n) is a (κ, λ)-isomorphism, α̃1 := (p|Nκ(e,n))−1

◦ α1 and α̃2 := (p|Nκ(e,n))−1
◦ α2 are

liftings of α1 and α2, respectively and α̃1(0) = α̃2(0) = e. Also, α̃1(n) κ
↔ α̃2(n) because α1(n) κ

↔ α2(n) and
p|Nκ(b,n) is an isomorphism. Define µ : [0, 2n + 1] −→ E by

µ(i) =

α̃1(i) 0 ≤ i ≤ n,
α̃2(2n + 1 − i) n + 1 ≤ i ≤ 2n + 1.

Obviously, µ is a simple κ-loop and p ◦ µ = α, as desired.
For the converse, we use induction to show that p|Nκ(e,n) is an isomorphism, for every b ∈ B and any

e ∈ p−1(b).
Assume that all liftings of every simple λ-loop with length 5 are simple κ-loops. We must prove that

p|Nκ(e,2) is an isomorphism, for every b ∈ B and any e ∈ p−1(b). Since p|Nκ(e,1) is an isomorphism, if x ∈ Nλ(b, 1),
then there is a y ∈ Nκ(e, 1) such that p(y) = x. Assume x ∈ Nλ(b, 2) − Nλ(b, 1). Let α : [0, 2]Z −→ Nλ(b, 2)
be a λ-path from b to x. Then there is a unique lifting α̃ : [0, 2]Z −→ Nκ(e, 2) beginning at e such that
y := α̃(2) ∈ Nκ(e, 2) and p(y) = x. Hence p|Nκ(e,2) is onto.

For injectivity, assume the contrary that there are y, y′ ∈ Nκ(e, 2) such that x := p(y) = p(y′). Since p|Nκ(e,1)
is an isomorphism, y, y′ < Nκ(e, 1). If y ∈ Nκ(e, 1) and y′ ∈ Nκ(e, 2), then by Lemma 4.4, p(y) , p(y′). Hence
we can consider y, y′ ∈ Nκ(e, 2) −Nκ(e, 1). By the part i of Proposition 3.7, y, y′ are not κ-adjacent.

There are two points e1, e′1 ∈ Nκ(e, 1) such that e1
κ
↔ y and e′1

κ
↔ y′. If e1 = e′1, then we have two liftings

beginning at e1 for the path δ : [0, 1]Z −→ B, by δ(0) = p(e1) and δ(1) = x which is a contradiction. Hence
e1 , e′1.

If p(e1) λ
↔ p(e′1), then e1

κ
↔ e′1 (because p|Nκ(e,1) is an isomorphism) and since y ∈ Nκ(e1, 1) and y′ ∈ Nκ(e1, 2),

by Lemma 4.4 we have p(y) , p(y′). Therefore p(e1) λ
= p(e′1). Let b1 = p(e1) and b′1 = p(e′1). Define

α : [0, 4]Z −→ B,
α(0) = α(4) = x,
α(1) = b1, α(2) = b, α(3) = b′1,

which is a simple λ-loop based at b with length 4 and hence all of its liftings are closed. Since γ : [0, 4]Z −→ E
defined by γ(0) = y, γ(1) = e1, γ(2) = e, γ(3) = e′1 and γ(4) = y′ is a lifting of α, y = y′ and therefore p|Nκ(e,2)
is injective.

Obviously p|Nκ(e,2) is continuous. For the continuity of
(
p|Nκ(e,2)

)−1
, let b′, b′′ ∈ Nλ(b, 2) such that b′ λ

↔ b′′.
Then

• If b′, b′′ ∈ Nλ(b, 1), then
(
p|Nκ(e,2)

)−1
(b′) κ
↔

(
p|Nκ(e,2)

)−1
(b′′) because p|Nκ(e,1) is an isomorphism.
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• If b′, b′′ ∈ Nλ(b, 2) − Nλ(b, 1), then we can define a simple λ-loop α : [0, 5]Z −→ Nλ(b, 2) by α(0) =
b, α(1) = b1, α(2) = b′, α(3) = b′′, α(4) = b′1 and α(5) = b, where b1, b′1 ∈ Nλ(b, 1). By assumption, all
of its liftings are closed and by the u.p.l, there exists a unique simple κ-loop α̃ started at e such that

p ◦ α̃ = α. Since p|Nκ(e,2) is bijective,
(
p|Nκ(e,2)

)−1
(b′) = α̃(2) κ

↔ α̃(3) =
(
p|Nκ(e,2)

)−1
(b′′), as desired.

• If b′ ∈ Nλ(b, 2) and b′′ ∈ Nλ(b, 1), by a similar way as in the previous item, we can define a simple

λ-loop with the length 4 in Nλ(b, 2) and deduce that
(
p|Nκ(e,2)

)−1
(b′) κ
↔

(
p|Nκ(e,2)

)−1
(b′′).

Therefore p|Nκ(e,2) is an isomorphism.
If p|Nκ(e,n−1) is an isomorphism and all liftings of every simple λ-loop with length 2n + 1 are simple

κ-loops, a similar method shows that p|Nκ(e,n) is an isomorphism.

In the following example we show that we can not replace 2n+1 by 2n in the Theorem 4.5.

Example 4.6. Let B = {b0 = (0, 1, 0), b1 = (1, 0,−1), b2 = (0,−1,−1), b3 = (−1,−1, 0), b4 = (−1, 0, 1)} and define
simple 26-loop α : [0, 5]Z −→ B by α(i) = bi mod 5. Also, define p : Z −→ B by p(i) = bi mod 5. Readily, p is
a (2,26)-covering map. As B = SC3,5

26 and |B| > 2n = 4, there is no non-trivial simple 26-loop in B of the
length 4 or less and so the hypothesis that ”every lifting of any simple 26-loop with the length at most 2n
is a simple 2-loop” is satisfied. Also, there exists a 26-loop with the length 5 such that has no closed lifting,
namely α. But p is not a radius 2 covering map as it is not a radius 2 local isomorphism. For example,

N2(0, 2) = [−2, 2]Z and so
(
p|N2(0,2)

)−1
maps 26-adjacent points b2 and b3 in N26(b0, 2) = B to two distinct

points of N2(0, 2) = [−2, 2]Z that are not 2-adjacent (namely the points 2 and −2).

Although in classical topology, the induced homomorphism on fundamental groups by a covering map
is a monomorphism, but this is not true in digital topology [4]. We have the following corollary by using
Theorem 4.3 and Theorem 4.5.

Corollary 4.7. Let p : (E, κ) −→ (B, λ) be a (κ, λ)-covering map. The induced homomorphism p∗ : πκ1 (E, e0) −→
πλ1 (B, b0) is a monomorphism if every lifting of any simple λ-loop with length 5 is closed.

Proof. Since every lifting of any simple λ-loop with length 5 is closed, p is a radius 2 covering map by
Theorem 4.5 and so by part 2 of Theorem 4.3, p is a monomorphism

Using Theorem 4.5, we can restate Theorem 4.3:

Corollary 4.8. (Digital Lifting Criteria) Let p : (E, κ) −→ (B, λ) be a continuous surjection map, X be a κ′-
connected space with x0 ∈ X and ϕ : (X, κ′) −→ (B, λ) be a (κ′, λ)-continuous map with ϕ(x0) = b0. Then the
existence of a digital lifting ϕ̃ : (X, κ′) −→ (E, κ) for which ϕ̃(x0) = e0 is equivalent to the algebraic assumption
ϕ∗

(
πκ

′

1 (X, x0)
)
⊆ p∗

(
πκ1 (E, e0)

)
if at least one of the following conditions hold:

(a) p has the u.p.l, has no conciliator point and every lifting of any simple λ-loop with length 5 is closed;
(b) p is a radius 2 local isomorphism.

Proof. (a) If p has the u.p.l and has no conciliator point, then it is a covering map, by Theorem 3.9 and
since every lifting of any simple λ-loop with the length 5 is closed, p is a radius 2 covering map. Part 3 of
Theorem 4.3 implies the existence of desired ϕ̃ : (X, κ′) −→ (E, κ).

(b) If p is a radius 2 local isomorphism, Theorem 4.2 implies that it is a radius 2 covering map and so the
existence of desired ϕ̃ : (X, κ′) −→ (E, κ) comes from the part a.
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