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Abstract. Tensors have a wide application in control theory, data mining, chemistry, information sciences,
documents analysis and medical engineering. The material here is motivated by the development of the
efficient numerical methods for solving the coupled tensor equations{

A1 ∗M X ∗N B1 + C1 ∗M Y ∗N D1 = E1,
A2 ∗M X ∗N B2 + C2 ∗M Y ∗N D2 = E2,

with Einstein product. We propose the tensor form of the LSQR methods to find the solutions X and Y
of the coupled tensor equations. Finally we give some numerical examples to illustrate that our proposed
methods are able to accurately and efficiently find the solutions of tensor equations with Einstein product.

1. Introduction

Tensors are becoming increasingly used to describe and solve several problems of documents analysis
[7], psychometrics [27], chemometrics [38] and medical engineering [35], for more details see [10, 21, 34].
Research related to tensors has increased dramatically in recent years [3, 4, 8, 9, 11, 13, 14, 20, 42]. Solving
linear systems in higher dimensions is one of the most important research topics in tensors [2, 19, 31].
Ding and Wei [15] generalized the Jacobi, Gauss-Seidel and Newton methods to solve multilinear systems
with M-tensors. From solving multi-linear M-equations is equivalent to solving nonlinear systems of
equations where the involving functions are P-functions, He et al. derived a Newton-type algorithm for
solving multi-linearM-equations [25]. Based on the rank-1 approximation of the coefficient tensor, Xie et
al. obtained a new tensor method for solving symmetric M-tensor systems [45]. In the work of Dolgov
and Savostyanov [16], the alternating minimal energy (AMEn) methods were introduced for solving high-
dimensional symmetrical positive definite (SPD) linear systems. In [44], two neural network models were
develop for solving nonsingular multi-linear tensor system. Wang et al. derived continuous time neural
network and modified continuous time neural networks to solve a multi-linear system with M-tensors
[43]. In [18], the greedy Tucker approximation algorithm was generalized for solving a tensor linear
equation. Brazell et al. [5] introduced a higher order biconjugate gradient (HOBG) algorithm for solving a
multilinear system of equations with Einstein product. Very recently, high order tensor equations such as
the Stein tensor equation, the Lyapunov tensor equation and the Sylvester tensor equation have attracted
great attention [12, 30, 37]. For example, Xu and Wang extended the biconjugate gradients (Bi-CG) and
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biconjugate residual (Bi-CR) algorithms for finding the solution of the high order Stein tensor equation
[46]. In [29], the sensitivity of the continuous Lyapunov tensor equation was investigated. Influenced by
Brazell et al.’s paper [5], the tensor equations with Einstein product have drawn much attention [26, 39].
For instance, Wang and Xu [41] proposed a conjugate gradient least squares (CGLS) algorithm to solve
some tensor equations with Einstein product.
In the following we will concentrate on the coupled tensor equations{

A1 ∗M X ∗N B1 + C1 ∗M Y ∗N D1 = E1,
A2 ∗M X ∗N B2 + C2 ∗M Y ∗N D2 = E2,

(1)

with Einstein product whereA1,A2 ∈ R
L1×...×LM×K1×...×KM , B1,B2 ∈ R

P1×...×PN×Q1×...×QN , C1,C2 ∈ R
L1×...×LM×S1×...×SM ,

D1,D2 ∈ R
T1×...×TN×Q1×...×QN ,E1,E2 ∈ R

L1×...×LM×Q1×...×QN are known andX ∈ RK1×...×KM×P1×...×PN andY ∈ RS1×...×SM×T1×...×TN

are unknown. The coupled tensor equations (1) have not been dealt with yet. In this article we aim to
extend Krylov subspace methods for solving the coupled tensor equations (1). In Section 2, we obtain the
tensor form of LSQR methods to efficiently find the solutions of (1). Three numerical examples will be
discussed in Section 3. Finally we give some conclusions in Section 4.

1.1. Notation and preliminary definitions

In this subsection, we present the notation system used in this article and the basic concepts of tensors.
For positive integers L1, L2, ..., LM, an order M tensor A = (al1...lM )1≤l j≤L j ( j = 1, ...,M) is a multidimensional
array with L = L1L2...LM entries. We use RL1×...×LM to represent the set of the order M tensors of dimension
L1 × ... × LM with entries from R. We now propose the Einstein product of two tensors. Given two tensors
A ∈ RI1×...×IM×J1×...×JN and B ∈ RJ1×...×JN×K1×...×KL , the Einstein product ofA and B is denoted byA∗N B [5, 17]
and is defined by

(A ∗N B)i1...iMk1...kL =
∑

j1,..., jN

ai1...iM j1... jN b j1... jNk1... jL .

The Einstein product of tensors has important applications in theory of relativity and continuum mechanics
[5, 17, 28]. When M = N = L = 1, the Einstein product reduces to the standard matrix multiplication. The
symbols

(AT)i1...iM j1... jM = (A) j1... jMi1...iM ∈ R
J1×...×JM×I1×...×IM ,

tr(A) =
∑

i1,...,iM

ai1...iMi1...iM ,

and
‖A‖ =

( ∑
i1,...,iM, j1,..., jM

(ai1...iM j1... jM )2
)1/2

,

will, respectively, denote the transpose, the trace and the Frobenius norm of a given tensorA ∈ RI1×...×IM×J1×...×JM .
The inner product of two tensorsA,B ∈ RI1×...×IM×J1×...×JN is defined by

〈A,B〉 = tr(BT
∗MA).

TensorsA andB are called orthogonal if 〈A,B〉 = 0. GivenA,B,X ∈ RI1×...×IM×J1×...×JN , C ∈ RI1×...×IM×K1×...×KM ,
Y ∈ RK1×...×KM×J1×...×JN and λ ∈ R, it can be checked that [39, 41]

〈A,B〉 = tr(BT
∗MA) = tr(A ∗N BT) = tr(B ∗N AT) = tr(AT

∗M B) = 〈B,A〉, (2)

〈λA,B〉 = λ〈A,B〉, (3)

〈X,C ∗M Y〉 = 〈CT
∗M X,Y〉, (4)

(C ∗M Y)T = YT
∗M C

T. (5)
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Definition 1. [41] Define the transformation φIJ : RI1×...×IM×J1×...×JN → RI×J with I = I1I2...IM, J = J1J2...JN and
φIJ(A) = A defined component-wise as

(A)i1...iM j1... jN → Ast,

whereA ∈ RI1×...×IM×J1×...×JN , A ∈ RI×J, s = iM +
∑M−1

k=1 ((ik − 1)
∏M

r=k+1 Ir) and t = jN +
∑N−1

k=1 (( jk − 1)
∏N

r=k+1 Jr).

Here is an example related to the above definition. Consider the tensorA ∈ R2×3×3×2 as follows

A(:, :, 1, 1) =

(
1 2 3
4 5 6

)
, A(:, :, 2, 1) =

(
7 8 9
10 11 12

)
,

A(:, :, 3, 1) =

(
13 14 15
16 17 18

)
, A(:, :, 1, 2) =

(
19 20 21
22 23 24

)
,

A(:, :, 2, 2) =

(
25 26 27
28 29 30

)
, A(:, :, 3, 2) =

(
31 32 33
34 35 36

)
.

It follows from Definition 1 that

φIJ(A) = A =



1 7 13 19 25 31
2 8 14 20 26 32
3 9 15 21 27 33
4 10 16 22 28 34
5 11 17 23 29 35
6 12 18 24 30 36


∈ R6×6.

Remark 1. It is worth mentioning that we can define the inverse function of φIJ : RI1×...×IM×J1×...×JN → RI×J as
follows

φ−1
IJ : RI×J :→ RI1×...×IM×J1×...×JN ,

with Ast → (A)i1...iM j1... jN , where the s-th column of the matrix A consists the s-th element in the set
{A(:, ..., :, j1, ..., jN)|∀ j1, ..., jN}. Here we sort all the elements in this set in lexicographic order, that is from (1, ..., 1) to
(J1, ..., JN).

Lemma 1. [41] ForA ∈ RI1×...×IM×J1×...×JM , X ∈ RJ1×...×JM×K1×...×KN and C ∈ RI1×...×IM×K1×...×KN we have

A ∗M X = C ⇔ φIJ(A)φJK(X) = φIK(C).

Using the above lemma, we can obtain the following well-known proposition which gives the solvability
conditions and the expression of the solutions to the coupled tensor equations (1). In the following, we set

A =

(
φPQ(B1)T

⊗ φLK(A1) φQT(D1)T
⊗ φLS(C1)

φPQ(B2)T
⊗ φLK(A2) φQT(D2)T

⊗ φLS(C2)

)
, (6)

x =

(
vec(φKP(X))
vec(φST(Y))

)
, b =

(
vec(φLQ(E1))
vec(φLQ(E2))

)
. (7)

Proposition 1. The coupled tensor equations (1) have a unique solution pair (X,Y) if and only if rank((A, b)) =
rank(A) and A has a full column rank. In that case, the solution pair (X,Y) of (1) can be expressed as(

vec(φKP(X))
vec(φST(Y))

)
= (ATA)−1ATb. (8)
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2. Higher order LSQR methods for (1)

Because there is extensive literature on iterative methods to efficiently and effectively solve the
unsymmetric linear systems [6, 36, 40], recently the development of iterative methods for solving linear
matrix equations has become increasingly popular [22–24]. The main purpose of this section is to propose
higher order LSQR methods for solving the coupled tensor equations (1). In this section, we begin by
recalling the LSQR methods for solving the unsymmetric linear systems Ax = b. As is well known, by using
the Golub-Kahan bidiagonalization process, two types of the LSQR method were constructed in [32] to
compute an approximation solution of the linear systems Ax = b and unconstrained least-squares problem
minx ||Ax − b||. First we present the pseudocode for the LSQR method in the following. Two types of the
LSQR method can be summarized as follows [32, 33].

Algorithm 1. Type 1 of LSQR method
τ(0) = 1; ξ(0) = −1; ω(0) = 0; w(0) = 0; z(0) = 0; β(1) = ||b||; β(1)u(1) = b; α(1) = ||ATu(1)||; α(1)v(1) = ATu(1);
For i = 1, 2, ..., until convergence, do:
ξ(i) = −ξ(i−1)β(i)/α(i); z(i) = z(i−1)+ξ(i)v(i); w(i) = (τ(i−1)−β(i)w(i−1))/α(i);ω(i) = ω(i−1)+w(i)v(i); β(i+1) =
||Av(i)−α(i)u(i)||; β(i+1)u(i+1) = Av(i)−α(i)u(i); τ(i) = −τ(i−1)α(i)/β(i+1); α(i+1) = ||ATu(i+1)−β(i+1)v(i)||;
α(i + 1)v(i + 1) = ATu(i + 1) − β(i + 1)v(i); γ(i) = β(i + 1)ξ(i)/(β(i + 1)w(i) − τ(i)); x(i) = z(i) − γ(i)ω(i).

Algorithm 2. Type 2 of LSQR method
θ(1) = ||ATb||; θ(1)v(1) = ATb; ρ(1) = ||Av(1)||; ρ(1)p(1) = Av(1); ω(1) = v(1)/ρ(1); ξ(1) = θ(1)/ρ(1); x(1) =
ξ(1)ω(1);
For i = 1, 2, ..., until convergence, do:
θ(i + 1) = ||ATp(i) − ρ(i)v(i)||; θ(i + 1)v(i + 1) = ATp(i) − ρ(i)v(i); ρ(i + 1) = ||Av(i + 1) − θ(i + 1)p(i)||; ρ(i +
1)p(i + 1) = Av(i + 1) − θ(i + 1)p(i); ω(i + 1) = (v(i + 1) − θ(i + 1)ω(i))/ρ(i + 1); ξ(i + 1) = −ξ(i)θ(i + 1)/ρ(i + 1);
x(i + 1) = x(i) + ξ(i + 1)ω(i + 1).

Theorem 1. [33] LSQR algorithms return the minimum-norm solution.

It can be easily see that the scalars α(i) ≥ 0, β(i) ≥ 0, ρ(i) ≥ 0 and θ(i) ≥ 0 are selected to make ||u(i)||2 = 1
and ||v(i)||2 = 1, respectively. Also the stopping criterion can be considered as ||b − Ax(i)||2 < ε where ε is a
small positive number (for more details see [33]). It is worth noting that Algorithms 1 and 2 can be applied
for solving the linear system Ax = b with the parameters (6) and (7). But obviously this system is a large
system of equations and computing solution of such systems is a major computational challenge. Therefore
it would be preferable to formulate Algorithms 1 and 2 in the tensor form. In order to obtain the tensor
form of Algorithms 1 and 2, we substitute the parameters (6) and (7) into the above algorithms and then
we obtain new parameters. It can be obtained that

α(1)v(1) = ATu(1) =

(
φPQ(B1)T

⊗ φLK(A1) φQT(D1)T
⊗ φLS(C1)

φPQ(B2)T
⊗ φLK(A2) φQT(D2)T

⊗ φLS(C2)

)T

u(1), (9)

β(i + 1)u(i + 1) = Av(i) − α(i)u(i) =

(
φPQ(B1)T

⊗ φLK(A1) φQT(D1)T
⊗ φLS(C1)

φPQ(B2)T
⊗ φLK(A2) φQT(D2)T

⊗ φLS(C2)

)
v(i) − α(i)u(i), (10)

α(i+1)v(i+1) = ATu(i+1)−β(i+1)v(i) =

(
φPQ(B1)T

⊗ φLK(A1) φQT(D1)T
⊗ φLS(C1)

φPQ(B2)T
⊗ φLK(A2) φQT(D2)T

⊗ φLS(C2)

)T

u(i+1)−β(i+1)v(i), (11)

θ(1)v(1) = ATb =

(
φPQ(B1)T

⊗ φLK(A1) φQT(D1)T
⊗ φLS(C1)

φPQ(B2)T
⊗ φLK(A2) φQT(D2)T

⊗ φLS(C2)

)T (
vec(φLQ(E1))
vec(φLQ(E2))

)
, (12)

θ(i + 1)v(i + 1) = ATp(i) − ρ(i)v(i) =

(
φPQ(B1)T

⊗ φLK(A1) φQT(D1)T
⊗ φLS(C1)

φPQ(B2)T
⊗ φLK(A2) φQT(D2)T

⊗ φLS(C2)

)T

p(i) − ρ(i)v(i), (13)
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ρ(i+1)p(i+1) = Av(i+1)−θ(i+1)p(i) =

(
φPQ(B1)T

⊗ φLK(A1) φQT(D1)T
⊗ φLS(C1)

φPQ(B2)T
⊗ φLK(A2) φQT(D2)T

⊗ φLS(C2)

)
v(i+1)−θ(i+1)p(i). (14)

In view of (9)-(11), we define new parameters as follows

p(i) =

(
vec(φLQ(P1(i))
vec(φLQ(P2(i))

)
, u(i) =

(
vec(φLQ(U1(i))
vec(φLQ(U2(i))

)
, r̃0 =

(
vec(φLQ(R̃1(0))
vec(φLQ(R̃1(0))

)
, r(i) =

(
vec(φLQ(R1(i))
vec(φLQ(R2(i))

)
, (15)

v(i) =

(
vec(φKP(V1(i))
vec(φST(V2(i))

)
, z(i) =

(
vec(φKP(Z1(i))
vec(φST(Z2(i))

)
, q(i) =

(
vec(φKP(Q1(i))
vec(φST(Q2(i))

)
, (16)

x(i) =

(
vec(φKP(X(i))
vec(φST(Y(i))

)
, ω(i) =

(
vec(φKP(W1(i))
vec(φST(W2(i))

)
, (17)

where

P1(i),P2(i),U1(i),U2(i),R1(i),R2(i), R̃1(0), R̃2(0) ∈ RL1×...×LM×Q1×...×QN , (18)

and

V1(i),Z1(i),W1(i),X(i) ∈ RK1×...×KM×P1×...×PN , V2(i),Z2(i),W2(i),Y(i) ∈ RS1×...×SM×T1×...×TN . (19)

Now using the above results and Remark 1, we can get the tensor forms of Algorithms 1 and 2 to solve the
coupled tensor equations (1). The resulting algorithms are given as Algorithms 3 and 4, respectively.

Algorithm 3. Type 1 of LSQR method for (1)
τ(0) = 1; ξ(0) = −1;W1(0) = 0;W2(0) = 0; w(0) = 0;Z1(0) = 0;Z2(0) = 0;
β(1) = [||E1||

2 + ||E2||
2]1/2;U1(1) = E1/β(1);U2(1) = E2/β(1);

α(1) = [||AT
1 ∗MU1(1) ∗N BT

1 +AT
2 ∗MU2(1) ∗N BT

2 ||
2 + ||CT

1 ∗MU1(1) ∗N DT
1 + CT

2 ∗MU2(1) ∗N DT
2 ||

2]1/2;
V1(1) = [AT

1 ∗MU1(1) ∗N BT
1 +AT

2 ∗MU2(1) ∗N BT
2 ]/α(1);

V2(1) = [CT
1 ∗MU1(1) ∗N DT

1 + CT
2 ∗MU2(1) ∗N DT

2 ]/α(1)
For i = 1, 2, ..., until convergence, do:
ξ(i) = −ξ(i − 1)β(i)/α(i);
Z1(i) = Z1(i − 1) + ξ(i)V1(i);
Z2(i) = Z2(i − 1) + ξ(i)V2(i);
w(i) = (τ(i − 1) − β(i)w(i − 1))/α(i);
W1(i) =W1(i − 1) + w(i)V1(i);
W2(i) =W2(i − 1) + w(i)V2(i);
β(i + 1) = [||A1 ∗MV1(i) ∗N B1 + C1 ∗MV2(i) ∗N D1 − α(i)U1(i)||2

+ ||A2 ∗MV1(i) ∗N B2 + C2 ∗MV2(i) ∗N D2 − α(i)U2(i)||2]1/2;
U1(i + 1) = [A1 ∗MV1(i) ∗N B1 + C1 ∗MV2(i) ∗N D1 − α(i)U1(i)]/β(i + 1);
U2(i + 1) = [A2 ∗MV1(i) ∗N B2 + C2 ∗MV2(i) ∗N D2 − α(i)U2(i)]/β(i + 1);
τ(i) = −τ(i − 1)α(i)/β(i + 1);
α(i + 1) = [||AT

1 ∗MU1(i + 1) ∗N BT
1 +AT

2 ∗MU2(i + 1) ∗N BT
2 − β(i + 1)V1(i)||2

+ ||CT
1 ∗MU1(i + 1) ∗N DT

1 + CT
2 ∗MU2(i + 1) ∗N DT

2 − β(i + 1)V2(i)||2]1/2;
V1(i + 1) = [AT

1 ∗MU1(i + 1) ∗N BT
1 +AT

2 ∗MU2(i + 1) ∗N BT
2 − β(i + 1)V1(i)]/α(i + 1);

V2(i + 1) = [CT
1 ∗MU1(i + 1) ∗N DT

1 + CT
2 ∗MU2(i + 1) ∗N DT

2 − β(i + 1)V2(i)]/α(i + 1);
γ(i) = β(i + 1)ξ(i)/(β(i + 1)w(i) − τ(i));
X(i) = Z1(i) − γ(i)W1(i);
Y(i) = Z2(i) − γ(i)W2(i).

Algorithm 4. Type 2 of LSQR method for (1)
θ(1) = [||AT

1 ∗M E1 ∗N B
T
1 +AT

2 ∗M E2 ∗N B
T
2 ||

2 + ||CT
1 ∗M E1 ∗N D

T
1 + CT

2 ∗M E2 ∗N D
T
2 ||

2]1/2;
V1(1) = [AT

1 ∗M E1 ∗N B
T
1 +AT

2 ∗M E2 ∗N B
T
2 ]/θ(1);
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V2(1) = [CT
1 ∗M E1 ∗N D

T
1 + CT

2 ∗M E2 ∗N D
T
2 ]/θ(1);

ρ(1) = [||A1 ∗MV1(1) ∗N B1 + C1 ∗MV2(1) ∗N D1||
2 + ||A2 ∗MV1(1) ∗N B2 + C2 ∗MV2(1) ∗N D2||

2]1/2;
P1(1) = [A1 ∗MV1(1) ∗N B1 + C1 ∗MV2(1) ∗N D1]/ρ(1);
P2(1) = [A2 ∗MV1(1) ∗N B2 + C2 ∗MV2(1) ∗N D2]/ρ(1);
W1(1) =V1(1)/ρ(1);
W2(1) =V2(1)/ρ(1);
ξ(1) = θ(1)/ρ(1);
X(1) = ξ(1)W1(1);
Y(1) = ξ(1)W2(1);
For i = 1, 2, ..., until convergence, do:
θ(i + 1) = [||AT

1 ∗M P1(i) ∗N BT
1 +AT

2 ∗M P2(i) ∗N BT
2 − ρ(i)V1(i)||2

+ ||CT
1 ∗M P1(i) ∗N DT

1 + CT
2 ∗M P2(i) ∗N DT

2 − ρ(i)V2(i)||2]1/2;
V1(i + 1) = [AT

1 ∗M P1(i) ∗N BT
1 +AT

2 ∗M P2(i) ∗N BT
2 − ρ(i)V1(i)]/θ(i + 1);

V2(i + 1) = [CT
1 ∗M P1(i) ∗N DT

1 + CT
2 ∗M P2(i) ∗N DT

2 − ρ(i)V2(i)]/θ(i + 1);
ρ(i + 1) = [||A1 ∗MV1(i + 1) ∗N B1 + C1 ∗MV2(i + 1) ∗N D1 − θ(i + 1)P1(i)||2

+ ||A2 ∗MV1(i + 1) ∗N B2 + C2 ∗MV2(i + 1) ∗N D2 − θ(i + 1)P2(i)||2]1/2;
P1(i + 1) = [A1 ∗MV1(i + 1) ∗N B1 + C1 ∗MV2(i + 1) ∗N D1 − θ(i + 1)P1(i)]/ρ(i + 1);
P2(i + 1) = [A2 ∗MV1(i + 1) ∗N B2 + C2 ∗MV2(i + 1) ∗N D2 − θ(i + 1)P2(i)]/ρ(i + 1);
W1(i + 1) = (V1(i + 1) − θ(i + 1)W1(i))/ρ(i + 1);
W2(i + 1) = (V2(i + 1) − θ(i + 1)W2(i))/ρ(i + 1);
ξ(i + 1) = −ξ(i)θ(i + 1)/ρ(i + 1);
X(i + 1) = X(i) + ξ(i + 1)W1(i + 1);
Y(i + 1) = Y(i) + ξ(i + 1)W2(i + 1).

Stopping criterion. As a stopping criterion, we choose to satisfy√√√ 2∑
k=1

||Ek −Ak ∗M X(i) ∗N Bk − Ck ∗M Y(i) ∗N Dk||
2 = 0

So our convergence criterion for the LSQR methods becomes√√√ 2∑
k=1

||Ek −Ak ∗M X(i) ∗N Bk − Ck ∗M Y(i) ∗N Dk||
2 ≤ tol,

where tol is a chosen fixed threshold.

3. Numerical experiments

To numerically test the effectiveness and efficiency of the LSQR methods, we give two numerical
examples. The calculations were carried out in MATLAB [1].
First we consider the Sylvester tensor equation

A ∗M X ∗N B + C ∗M Y ∗N D = E, (20)

with
A = −10 × tenrand([3 2 4 3]) ∈ R3×2×4×3, B = 20 × tenrand([3 4 5 2]) ∈ R3×4×5×2,

C = −30 × tenrand([3 2 5 2]) ∈ R3×2×5×2, D = 40 × tenrand([2 5 5 2]) ∈ R2×5×5×2,

and
E = tenrand([3 2 5 2]) ∈ R3×2×5×2.
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Figure 1: Plot of the residual of Algorithms 1 and 2.
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The results obtained for this example are depicted in Figure 1 where

r(i) =
√

log ‖E −A ∗M X(i) ∗N B − C ∗M Y(i) ∗N D‖.

As the second example, we study the coupled tensor equations (1) with

A1 = 22 × tenrand([3 2 4 3]) ∈ R3×2×4×3, B1 = 12 × tenrand([3 4 5 2]) ∈ R3×4×5×2,

C1 = 45 × tenrand([3 2 5 2]) ∈ R3×2×5×2, D1 = 55 × tenrand([2 5 5 2]) ∈ R2×5×5×2,

A2 = 66 × tenrand([3 2 4 3]) ∈ R3×2×4×3, B2 = 11 × tenrand([3 4 5 2]) ∈ R3×4×5×2,

C2 = 33 × tenrand([3 2 5 2]) ∈ R3×2×5×2, D2 = 40 × tenrand([2 5 5 2]) ∈ R2×5×5×2,

and
E1 = tenrand([3 2 5 2]) ∈ R3×2×5×2, E2 = tenrand([3 2 5 2]) ∈ R3×2×5×2.

The results of numerical results are illustrated in Figure 2 where

r(i) = log

√√√ 2∑
k=1

||Ek −Ak ∗M X(i) ∗N Bk − Ck ∗M Y(i) ∗N Dk||
2.

The numerical experiments confirmed the accuracy and efficiency of Algorithms 1 and 2.

4. Conclusions

In this paper, we developed two tensor types of the LSQR method for computing the solutions of the
coupled tensor equations (1). The resulting LSQR algorithms were easy to implement and simple to use.
Finally, we presented numerical results which illustrate the efficiency of the LSQR methods.
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Figure 2: Plot of the residual of Algorithms 1 and 2.
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