Filomat 34:13 (2020), 4483–4487 https://doi.org/10.2298/FIL2013483O

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The Absolute Center of *p*-Groups of Maximal Class

R. Orfi^a, S. Fouladi^a

^aDepartment of Mathematics, Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran

Abstract. The purpose of this paper is to determine L(G), the absolute center of the group *G*, when *G* is a *p*-group of maximal class. Particularly we find L(G) for metabelian *p*-groups of maximal class, all *p*-groups of maximal class of order less than p^6 and *p*-groups of maximal class for p = 2, 3.

1. Introduction

In 1994, Hegarty [6] introduced L(G), the absolute center of a group G as follows: $L(G) = \{g \in G \mid g^{\alpha} = g \text{ for all } \alpha \in \text{Aut}(G)\}$. As we see there is an analogue between L(G) and Z(G), on the other hand we may define $Z(G) = \{g \in G \mid g^{\alpha} = g \text{ for all } \alpha \in \text{Inn}(G)\}$. Obviously $L(G) \leq Z(G)$. Hegarty [6] proved an analogue of Schur's theorem for the absolute center, that is, if G is a group such that G/L(G) is finite, then $\langle g^{-1}g^{\alpha} \mid g \in G, \alpha \in \text{Aut}(G) \rangle$ is also finite. Moreover Meng and Guo [12] explore the relationship between L(G) and the Frattini subgroup $\Phi(G)$ for a finite group G, they also determine the structure of the absolute center of all finite minimal non-abelian p-groups.

In this paper we study L(G) for *p*-groups of maximal class. As the definition of L(G) shows, studying L(G) directly depends on the structure of Aut(*G*). Therefore we use a structure of the Sylow *p*-subgroup of Aut(*G*) for metabelian *p*-groups of maximal class from our paper [5] and also the structure of *p'*-automorphism of *p*-groups of maximal class from [13] to prove our main theorem. Moreover we need the concept of the degree of commutativity of *p*-groups of maximal class. Specially we prove that |L(G)| = 2 for all 2-groups of maximal class, L(G) = 1 for all 3-groups of maximal class and also L(G) = 1 for *p*-groups of maximal class of order p^4 . Moreover we show that there is only one group of maximal class of order p^5 with |L(G)| = p and all other groups of maximal class of order p^5 have trivial absolute center(See Theorem 2.12). Furthermore we determine the absolute center for all metabelian *p*-groups of maximal class(See corollaries 2.5, 2.6 and Theorem 2.8).

Throughout this paper the following notation is used. The terms of the lower and the upper central series of *G* are denoted by $\gamma_i(G)$ and $Z_i(G)$, respectively. The centre of *G* is denoted by Z = Z(G). If α is an automorphism of *G* and *x* is an element of *G*, we write x^{α} for the image of *x* under α . For a normal subgroup *N* of *G*, we let $\operatorname{Aut}^N(G)$ denote the group of all automorphisms of *G* centralizing *G*/*N*. Let $H \leq G$ and $A \leq \operatorname{Aut}(G)$, we note that $C_A(H) = \{\alpha \in A \mid h^{\alpha} = h, \forall h \in H\}$ and $C_H(A) = \{h \in H \mid h^{\alpha} = h, \forall \alpha \in A\}$. The Frattini subgroup of *G* is denoted by $\Phi = \Phi(G)$ and $\operatorname{Aut}_p(G)$ for the Sylow *p*-subgroup of Aut(*G*). Also we use the notation $x \equiv y \pmod{H}$ to indicate that Hx = Hy, where *H* is a subgroup of a group *G* and $x, y \in G$. Let (a, p) = 1, we note that $ord_p(a)$ is the smallest positive integer *t* such that $a^t \equiv 1 \pmod{p}$. All unexplained notation is standard and follows that of [9].

²⁰¹⁰ Mathematics Subject Classification. Primary 20D45, 20D15

Keywords. absolute center, p-groups of maximal class

Received: 18 January 2020; Accepted: 16 March 2020

Communicated by Dragan S. Djordjević

Email addresses: orfi@khu.ac.ir (R. Orfi), s_fouladi@khu.ac.ir (S. Fouladi)

2. Main results

Let *G* be a *p*-group of maximal class of order p^n ($n \ge 3$), where *p* is a prime. We note that if n = 3, then L(G) = 1 for p > 2 and L(G) = Z(G) for p = 2. Therefore in the rest of the paper we assume that $n \ge 4$. Following [9], we define the 2-step centralizer K_i in *G* to be the centralizer in *G* of $\gamma_i(G)/\gamma_{i+2}(G)$ for $2 \le i \le n-2$ and define $P_i = P_i(G)$ by $P_0 = G$, $P_1 = K_2$, $P_i = \gamma_i(G)$ for $2 \le i \le n$. The degree of commutativity l = l(G) of *G* is defined to be the maximum integer such that $[P_i, P_j] \le P_{i+j+l}$ for all $i, j \ge 1$ if P_1 is not abelian and l = n - 2 if P_1 is abelian.

Take $s \in G - \bigcup_{i=2}^{n-2} K_i$, $s_1 \in P_1 - P_2$ and $s_i = [s_{i-1}, s]$ for $2 \le i \le n-1$. It is easily seen that $\{s, s_1\}$ is a generating set for G and $P_i(G) = \langle s_i, \ldots, s_{n-1} \rangle$ for $1 \le i \le n-1$ and so $Z(G) = P_{n-1}(G) = \langle s_{n-1} \rangle$. For the rest of the paper we fix the above notation.

By [9, Corollary 3.2.7] and [2, Corollary p.59] we have the following result.

Lemma 2.1. Let G be a p-group of maximal class of order p^n .

- (*i*) The degree of commutativity of G is positive if and only if the 2-step centralizers of G are all equal.
- (ii) If G is metabelian then G has positive degree of commutativity.

Lemma 2.2. [7, Hilfssatz III. 14.13] If G is a p-group of maximal class of order p^n and $s \notin K_i$ for $2 \le i \le n-2$, then $C_G(s) = \langle s \rangle P_{n-1}(G)$ and $s^p \in P_{n-1}(G)$.

Theorem 2.3. [3, Theorem 3.2] Let $G = \langle a, b \rangle$ be a two-generated metabelian group. Then the following are equivalent:

- (*i*) For all $u, v \in G'$, there is an automorphism of G that maps a to au and b to bv;
- (*ii*) *G* is nilpotent.

By the above theorem we see that if *G* is a metabelian *p*-group of maximal class of order p^n , then for any elements $x, y \in G' = \Phi(G)$ there is an automorphism that maps *s* to *sx* and *s*₁ to *s*₁*y* hence $|\operatorname{Aut}^{\Phi}(G)| = p^{2n-4}$. Moreover $\frac{\operatorname{Aut}(G)}{\operatorname{Aut}^{\Phi}(G)} \hookrightarrow \operatorname{Aut}(\frac{G}{\Phi(G)})$ and so $|\operatorname{Aut}_p(G) : \operatorname{Aut}^{\Phi}(G)|$ divides *p*, since $\frac{G}{\Phi(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

Lemma 2.4. If G is a p-group of maximal class of order p^n , then $Aut_p(G)$ fix Z(G) elementwise.

Proof. Consider the action of $\operatorname{Aut}_p(G)$ on Z(G). It is obvious that $C_{Z(G)}(\operatorname{Aut}_p(G)) \neq 1$ since $\operatorname{Aut}_p(G)$ and Z(G) are *p*-groups. As |Z(G)| = p, we have $C_{Z(G)}(\operatorname{Aut}_p(G)) = Z(G)$, which complets the proof. \Box

Corollary 2.5. If G is a p-group of maximal class of order p^n and Aut(G) is also a p-group, then L(G) = Z(G).

Proof. This is obvious by the fact that $L(G) \leq Z(G) \cong \mathbb{Z}_p$ and Lemma 2.4. \Box

Corollary 2.6. Let G be a 2-group of maximal class of order 2^n , then L(G) = Z(G).

Proof. By [5, Theorem 5.9], we see that Aut(G) is also a 2-group which completes the proof by using Corollary 2.5. \Box

Lemma 2.7. Let G be a p-group of maximal class of order p^n . If $\delta \in \text{Aut}(G)$ with $s^{\delta} = s^a x$ and $s_1^{\delta} = s_1^c y$, where $x, y \in \Phi(G)$ and 0 < a, c < p. Then $s_{n-1}^{\delta} = s_{n-1}^{a^{n-2}c}$.

Proof. By induction on *m* we have $[s_i^m, s] \equiv s_{i+1}^m \pmod{\gamma_{i+2}(G)}$ and so $[s_i^m, s^\ell] \equiv s_{i+1}^{m\ell} \pmod{\gamma_{i+2}(G)}$ for $\ell, i \ge 1$. Therefore by induction on i we see that $s_i^\delta \equiv s_i^{d^{i-1}c} \pmod{\gamma_{i+1}(G)}$, as required. \Box Now for the rest of paper by using corollaries 2.5 and 2.6 we may assume that *G* is a metabelian *p*-group of maximal class of order $p^n(p > 2)$ and Aut(*G*) is not *p*-group. It is straightforward to see that when p is odd, Aut(*G*) is supersolvable and is a split extension of Aut_{*p*}(*G*) by a subgroup of the direct product of two cyclic groups of order p - 1. On the other hand, if *H* be a *p*'-subgroup of Aut(*G*), then we have Aut(*G*) = Aut_{*p*}(*G*) \rtimes *H* and *H* is embeded in $\mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1}$ (see [1] Section 1). Since $P_1(G)$ and $\Phi(G)$ are characteristic subgroups of *G*, $G/\Phi(G)$ and $P_1/\Phi(G)$ are invariant under *H*. So by Maschke's Theorem there exists $s \in G - P_1$ such that $G/\Phi(G) = P_1/\Phi(G) \times \langle \Phi(G), s \rangle / \Phi(G)$ and $\langle \Phi(G), s \rangle / \Phi(G)$ is invariant under *H*. In the rest of the paper *s* will be as above. Therefore if $\delta \in H$ then $s^{\delta} = s^a x$ and $s_1^{\delta} = s_1^c y$, where $x, y \in \Phi(G)$ and 0 < a, c < p. We recall that if *G* is metabelian *p*-group of maximal class, then *G* has positive degree of commutativity and |s| divides p^2 by Lemma 2.2. In the next theorem we find the absolute center for finite metabelian *p*-group of maximal class when $H \neq 1$.

Theorem 2.8. Let G be a metabelian p-group of maximal class of order $p^n(p > 2)$ and $H \neq 1$. If H is not cyclic, then L(G) = 1. Let H be cyclic such that $H = \langle \delta \rangle$ with $s^{\delta} = s^a x$, $s^{\delta}_1 = s^c_1 y$, where $1 \le a, c < p$ and $x, y \in \Phi(G)$.

- (*i*) If $|s| = p^2$, then L(G) = 1.
- (ii) If all elements out of P_1 have order p, then
 - (a) if $ord_p(c) \nmid ord_p(a)$, then L(G) = 1.
 - (b) if $ord_p(c) \mid ord_p(a)$, then there exists $0 \leq r < ord_p(a)$ such that $c \equiv a^r \pmod{p}$. On setting $ord_p(a) = t$ we have L(G) = Z(G) when $t \mid n 2 + r$ and L(G) = 1 when $t \nmid n 2 + r$.

Proof. By [13, Theorem A], we have $C_H(Z(G))$ is cyclic. Hence there exists $\alpha \in H$ such that $C_{Z(G)}(\alpha) \neq Z(G)$. As |Z(G)| = p we deduce that $C_{Z(G)}(\alpha) = 1$, which completes the proof, since $L(G) \leq C_{Z(G)}(\alpha)$.

(i) Since $\delta \notin \operatorname{Aut}^{\Phi}(G)$, we have $(a, c) \neq (1, 1)$. By Lemma 2.7, if a = 1 then $s_{n-1}^{\delta} = s_{n-1}^{c} \neq s_{n-1}$, as desired. If a > 1, then by Theorem 2.3, the map β defined by $s^{\beta} = su^{-1}$ and $s_{1}^{\beta} = s_{1}w^{-1}$, where $u^{\delta} = x$ and $w^{\delta} = y$, is an automorphism of *G* lying in $\operatorname{Aut}^{\Phi}(G)$. On setting $\alpha = \beta\delta$, we see that $s^{\alpha} = s^{a}$ and $s_{1}^{\alpha} = s_{1}^{c}$ and so $(s^{p})^{\alpha} = s^{ap} \neq s^{p}$. Moreover by Lemma 2.2, $Z(G) = \langle s^{p} \rangle$, which completes the proof.

(ii)(a) The map β defined by $s^{\beta} = su^{-1}$ and $s_1^{\beta} = s_1w^{-1}$, where $u^{\delta} = x$ and $w^{\delta} = y$, is an automorphism of G lying in Aut^{Φ}(G). On setting $\alpha = \beta\delta$ and $ord_p(a) = t$, we have $s^{\alpha^t} = s$ and $s_1^{\alpha^t} = s_1^{c^t}$ and so by Lemma 2.7, $s_{n-1}^{\alpha^t} = s_{n-1}^{c^t} \neq s_{n-1}$ since $ord_p(c) \nmid t$.

(ii)(b) First we see that $1, a, ..., a^{t-1}$ are all distinct roots of the equation $x^t \equiv 1 \pmod{p}$. Therefore there exists $0 \le r < t$ such that $c \equiv a^r \pmod{p}$. Now by Lemma 2.7, $s_{n-1}^{\delta} = s_{n-1}^{a^{n-2+r}}$, which completes the proof. \Box

In what follows first we find the absolute center for all finite 3-groups of maximal class and finally we obtain the absolute center for all *p*-groups of maximal class of order p^n , where $4 \le n \le 5$.

Lemma 2.9. Let G be a p-group of maximal class of order $p^n(p > 2)$ and $H \neq 1$. If P_1 is abelian, then L(G) = 1.

Proof. First we may assume that |s| = p by Theorem 2.8. Now we see that any element of *G* is uniquely determined by $s^t u$, where $0 \le t < p$ and $u \in P_1$. Assume that 1 < b < p, we define $\beta : G \to G$ by $(s^t u)^{\beta} = s^t u^b$, and we show that β is an automorphism. Let $g_1 = s^t u$ and $g_2 = s^{t'} u'$, where $0 \le t, t' < p$ and $u, u' \in P_1$. We may write $g_1g_2 = s^{t+t'}[s^{t'}, u^{-1}]uu'$. If $t + t' \equiv r \pmod{p}$, then $s^{t+t'} = s^r$ since |s| = p and so $(g_1g_2)^{\beta} = s^r([s^{t'}, u^{-1}]uu')^b$. Moreover $g_1^{\beta}g_2^{\beta} = s^{t+t'}[s^{t'}, u^{-b}]u^b u'^b$. We have $[s^{t'}, u^{-1}]^b$ since P_1 is abelian and so β is a homomorphism. Also β is onto since $G = \langle s, s_1^b \rangle$. Thus β is an automorphism. Furthermore $s_{n-1}^{\beta} = s_{n-1}^b \neq s_{n-1}$, which completes the proof since $L(G) \le Z(G) = \langle s_{n-1} \rangle$.

Lemma 2.10. Let G be a 3-group of maximal class of order 3^n $(n \ge 4)$, then L(G) = 1.

Proof. First we see that for n = 4, G is metabelian; and for $n \ge 5$, G has degree of commutativity n - 4 by [2, Theorem 3.13] and so is metabelian. Moreover by [5, Theorem 5.8], , we have $H \ne 1$. Now if P_1 is abelian, then by Lemma 2.9, L(G) = 1. Furthermore if P_1 is not abelian, then by observing the proof of [5, Theorem 5.6 (i)], we have $H = \langle \beta_2 \rangle$ when n is odd and $H = \langle \beta_3 \rangle$ when n is even, where $s^{\beta_2} = s^{-1}$, $s_1^{\beta_2} = s_1$ and $s^{\beta_3} = s^{-1}$, $s_1^{\beta_3} = s_1^{-1}$. Note that $s^{-1} = s^2 s^{-3}$ and $s^{-3} \in \Phi(G)$. Therefore Lemma 2.7 completes the proof. \Box

Lemma 2.11. Let G be a p-group of maximal class of order p^4 (p > 2). Then L(G) = 1.

Proof. First we see that $H \neq 1$ by [11, Lemma 9], . Since $P_1 = C_G(\gamma_2(G))$, we have $\gamma_2(G) \le Z(P_1) \le P_1$ which implies that $P_1/Z(P_1)$ is cyclic and so P_1 is abelian, as desired. \Box

Now for p > 3, Curran [4, Corollary 5] shown that there is only one group of order p^5 whose automorphism group is also a *p*-group in which (p - 1, 3) = 1. The presentation of this group is as follows:

$$G_0 = \langle a_1, a \mid a^p = [a_1, a]^p = [a_1, a, a]^p = [a_1, a, a, a]^p = [a_1, a, a, a, a] = 1$$

$$a_1^p = [a_1, a, a, a] = [a_1, a, a_1]^{-1}$$

We note that G_0 is of maximal class. By this observation we state the following theorem.

Theorem 2.12. Let G be a p-group of maximal class of order p^5 with p > 3. If $G = G_0$ then L(G) = Z(G), for otherwise L(G) = 1.

Proof. First we claim that *G* is metabelian. To prove this we have $[\gamma_2(G), Z_2(G)] = 1$ and so $\gamma_3(G) = Z_2(G) \le Z(\gamma_2(G)) \le \gamma_2(G)$, which implies that $\gamma_2(G)$ is abelian. If $G = G_0$ then Corollary 2.5 completes the proof. Therefore for the rest of the proof we may assume that $H \ne 1$. Since $p \ge 5$, by using [9, Proposition 3.3.2] we have $\exp(G/Z(G)) = \exp(G') = p$ which yields that $\mathcal{O}_1(G) \le Z(G) \cong \mathbb{Z}_p$. Moreover by [9, Lemma 1.2.11] *G* is regular. Now if $\mathcal{O}_1(G) = Z(G)$, then $|\Omega_1(G)| = p^4$. Hence $\Omega_1(G)$ is a maximal subgroup of *G* and $\Omega_1(G) = \{x \in G | x^p = 1\}$ since *G* is regular. On setting $s \in G - (P_1 \cup \Omega_1(G))$, we have $|s| = p^2$ and so L(G) = 1 by Theorem 2.8. If $\mathcal{O}_1(G) = 1$, then $\exp(G) = p$. Now from Jame's list [8], there are only two families Φ_9 and Φ_{10} of groups of maximal class of order p^5 . By observing the presentation of these groups, we see that only $\Phi_9(1^5)$ and $\Phi_{10}(1^5)$ are of exponent *p*. Now if $G = \Phi_9(1^5)$ with the following presentation :

$$\langle s, s_1, \dots, s_4 \mid [s_i, s] = s_{i+1}, s^p = s_i^p = 1 \ (1 \le i \le 4) \rangle,$$

then obviously P_1 is abelian and so L(G) = 1 by Lemma 2.9. Furthermore if $G = \Phi_{10}(1^5)$ with the presentation

$$\langle s, s_1, \dots, s_4 \mid [s_i, s] = s_{i+1}, [s_1, s_2] = s_4, s^p = s_i^p = 1 \ (1 \le i \le 4) \rangle,$$

then the map α defined by $s^{\alpha} = s^{-1}$, $s_1^{\alpha} = s_1$ is an automorphism of order 2 and it is easily seen that $s_4^{\alpha} = s_4^{-1}$, completing the proof. \Box

Acknowledgments. The authors are grateful to the referee for useful comments. The paper was revised accordingly and also second author would like to thank the Kharazmi University(Iran) for financial support.

References

- A. H. Baartmans, J. J. Woeppel, The automorphism group of a *p*-group of maximal class with an abelian maximal subgroup, Fund. Math. 93 (1976) 41–46.
- [2] N. Blackburn, On a special class of *p*-groups, Acta Math. 100 (1958) 45–92.
- [3] A. Caranti and C. M. Scoppola, Endomorphisms of two-generated metabelian groups that induce the identity modulo the derived subgroup, Arch. Math. 56 (1991) 218–227.
- [4] M. J. Curran, Automorphisms of certain *p*-groups (*p* odd), Bull. Aust. Math. Soc. 38 (1988) 299–305.
- [5] S. Fouladi and R. Orfi, Automorphisms of metabelian prime power order groups of maximal class, Bull. Aust. Math. Soc. 77 (2008) 261–276.
- [6] P. Hegarty, The absolute center of a group, J. Algebra 169 (1994) 929-935.

- [7] B. Huppert, Endliche Gruppen, Vol. 1, Springer-Verlage, 1967.
 [8] Rodney James, The Groups of Order p⁶ (p an Odd Prime), Math. Comp. 34 (1980) 613–637.
 [9] C. R. Leedham-Green, S. McKay, The structure of groups of prime power order, Oxford University Press, 2002.
 [10] H. Liebeck, The automorphism group of finite *p*-groups, J. Algebra 4 (1966) 426–432.
 [11] D. MacHale, Some finite groups which are rarely automorphism groups-II, Math. Proc. R. Ir. Acad. 83A (1983) 189–196.
- [11] D. Materiate, contendate groups inflating roups, J. Group Theory 18 (2015) 887–904.
 [12] H. Meng and X. Guo, The absolute center of finite groups, J. Group Theory 18 (2015) 887–904.
 [13] B. Wolf, A note on *p*'-automorphism of *p*-groups *P* of maximal class centralizing the center of *P*, J. Algebra 190 (1997) 163–171.