Some Results on Rectifiable Spaces

Jing Zhanga, Jiewen Chena, Hanfeng Wangb

a School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, P. R. China
bDepartment of Mathematics, Shandong Agricultural University, Taian 271018, China

Abstract. In this paper, it is mainly proved that (1) if G is a rectifiable space, then $\ell\Pi(G) \leq \ell(G)$; (2) if G is a rectifiable space and A is a discrete rectifiable subspace of G, then $|A| \leq \ell(G)$; (3) every locally compact NSS rectifiable space G is first-countable. The above results improve the corresponding results in topological groups.

1. Introduction

A topological space G is said to be a rectifiable space provided that there exists a homeomorphism $\varphi : G \times G \to G \times G$ and an element $e \in G$ such that $\pi_1 \circ \varphi = \pi_1$ and for every $x \in G$ we have $\varphi(x, x) = (x, e)$, where $\pi_1 : G \times G \to G$ is the projection to the first coordinate. If G is a rectifiable space, then φ is called a rectification on G. M.M. Choban \cite{6} proved the next theorem.

Theorem 1.1. A topological space G is a rectifiable space if and only if there exist $e \in G$ and two continuous maps $p : G \times G \to G$, $q : G \times G \to G$ such that for any $x \in G$, $y \in G$ the next identities hold:

$$p(x, q(x, y)) = q(x, p(x, y)) = y \quad \text{and} \quad q(x, x) = e.$$

In fact, we can assume that $p = \pi_2 \circ q^{-1}$ and $q = \pi_2 \circ \varphi$ in Theorem 1.1. Fixing a point $x \in G$, we get that the maps $f_x, g_x : G \to G$ defined by $f_x(y) = p(x, y)$ and $g_x(y) = q(x, y)$ for each $y \in G$, are homeomorphisms.

The above map $p : G \times G \to G$ will be called multiplication on G. Let G be a rectifiable space, and let p be the multiplication on G. Therefore, $q(x, y)$ is an element such that $p(x, q(x, y)) = y$. Since $p(x, e) = p(x, q(x, x)) = x$ and $p(x, q(x, e)) = e$, it follows that e is a right neutral element for G and $q(x, e)$ is a right inverse for x.

Recall that a topological group G is a group G with a topology such that the product maps of $G \times G$ into G is jointly continuous and the inverse map of G onto itself associating x^{-1} with arbitrary $x \in G$ is continuous. A paratopological group G is a group G with a topology such that the product maps of $G \times G$ into G is jointly continuous. It is well known that rectifiable spaces are good generalization of topological groups. In fact, for a topological group with the neutral element e, as it is easy to see, the map $q(x, y) = (x, x^{-1}y)$ is a rectification.
on G. The 7-dimensional sphere S_7 is a rectifiable space but not a topological group [20]. Further, it is easy to see that paratopological groups and rectifiable spaces are all homogeneous. W. Atiponrat [3] introduced the concept of topological gyrogroups as a generalization of topological groups. In [5], the authors proved that each topological gyrogroup is a rectifiable space.

Cardinal functions are an interesting topic in general topology (see [9, 10]). Many topologists have investigated cardinal invariants in topological groups and paratopological groups extensively ([2, 16, 17]). In 1996, A.S. Gul’ko [8] proves that if G is a rectifiable space, then (1) $\pi\chi(G) = \chi(G)$; (2) $\omega(G) \leq k(G)\chi(G)$; (3) $\omega(G) = \pi\omega(G) = d(G)\chi(G)$. F. Lin, C. Liu and R. Shen in [11–13] also study cardinal functions in rectifiable spaces.

The notations $\omega(G)$, $\pi\omega(G)$, $\chi(G)$ and $\ell(G)$ denote the first infinite ordinal, the weight of a space G, the π-weight of a space G, the character of a space G and the Lindelöf number of a space G, respectively. The symbol κ denotes an infinite cardinal. The letter e denotes the neutral element of a group and the right neutral element of a rectifiable space, respectively. The readers may consult [2, 7] for notation and terminology not explicitly given here. All spaces are assumed to be T_2.

2. The Index of Narrowness of Rectifiable Spaces

The next two problems about the index of narrowness was posed by A.V. Arhangel’skii, A. Bella [1] and F. Lin [11], respectively.

Problem 2.1. Let G be a paratopological (semitopological) (Hausdorff, regular) group of countable extent. Must G be ω-narrow?

Problem 2.2. Is every Souslin rectifiable space G left ω-narrow?

In [19], we prove that if G is a Hausdorff quasitopological group of countable extent, then G is ω-narrow. Recall that a rectifiable space G is said to have the property $*$ if for each open neighborhood U of e in G, there exists an open neighborhood V of e in G such that $g(p(x, V), x) \subset U$ for every $x \in G$. In [18], we show that if G is a rectifiable space with the property $*$, then $\mathcal{I}_G \leq \ell(G)$ (The definition of \mathcal{I}_G see below before Theorem 2.11.1). In this section, further, we show that if G is a rectifiable space, then $\mathcal{I}_G \leq \ell(G)$, which improves the related results in [18]. First of all, we give some concepts and technical lemmas. Recall that if U is an open neighborhood of the right neutral element e of a rectifiable space G, a subset A of G is called U-discrete if $b \notin p(a, U)$, for any distinct $a, b \in A$ [18].

The next Lemma 2.3 and Lemma 2.4 can be found in [18]. For completeness of our proof, the specific proof of the next two lemmas are given again.

Lemma 2.3. Let G be a rectifiable space, A be a subset of G and U be an open neighborhood of e in G. Then A is U-discrete if and only if $q(A, A) \cap U = \{e\}$.

Proof. Firstly, we shall verify that if A is U-discrete, then we have $q(A, A) \cap U = \{e\}$. Suppose to the contrary that, there are two distinct elements $a, b \in A$ such that $q(a, b) \in U$. Then $b \in p(a, U)$, thus contradicting the assumption that the set A is U-discrete.

If $q(A, A) \cap U = \{e\}$, the following we shall verify that A is U-discrete. If there exist $a, b \in G$ and $a \neq b$ such that $b \in p(a, U)$, then $e \notin q(a, b) \in U \cap q(A, A)$, which is a contradiction.

Lemma 2.4. Let G be a rectifiable space and $A \subset G$. Then for each open neighborhood U of the neutral element e in G, A is U-discrete if and only if \overline{A} is U-discrete.

Proof. It is only need to verify that if A is U-discrete, then \overline{A} is U-discrete. It follows from Lemma 2.3 that $q(A, A) \cap U = \{e\}$. We only need to prove that $q(\overline{A}, \overline{A}) \cap U = \{e\}$. The following we shall prove that for arbitrary distinct elements $a, b \in \overline{A}$, we can conclude $q(a, b) \notin U$.

Case 1: If $a, b \in A \subset \overline{A}$, since A is U-discrete, it is obvious that $q(a, b) \notin U$.

Case 2: If \(a \in \overline{A} \setminus A \), \(b \in A \) and \(q(a, b) = u \in U \), then there exists an open neighborhood \(V \) of \(e \) in \(G \) such that \(q(p(a, V), b) \subset U \). Since \(a \in \overline{A} \), there is \(a' \in p(a, V) \cap A \) where \(a' \neq b \). We have \(e \neq q(a', b) \in q(p(a, V), b) \subset U \), contradicting the assumption that \(A \) is \(U \)-discrete.

Case 3: If \(a, b \in A \) and \(q(a, b) \in U \), then there is an open neighborhood \(V \) of \(e \) in \(G \) such that \(q(p(a, V), b) \subset U \). Since \(b \in A \), there is \(b' \in p(b, V) \cap A \) where \(b' \neq a \). It is easy to see that \(e \neq q(a, b') \in q(p(a, V), b) \subset U \), contradicting the assumption that \(A \) is \(U \)-discrete.

Case 4: If \(a, b \in A \) and \(q(a, b) = u \in U \), then there is an open neighborhood \(W \) of \(e \) in \(G \) such that \(q(p(a, W), p(b, W)) \subset U \). Since \(a, b \in A \), there are \(a' \in p(a, W) \cap A \) and \(b' \in p(b, W) \cap A \) where \(a' \neq b' \). Thus \(e \neq q(a', b') \in U \), contradicting the assumption that \(A \) is \(U \)-discrete. \(\square \)

Recall that if \(A \) is a subspace of a rectifiable space \(G \), then \(A \) is called a rectifiable subspace of \(G \) \([12]\) if we have \(p(A, A) \subset A \) and \(q(A, A) \subset A \).

Lemma 2.5. \([12]\) Let \(G \) be a rectifiable space and \(A \) be a rectifiable subspace of \(G \). Then \(\overline{A} \) is also a rectifiable subspace of \(G \).

It is quite easy to verify the next theorem.

Theorem 2.6. Let \(G \) be a rectifiable space and \(A \) be a rectifiable subspace of \(G \). Then \(A \) is a discrete rectifiable subspace if and only if \(\overline{A} \) is a discrete rectifiable subspace.

Proof. If \(A \) is discrete, then there is an open neighborhood \(U \) of the right neutral element \(e \) in \(G \) such that \(U \cap A = \{e\} \). Since \(A \) is a rectifiable subspace, \(U \cap q(A, A) = \{e\} \). It follows from Lemma 2.4 and Lemma 2.5 that \(\overline{A} \) is \(U \)-discrete rectifiable subspace.

It is easy to see that the following corollaries are true. \(\square \)

Corollary 2.7. Every discrete rectifiable subspace \(A \) of a countably compact rectifiable space \(G \) is finite.

Corollary 2.8. Every discrete subgroup \(A \) of a countably compact topological group \(G \) is finite.

Corollary 2.9. Let \(G \) be a rectifiable space and \(A \) be a discrete rectifiable subspace of \(G \). Then \(|A| \leq \ell(G) \).

Proof. By Theorem 2.6, \(\overline{A} \) is a discrete rectifiable subspace of \(H \). Since \(\ell(\overline{A}) \leq \ell(G) \) and \(\overline{A} \) is discrete, \(|A| \leq |\overline{A}| \leq \ell(\overline{A}) \leq \ell(G) \). \(\square \)

Corollary 2.10. Let \(G \) be a topological group and \(A \) be a discrete subgroup of \(G \). Then \(|A| \leq \ell(G) \).

Let \(G \) be a rectifiable space and \(N(e) \) the family of open neighborhoods of the right neutral element \(e \) in \(G \). The left index of narrowness \(\text{In}_l(G) \) and the right index of narrowness \(\text{In}_r(G) \) of \(G \) are defined, respectively, as follows:

\[
\text{In}_l(G) = \min\{\kappa \geq \omega : (\forall U \in N(e))(\exists F \subset G)(p(F, U) = G \wedge |F| \leq \kappa)\},
\]

\[
\text{In}_r(G) = \min\{\kappa \geq \omega : (\forall U \in N(e))(\exists F \subset G)(p(U, F) = G \wedge |F| \leq \kappa)\}.
\]

If \(G \) satisfies \(\text{In}_l(G) \leq \kappa(\text{In}_r(G) \leq \kappa) \), then \(G \) is left (right) \(\kappa \)-narrow \([11]\). We also define the index of narrowness of \(G \) by

\[
\text{In}(G) = \text{In}_l(G) \cdot \text{In}_r(G).
\]

Given a space \(X \), we denote by \(e(X) \) the supremum of cardinality of closed discrete subsets of \(X \).

It is proved that the inequality \(\text{In}(H) \leq e(H) \) hold in each topological group \(H \) \([2]\). The next theorem generalizes the above result.

Theorem 2.11. Let \(H \) be a rectifiable space. Then \(\text{In}_l(H) \leq e(H) \).
Proof. Let \(\kappa = e(H) \). It suffices to show that \(\text{In}_{1}(H) \leq \kappa \). If \(\text{In}_{1}(H) > \kappa \), then there is an open neighborhood \(U \) of \(e \) in \(H \) such that for an arbitrary subset \(A \subset H \) with \(|A| \leq \kappa \), we have \(G \setminus p(A, U) \neq \emptyset \). The family \(\mathcal{E} \) of all \(U \)-discrete subset of \(H \) is (partially) ordered by inclusion, and the union of any chain of \(U \)-discrete sets is also a \(U \)-discrete set. Therefore, according to Zorn’s Lemma, there exists a maximal element \(A \) of the family \(\mathcal{E} \). It follows from Lemma 2.4 and \(\kappa = e(H) \) that \(A \) is closed and \(|A| \leq \kappa \). Then there is \(x_{1} \in G \setminus p(A, U) \). Since \(x_{1} \notin A \), there is an open neighborhood \(V_{1} \) of \(e \) in \(H \) such that \(V_{1} \subset U \) and \(p(x_{1}, V) \cap A = \emptyset \). Put \(A_{1} = A \cup \{x_{1}\} \). It is clear that \(A_{1} \) is \(V_{1} \)-discrete and \(|A_{1}| \leq \kappa \).

Assume that we have defined open neighborhood \(V_{a} \) of \(e \) and \(V_{q} \)-discrete subset \(A_{a} \) with \(|A_{a}| \leq \kappa \) for some infinite cardinal \(a \). Thus \(G \setminus p(A_{a}, U) \neq \emptyset \). By Lemma 2.4, it is clear that \(A_{a} \) is \(V_{a} \)-discrete, so \(|A_{a}| \leq \kappa \). Then there are \(x_{a+1} \in G \setminus p(A_{a}, U) \) and an open neighborhood \(V_{a+1} \) of \(e \) such that \(p(x_{a+1}, V_{a+1}) \cap A_{a} = \emptyset \), where \(V_{a+1} \subset U \). Put \(A_{a+1} = A_{a} \cup \{x_{a+1}\} \), then \(A_{a+1} \) is \(V_{a+1} \)-discrete. By induction, we shall have a \(V \)-discrete subset \(B \) such that \(|B| > \kappa \) for some open neighborhood \(V \) of \(e \). It follows from Lemma 2.4 that \(B \) is \(V \)-discrete. Since \(|B| > |B| > \kappa \), this contradicts the definition of \(\kappa \). Hence \(\text{In}_{1}(H) \leq \kappa = e(H) \). \(\square \)

At the end of this section, we give two-element properties of \(U \)-discrete subsets preserved by homomorphism maps.

Let \(G, H \) be rectifiable spaces and \(f : G \to H \) be a map from \(G \) to \(H \). The map is called a homomorphism if for arbitrary \(x, y \in G \) we have \(f(p_{G}(x, y)) = p_{H}(f(x), f(y)) \). Moreover, if \(f \) is a one-to-one homomorphism map from \(G \) onto \(H \), then \(f \) is called an isomorphism [11].

Lemma 2.12. ([11]) Let \(G, H \) be rectifiable spaces and \(f : G \to H \) be a homomorphism from \(G \) to \(H \). Then \(f(e_{G}) = e_{H} \) and \(f(q_{G}(x, y)) = q_{H}(f(x), f(y)) \) for arbitrary \(x, y \in G \).

Making use of Lemma 2.3 and the definition of homomorphism, it is easy to deduce the propositions below.

Proposition 2.13. Let \(G, H \) be rectifiable spaces and \(f : G \to H \) be a isomorphism from \(G \) to \(H \). If \(A \) is a \(U \)-discrete subset of \(H \), then \(f^{-1}(A) \) is a \(W \)-discrete subset of \(G \) for each open neighborhood \(W \) of \(e_{G} \) in \(G \) with \(f(W) \subset U \).

Proof. According to Lemma 2.3, it is only need to prove that the equation \(W \cap q_{G}(f^{-1}(A), f^{-1}(A)) = \{e_{G} \} \) hold, where \(e_{G} \) denotes the right neutral element of \(G \). If not, then there exist \(a_{1}, a_{2} \in f^{-1}(A), b_{1}, b_{2} \in A \) and \(w \in W \) where \(w \neq e_{G}, a_{1} \neq a_{2} \) such that \(f(a_{1}) = b_{1}, f(a_{2}) = b_{2} \) and \(q_{G}(a_{1}, a_{2}) = w \). Thus \(f(q_{G}(a_{1}, a_{2})) = f(w) \). Since \(f \) is a homomorphism, \(f(w) = f(q_{G}(a_{1}, a_{2})) = q_{H}(f(a_{1}), f(a_{2})) = q_{H}(b_{1}, b_{2}) \). Since \(f \) is a isomorphism, \(e_{H} \neq f(w) \in f(W) \cap q_{H}(A, A) = U \cap q_{H}(A, A) \), which is a contradiction. \(\square \)

Proposition 2.14. Let \(G, H \) be rectifiable spaces and \(f : G \to H \) be a homomorphism from \(G \) to \(H \). If \(A \) is a \(U \)-discrete subset of \(G \), then \(f(A) \) is a \(V \)-discrete subset of \(H \) for each open neighborhood \(V \) of \(e_{H} \) with \(f^{-1}(V) \subset U \).

Proof. According to Lemma 2.3, it is only need to prove that the equation \(V \cap q_{H}(f(A), f(A)) = \{e_{H} \} \) hold. If not, then there exist \(a, b \in A \) and \(v \in V \) where \(v \neq e_{H}, f(a) \neq f(b) \) such that \(q_{H}(f(a), f(b)) = v \). Since \(f \) is a homomorphism, \(v = q_{H}(f(a), f(b)) = f(q_{G}(a, b)) \). Then \(q_{G}(a, b) \in f^{-1}(V) \cap q_{G}(A, A) \subset U \cap q_{G}(A, A) \), which is a contradiction. \(\square \)

It is well known that every first-countable rectifiable space is metrizable [8]. It is easy to deduce that the following result is true.

Theorem 2.15. Suppose that \(f \) is an open continuous homomorphism of a metrizable rectifiable space \(G \) onto a rectifiable space \(H \), then \(H \) is also a metrizable rectifiable space.

Proof. Since \(f \) is open and continuous, and the space \(G \) is first-countable, the space \(H \) is also first-countable. Thus \(H \) is a metrizable rectifiable space. \(\square \)
3. Locally Compact NSS-Rectifiable Spaces

It is known that in every locally compact totally disconnected topological group G, there exists a local base \mathcal{B} of G at e such that every element of \mathcal{B} is an open compact subgroup of G.

In [14], the authors proved that every locally σ-compact rectifiable space with a bc-base is locally compact or zero-dimensional and posed the next question:

Problem 3.1. Does each totally disconnected locally compact rectifiable space have an open compact rectifiable subspace?

In this section, we prove that each totally disconnected locally compact rectifiable space have a closed compact rectifiable subspace. We also show that every locally compact NSS rectifiable space G is first-countable.

First of all, we give a simple lemma which will be used in our proof.

Lemma 3.2. ([15]) Let C be a compact subset and F be a closed subset of a rectifiable space G such that $C \cap F = \emptyset$. Then there exists an open neighborhood V of e in G such that $p(C,V) \cap F = \emptyset$.

We can conclude the next propositions easily by Lemma 3.2.

Proposition 3.3. Let G be a rectifiable space and C be a σ-compact subset of G and F be a closed subset of G such that $C \cap F = \emptyset$. Then there exists a G_σ-subset of every open neighborhood V of e such that $p(C,V) \cap F = \emptyset$.

Proof. Assume that $C = \bigcup_{n \in \mathbb{N}} C_n$, where each C_n is compact, there exists an open neighborhood V_a of e in G such that $p(C_n,V_a) \cap F = \emptyset$ according to Lemma 3.2. Put $V = \bigcap_{n \in \mathbb{N}} V_n$, then V is a G_σ-subset of G and $p(C,V) \cap F = \emptyset$, which completes our proof. \qed

Proposition 3.4. Let G be a rectifiable space, and let C be a non-empty compact G_σ-set in G. Then there exists a G_σ-set V in G such that $e \in V$ and $p(C,V) \subset C$.

Proof. Let $C = \bigcap \gamma$, where γ is a family of open subsets of G and $|\gamma| \leq \kappa$. Take any $U \in \gamma$. By Lemma 3.2, there exists an open neighborhood V_U of e such that $p(C,V_U) \subset U$. Put $V = \bigcap \{V_U : U \in \gamma\}$. Then V is a G_σ-subset of G such that $e \in V$ and $p(C,V) \subset C$. \qed

The following theorem implies that each totally disconnected locally compact rectifiable space have a closed compact rectifiable subspace.

Theorem 3.5. Suppose that G is a rectifiable space and C is a compact neighborhood of e in G. Then there exists a closed compact rectifiable subspace H of G such that $H \subset C$.

Proof. Since C is a compact neighborhood of e in G, we can choose an open neighborhood V_1 of e in G such that $V_1 \subset \overline{V_1} \subset C$. Assume that open neighborhoods V_i of e in G are defined for each $i = 1, 2, \cdots, n$. Then there is an open neighborhood V_{n+1} of e in G such that $p(V_{n+1},V_{n+1}) \subset V_n, q(V_{n+1},V_{n+1}) \subset V_n$ and $\overline{V_{n+1}} \subset V_n$. Put $H = \bigcap_{n \in \mathbb{N}} V_n$. Then $H = \bigcap_{n \in \mathbb{N}} V_n$. It is easy to check that H is a closed rectifiable subspace and $H \subset C$. Indeed, we only need to verify that H is a rectifiable subspace. For arbitrary $x, y \in H$ and for each $n \in \mathbb{N}$, we have $x, y \in V_n$. Therefore $p(x,y) \in p(V_{n+1},V_{n+1}) \subset V_n$ and $q(x,y) \in q(V_{n+1},V_{n+1}) \subset V_n$, which implies that $p(H,H) \subset H$ and $q(H,H) \subset H$. Since C is compact and H is closed contained in C, H is a compact rectifiable subspace contained in C. \qed

It is clear that the next corollary gives a partial answer to Problem 3.1. We call a space X a P-space if every G_σ-set in X is open.

Corollary 3.6. Suppose that G is a totally disconnected locally compact rectifiable space and G is a P-space. Then there exists a local base \mathcal{B} of G at the right neutral element e such that each element of \mathcal{B} is an open compact rectifiable subspace.
Proof. Since G is a totally disconnected locally compact space, there exists a base \mathcal{P} of G at e consisting of open compact subsets of G. It follows from Theorem 3.5 that for every $V \in \mathcal{P}$, there is a compact rectifiable subspace H_V which is also a G_δ-subset in G such that $H_V \subset V$. Let $\mathcal{B} = \{H_V : V \in \mathcal{P}\}$. Since G is a P-space, \mathcal{B} is a base of G at e. □

Let G be a rectifiable space. We say that G is a rectifiable space with no small rectifiable subspace or, for brevity, an NSS-rectifiable space if there exists a neighborhood U of e such that every rectifiable subspace H of G contained in U is trivial, that is, $H = \{e\}$.

Theorem 3.7. If G is a NSS-rectifiable space, then the following two conditions are equivalent:

1. there exists a non-empty compact G_δ-set C in G;
2. the right neutral element e of G is a G_δ-point in G.

Proof. It is only need to show that the first condition implies the second one. Since the space G is homogeneous, we can assume that $e \in C = \bigcap_{n \in \mathbb{N}} U_n$. Since G is a NSS-rectifiable space, there exists a neighborhood U of e such that every rectifiable subspace H of G contained in U is trivial. Let $C' = \bigcap_{n \in \mathbb{N}} (U_n \cap U)$. It is clear that $C' \subset C \cap U$. Buy the regularity of G, there exists an open neighborhood V of e in G such that $\overline{V_n} \subset U_n \cap U$, for each $n \in \mathbb{N}$. Let $C'' = \bigcap_{n \in \mathbb{N}} \overline{V_n}$. It is easy to see that $C'' = \bigcap_{n \in \mathbb{N}} \overline{V_n} \subset C \cap U$. Thus C'' is a non-empty compact G_δ-set contained in U. There is an open neighborhood $W_1' \subset V_1$. Assume that open neighborhoods W_i' of e in G are defined for each $i = 1, 2, \ldots, n$. Then there is an open neighborhood $W_n'\subset G$ such that $p(W_n', W_n') \subset W_n'$, $q(W_n', W_n') \subset W_n$ and $\overline{W_n} \subset W_n'$. Put $H_1 = \bigcap_{n \in \mathbb{N}} W_n'$. It is clear that H_1 is a closed rectifiable subspace contained in V_1. Similarly, we can define closed rectifiable subspace H_n contained in V_n for each $n = 2, 3, \ldots$. Put $H = \bigcap_{n \in \mathbb{N}} H_n$. It is clear that H is a G_δ-set and is a rectifiable subspace contained in C''. Since $C'' \subset U$ and G is NSS, $H = \{e\}$. This completes the proof. □

Theorem 3.8. Every locally compact NSS rectifiable space G is first-countable.

Proof. Clearly, each locally compact regular space contains a non-empty compact G_δ-set. Therefore, according to Theorem 3.7, the right neutral element e of G is a G_δ-point in G. Since G is locally compact and Hausdorff, G is first-countable at e. Hence, by homogeneity, the space G is first-countable. □

In [5], the authors proved that each topological group is a topological gyrogroup and each topological gyrogroup is a rectifiable space. It is easy to see that the following corollary is true.

Corollary 3.9. ([4]) Every locally compact NSS-gyrogroup (G, τ, \oplus) is first-countable.

References

