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Abstract. Topological concepts and methods have been applied as useful tools to study computer science,
information systems and rough set. Rough set was introduced by Pawlak. Its core concept is upper
and lower approximation operations, which are the operations induced by an equivalent relation on a
domain. They can also be seen as a closure operator and a interior operator of the topology induced by an
equivalent relation on a domain. This paper explores rough set theory from the point of view of topology. I
generalize the notions of rough sets based on the topological space. The set approximations are defined by
using the new topological notions namely I-J-nearly open sets. The topological properties of the present
approximations are introduced and compared to the previous one and shown to be more general.

1. Introduction

A rough approximating a subset of the set of objects is a pair of dual approximation operator, called a
lower and an upper approximation in term of equivalence classes. Rough sets are defined trough their dual
set approximations in Pawlak approximation space [37, 38]. These approximations are the most important
concepts in rough set theory. However, equivalence relations in Pawlak rough sets are too restrictive for
theoretical and practical aspects. To enlarge the application scope of rough set theory, researchers have
proposed many kinds of generalization of rough sets. Based on this reason, they replaced equivalence
classes to some other models, for examples, [18, 20, 23, 34, 46, 47]. In recent times, lots of researchers are
interested to generalize this theory in many fields of applications [30, 36, 52, 54]. The concept of topology
shows up naturally in almost every branch of mathematics [19, 33, 40, 44]. This has made topology one
of the great unifying ideas of mathematics. Ordinary topology now has been used in many subfields of
artificial intelligence, such as knowledge representation, spatial reasoning etc. Pawlak’s upper and lower
approximations are the closure and the interior of a set. Several works in topological space and rough
set theory have been proposed. In particular, the most important topological generalization of rough sets
was presented by Skowron [45] and Wiweger [50]. Introducing the concept of topological space appears
seldom in few papers published recently [4, 25, 27, 28, 39, 41, 43, 53]. In the past few years mathematicians
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turned their attention towards to near (or nearly) open concept as generalization of open sets to topological
spaces (see: [1, 9, 10, 26, 31, 35, 42] for details). Amer et al. [6] used the J-nearly open concepts and
introduced the notions of J-nearly approximations. More recently, Hosny [15] generalized J-nearly open
sets by introducing new sort of open sets namely, δβJ-open sets and

∧
β J

-sets and used these open sets to
present δβJ-approximations and

∧
β J
− approximations as a generalization of J − nearly approximations.

Ideal is a fundamental concept in studying the topological problems. The notion of ideal topological spaces
was first studied by Kuratowski [24] and Vaidyanathaswamy [49] which is one of the important areas of
research in the branch of mathematics. After them different mathematicians applied the concept of ideals in
topological spaces (see: [7, 11, 14, 17, 32]). The interest in the idealized version of many general topological
properties has grown drastically in the past 20 years. Few researchers [16, 21, 48] interesting in applying
the concept of ideals in rough set theory.

In this paper, the notion of ideals is used to present the concepts of J-nearly open sets with respect
ideals. These concepts generalize the usual notions of J-nearly open sets. Moreover, the notions of J-nearly
approximations in terms of ideals are introduced as a generalization of J-nearly approximations. Pawlak
rough sets are expressed in topological and ideals concepts. The current paper is structured as follows.
Section 2 contains some fundamental definitions and properties of rough sets, J-neighborhood spaces, near
open sets, J-nearly approximations and ideals, which are needed in this paper or are beneficial to the
subsequent study. The aim of Section 3 is to present the concepts of j-near open sets with respect ideals
namely, I-αJ-open, I-J-preopen, I-J-semiopen and I-βJ-open sets. These definitions are different from
αJ-open, J-preopen, J-semiopen and βJ-open sets and more general. If I = {φ}, then the current definitions
are coincided with Amer et al.’s [6] definitions. So, Amer et al.’s [6] definitions are special case of the current
definitions. The main properties and the relationships among of these concepts are studied. Moreover,
it is showed that the concepts of I-αJ-open sets and I-J-preopen sets are independent although every
αJ-open set is J-preopen set in [6] which can considered to be one of the deviation between the present
generalization and the previous one (see Examples 3.2 and 3.3). The object of Section 4 is to propose a
new approximations. These approximations are based on J-nearly open sets with respect ideals. Several
topological properties of the current approximation and the connections among them are also studied in
this section. The relationships between these approximations, Abd El-Monsef et al.’s approximations 2.4
[2] and Amer et al.’s approximations 2.7 [6] are revealed through Theorem 4.1 and Corollary 4.1. The goal
of Section 5 is to define membership functions via ideal. It is compared to the previous one such as Abd
El-Monsef et al. [3] and Lin [29] (see Proposition 5.1 and Lemma 5.2) and shown to be more accurate. A
concluding remark is given in the last section.

2. Preliminaries

Definition 2.1. [17] Let X be a non-empty set. I , φ, I ∈ P(X) is an ideal on X, if

1. A ∈ I and B ∈ I ⇒ A ∪ B ∈ I,
2. A ∈ I and B ⊆ A⇒ B ∈ I.

i.e., I is closed under finite unions and subsets.

Definition 2.2. [2] Let X be a non-empty finite set and ρ be an arbitrary binary relation on X. The J-neighborhood
of x ∈ X (J-nbd ) (nJ(x)), J ∈ {R,L, < R >,< L >, I,U, < I >,< U >}, defined as:

1. R-nbd: nR(x) = {y ∈ X : xρy}.
2. L-nbd: nL(x) = {y ∈ X : yρx}.



M. Hosny / Filomat 34:2 (2020), 273–286 275

3. < R >-nbd: n<R>(x) = ∩x∈nR(y)nR(y).
4. < L >-nbd: n<L>(x) = ∩x∈nL(y)nL(y).
5. I-nbd: nI(x) is the intersection of nR(x) and nL(x).
6. U-nbd: nU(x) is the union of nR(x) and nL(x).
7. < I >-nbd: n<I>(x) is the intersection of n<R>(x) and n<I>(x).
8. < U >-nbd: n<U>(x) is the union of n<R>(x) and n<I>(x).

From the following concepts and throughout this paper J ∈ {R,L, < R >,< L >, I,U, < I >,< U >}.

Remark 2.1. It should be noted that the concept of J-nbd of x ∈ X(nJ(x)), in [2] is the same as the notion of

1. the after set and fore sets in [8] if J = R,L respectively.
2. the intersection of after set and fore sets and their union in [51] if J = I,U respectively.
3. the minimal right set and the minimal left set in [5] if J =< R >,< L > respectively.
4. the intersection of minimal right set and minimal left set in [22] if J =< I > .

Definition 2.3. [2] Let X be a non-empty finite set, ρ be an arbitrary binary relation on X and ξJ : X → P(X)
assigns each x in X its J-nbd in P(X). (X, ρ, ξJ) is a J-neighborhood space (J-nbdS).

Theorem 2.1. [2] Let (X, ρ, ξJ) be a J-nbdS, and A ⊆ X. Then, τJ = {A ⊆ X : ∀a ∈ A,nJ(a) ⊆ A} is a topology on X.
The elements of τJ are called J-open set and the complement of J-open set is J-closed set. The family ΓJ of all J-closed
sets defined by ΓJ = {F ⊆ X : F′ ∈ τJ},F

′ is the complement of F.

Definition 2.4. [2] Let (X, ρ, ξJ) be a J-nbdS and A ⊆ X. The J-lower, J-upper approximations, J-boundary regions
and J-accuracy of A are:
ρ

J
(A) is the union of all J-open sets which are subset of A = intJ(A), where intJ(A) represents J-interior of A.

ρJ(A) is the intersection of all J-closed sets which are superset of A = clJ(A), where clJ(A) represents J-closure of A.
BJ(A) = ρJ(A) − ρ

J
(A).

σJ(A) =
|ρ

J
(A)|

|ρJ(A)| , where |ρJ(A)| , 0.

Definition 2.5. [2] Let (X, ρ, ξJ) be a J-nbdS. A ⊆ X is J-exact if ρJ(A) = ρ
J
(A). Otherwise, A is J-rough.

Definition 2.6. [6] Let (X, ρ, ξJ) be a J-nbdS. A ⊆ X is

1. J-preopen (PJ-open), if intJ(clJ(A)) ⊇ A.
2. J-semiopen (SJ-open), if clJ(intJ(A)) ⊇ A.
3. αJ-open, if A ⊆ intJ[clJ(intJ(A))].
4. βJ-open (semi preopen), if A ⊆ clJ[intJ(clJ(A))].

These sets are called J-nearly open sets, the families of J-nearly open sets of X denoted by ζJO(X), the complements of
the J-nearly open sets are called J-nearly closed sets and the families of J-nearly closed sets of X denoted by ζJC(X),
∀ζ ∈ {P,S, α, β}.

Remark 2.2. [6] According to the results in [12, 13], the implications between τJ,ΓJ, ζJO(X) and ζJC(X) are in the
following figure.
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Figure 1: The relationships between τJ ,ΓJ , ζJO(X) and ζJC(X).

From the following concepts and throughout this paper ζ ∈ {p, s, α, β}.

Definition 2.7. [6] Let (X, ρ, ξJ) be a J-nbdS, A ⊆ X. The J-nearly lower, J-nearly upper approximations, J-nearly
boundary regions and J-nearly accuracy of A are:
ρζ

J
(A) is the union of all J-nearly open sets which are subset of A = J-nearly interior of A.

ρζJ (A) is the intersection of all J-nearly closed sets which are superset of A = J-nearly closure of A.

BζJ (A) = ρζJ (A) − ρζ
J
(A).

σζJ (A) =
|ρζ

J
(A)|

|ρζJ (A)|
, where |ρζJ (A)| , 0.

Definition 2.8. [6] Let (X, ρ, ξJ) be a J-nbdS. A ⊆ X is J-nearly exact if ρζJ (A) = ρζ
J
(A). Otherwise, A is J-nearly

rough.

Theorem 2.2. [6] Let (X, ρ, ξJ) be a J-nbdS and A ⊆ X. Then, ρ
J
(A) ⊆ ρζ

J
(A) ⊆ A ⊆ ρζJ (A) ⊆ ρJ(A).

Proposition 2.1. [6] Let (X, ρ, ξJ) be a J-nbdS and A ⊆ X. Then,

1. ρα
J
(A) ⊆ ρp

J
(A) ⊆ ρβ

J
(A).

2. ρα
J
(A) ⊆ ρs

J
(A) ⊆ ρβ

J
(A).

3. ρβJ (A) ⊆ ρp
J (A) ⊆ ραJ (A).

4. ρβJ (A) ⊆ ρs
J(A) ⊆ ραJ (A).

Corollary 2.1. [6] Let (X, ρ, ξJ) be a J-nbdS, and A ⊆ X. Then,

1. BβJ (A) ⊆ Bp
J (A) ⊆ BαJ (A).

2. BβJ (A) ⊆ Bs
J(A) ⊆ BαJ (A).

3. σαJ (A) 6 σp
J (A) 6 σβJ (A).

4. σαJ (A) 6 σs
J(A) 6 σβJ (A).

Definition 2.9. [3] Let (X, ρ, ξ j) be a J-nbdS, x ∈ X and A ⊆ X

1. if x ∈ ρ
J
(A), then x is J-surely belongs to A, denoted by x ∈JA

2. if x ∈ ρJ(A), then x is J-possibly belongs to A, denoted by x ∈JA

Definition 2.10. [3] Let (X, ρ, ξJ) be a J-nbdS, x ∈ X and A ⊆ X :

1. if x ∈ ρζ
J
(A), then x is J-nearly surely (ζJ-surely) belongs to A, denoted by x ∈ζJ A

2. if x ∈ ρζJ (A), then x is J-nearly possibly (ζJ-possibly) belongs to A, denoted by x ∈ζJ A

Proposition 2.2. [3] Let (X, ρ, ξJ) be a J-nbdS and A ⊆ X. Then,

1. If x ∈JA, then x ∈ζJ A.
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2. If x ∈ζJ A, then x ∈JA.

Definition 2.11. [3] Let (X, ρ, ξJ) be a J-nbdS and A ⊆ X and x ∈ X. The J-rough membership functions of A are
defined by µJ

A → [0, 1], where

µJ
A(x) =

|∩nJ(x)∩A|
|∩nJ(x)|

and |A| is cardinality of A.

Definition 2.12. [3] Let (X, ρ, ξJ) be a J-nbdS, A ⊆ X and x ∈ X. The J-rough nearly membership functions of A are
defined by µζJ

A → [0, 1], where

µ
I−ζJ

A (x) = {
1 i f 1∈ ψ

ζJ
A (x).

min(ψ
ζJ
A (x)) otherwise.

}.

and ψζJ

A (x) =
|ζJ(x)∩A|
|ζJ(x)| , x ∈ ζJ(x), ζJ(x) ∈ ζJO(X).

Lemma 2.1. [3] Let (X, ρ, ξJ) be a J-nbdS and A ⊆ X. Then,

1. µJ
A(x) = 1⇒ µ

ζJ

A (x) = 1,∀ x ∈ X.

2. µJ
A(x) = 0⇒ µ

ζJ

A (x) = 0,∀ x ∈ X.

3. J-nearly open sets via ideals

In this section, the concepts of I-J-nearly open sets are presented as a generalization of J-nearly open
sets. These concepts are based on the notions of ideals. The main topological properties of these concepts
and the connections among them are also studied.

Definition 3.1. Let (X, ρ, ξJ) be a J-nbdS and I be an ideal on X. A ⊆ X is called

1. I-αJ-open, if ∃G ∈ τJ such that (A − intJ(clJ((G)) ∈ I and (G − A) ∈ I.
2. I-J-Preopen (briefly I-PJ-open), if ∃G ∈ τJ such that (A − G) ∈ I and (G − clJ(A)) ∈ I.
3. I-J-Semi open (briefly I-SJ-open), if ∃G ∈ τJ such that (A − clJ(G)) ∈ I and (G − A) ∈ I.
4. I-βJ-open, if ∃G ∈ τJ such that (A − clJ(G)) ∈ I and (G − clJ(A)) ∈ I.

These sets are called I-J-nearly open sets, the complement of the I-J-nearly open sets are called I-J-nearly closed sets,
the families of I-J-nearly open sets of X denoted by I-ζJO(X) and the families of I-J-nearly closed sets of X denoted
by I-ζJC(X), ∀ζ ∈ {P,S, α, β}.

The following proposition shows that the concepts ofI-J-nearly open sets are stronger than the concepts
of J-nearly open sets. Consequently, the current Definition 3.1 is a generalization of Definition 2.6 [6].

Proposition 3.1. Let (X, ρ, ξJ) be a J-nbdS and I be an ideal on X. Then, the following implications hold:

1. Every αJ-open is I-αJ-open.
2. Every PJ-open is I-PJ-open.
3. Every SJ-open is I-SJ-open.
4. Every βJ-open is I-βJ-open.

Proof. By using Definitions 2.6 and 3.1.

Remark 3.1. The following example shows that the converse of Proposition 3.1 is not necessarily true.

Example 3.1. Let X = {a, b, c}, ρ = {(a, a), (a, b), (b, b), (c, a), (c, b)} and I = {φ, {b}, {c}, {b, c}}. Then, τR =
{X, φ, {b}, {a, b}}. It is clear that A = {c} is an I-βR-open (respectively, I-SR-open, I-PR-open, I-αR-open ) set,
but it is not a βR-open (respectively, SR-open, PR-open, αR-open) set.
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The following theorem shows that Amer et al.’s [6] definitions are special case of the current definitions.

Theorem 3.1. Let (X, ρ, ξJ) be a J-nbdS and I be an ideal on X. If I = φ in the current Definition 3.1, then we get
Amer et al. ’s Definition 2.6 [6].

Proof. Straightforward.

The following proposition shows the relationships among the I-J-nearly open sets.

Proposition 3.2. Let (X, ρ, ξJ) be a J-nbdS and I be an ideal on X. Then, the following implications hold:

I-αJ-open I-PJ-open
⇓ ⇓

I-SJ-open⇒I-βJ-open.

Proof. Straightforward by Definition 3.1.

Remark 3.2. The reverse implications of Proposition 3.2 are not necessarily true as shown in the following examples.

Example 3.2. Let the topological space (X, τR) be in Example 3.1 with I = {φ, {b}}. Then, {c} is I-αR-open, but it is
not I-PR-open set.

Example 3.3. Let X = {a, b, c, d}, ρ = {(a, a), (a, c), (b, a), (b, b), (b, c), (c, a), (c, c), (d, a), (d, d)} andI = {φ, {d}}. Then,
τR = {X, φ, {a, c}, {a, b, c}, {a, c, d}}. It is clear that {a} is I-PR-open (I-βR-open) set, but it is neither I-αR-open set
nor I-SR-open set.

Example 3.4. Let X = {a, b, c}, ρ = {(a, a), (a, b), (a, c), (b, b), (c, c)} and I = {φ, {c}}. Thus, τR = {X, φ, {b}, {c}, {b, c}}.
Then, {a} is I-SR-open (I-βR-open) set, but it is not I-αR-open set.

Remark 3.3. According to Examples 3.2 and 3.3 the concepts of I-αJ-open sets and I-PJ-open sets are independent
although every αJ-open set is PJ-open set in [6]. Additionally, the concepts of I-SJ-open sets and I-PJ-open sets are
not comparable as shown in Examples 3.3 and 3.4.

Proposition 3.3. Let (X, ρ, ξJ) be a J-nbdS and let I be an ideal on X. Then, the following implications hold:

τJ(ΓJ)⇒ I-αJO(I-αJC) I-PJO(I-PJC)
⇓ ⇓

I-SJO(I-SJC)⇒ I-βJO(I-βJC).

Proof. By Remark 2.2 [6], and Propositions 3.1 and 3.2, the proof is obvious.

Remark 3.4. Example 3.1 shows that the reverse implication “ τJ(ΓJ)⇒ I-αJO(I-αJC)” is not necessarily true. It
is clear that A = {c} ∈ I-αRO(X),< τR.

Theorem 3.2. Let (X, ρ, ξJ) be a J-nbdS and let I be an ideal on X. Then, the union of two I-αJ-open (respectively,
I-SJ-open, I-PJ-open, I-βJ-open) sets is also I-αJ-open (respectively, I-SJ-open, I-PJ-open, I-βJ-open) set.

Proof. Let A and B be I-αJ-open sets. Then, ∃G,H such that (A − intJclJ(G)) ∈ I, (G − A) ∈ I, (B −
intJclJ(H)) ∈ I and (H − B) ∈ I. Hence, (G − (A ∪ B)) ⊆ (G − A) ∈ I, (H − (A ∪ B)) ⊆ (H − B) ∈ I and
so, (G − (A ∪ B)) ∪ (H − (A ∪ B)) ∈ I. Let W = G ∪ H, then (W − (A ∪ B)) ∈ I. Also, (A − intJclJ(W)) ⊆
(A − intJclJ(G)) ∈ I and (B − intJclJ(W)) ⊆ (B − intJclJ(H)) ∈ I. Then, (A − intJclJ(W)) ∪ (B − intJclJ(W)) ∈ I
and so ((A ∪ B) − intJclJ(W)) ⊆ (A − intJclJ(G)) ∪ (B − intJclJ(H)) ∈ I. Thus, A ∪ B is I-αJ-open set. The rest
of the proof is similar.
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Remark 3.5. The family I-ζJO(X), in a space X do not form a topology as the intersection of two I-αJ-open
(respectively, I-SJ-open, I-PJ-open, I-βJ-open) sets is not I-αJ-open (respectively, I-SJ-open, I-PJ-open, I-βJ-
open) set as

1. in Example 3.3, A = {c, d},B = {a, d} ∈ I-PRO(X), but A ∩ B = {d} < I-PRO(X).
2. in Example 3.4, let I = {φ, {a}}. Then,

i. A = {a, b},B = {a, c} ∈ I-αRO(X), but A ∩ B = {a} < I-αRO(X).

ii. A = {a, b},B = {a, c} ∈ I-SRO(X), but A ∩ B = {a} < I-SRO(X).

iii. A = {a, b},B = {a, c} ∈ I-βRO(X), but A ∩ B = {a} < I-βRO(X).

Remark 3.6. Let (X, ρ, ξJ) be a J-nbdS, I be an ideal on X and A ⊆ X. Then the following statements are not true in
general:

1. I-ζUO(X) ⊆ I-ζRO(X) ⊆ I-ζIO(X).
2. I-ζUO(X) ⊆ I-ζLO(X) ⊆ I-ζIO(X).
3. I-ζ<U>O(X) ⊆ I-ζ<R>O(X) ⊆ I-ζ<I>O(X).
4. I-ζ<U>O(X) ⊆ I-ζ<L>O(X) ⊆ I-ζ<I>O(X).
5. I-ζRO(X) is the dual of I-ζLO(X).
6. I-ζ<R>O(X) is the dual of I-ζ<L>O(X).

So, the relationships among I-ζJ- open sets are not comparable as in Example 3.3:

1. I-PRO(X) = P(X) − {{b}, {d}, {b, d}}.

2. I-PLO(X) = {X, φ, {b}, {d}, {a, b}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}}.

3. I-PIO(X) = P(X).

4. I-PUO(X) = P(X).

5. I-P<R>O(X) = {X, φ, {a}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}}.

6. I-P<L>O(X) = {X, φ, {b}, {d}, {a, b}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {b, c, d}}.

7. I-P<I>O(X) = {X, φ, {a}, {b}, {d}, {a, b}, {a, c}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}}.

8. I-P<U>O(X) = P(X) − {{d}}.

It is clear that

• I-PUO(X) * I-PLO(X).

• I-PUO(X) * I-PRO(X).

• I-P<U>O(X) * I-P<R>O(X).

• I-P<L>O(X) * I-P<I>O(X).

• I-PRO(X) is not the dual of I-PLO(X) and I-P<R>O(X) is not the dual of I-P<L>O(X).

• Similarly,I-PLO(X) * I-PIO(X),I-PRO(X) * I-PIO(X),I-P<R>O(X) * I-P<I>O(X),andI-P<U>O(X) *
I-P<I>O(X).
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4. J-nearly approximations via ideals

The purpose of this section is to generalize J-nearly approximations to I-J-nearly approximations. The
current approximations are based on I-J-nearly open sets. The properties of the new approximations are
studied.

Definition 4.1. Let (X, ρ, ξJ) be a J-nbdS, I be an ideal on X and A ⊆ X. The I-J-nearly lower, I-J-nearly upper
approximations, I-J-nearly boundary regions and I-J-nearly accuracy of A are:
ρI−ζ

J
(A) = ∪{G ∈ I-ζJO(X) : G ⊆ A} = I-J-nearly interior of A.

ρI−ζJ (A) = ∩{H ∈ I-ζJC(X) : A ⊆ H} = I-J-nearly closure of A.

BI−ζJ (A) = ρI−ζJ (A) − ρI−ζ
J

(A).

σI−ζJ (A) =
|ρI−ζ

J
(A)|

|ρI−ζJ (A)|
, where |ρI−ζJ (A)| , 0.

The following proposition studies the main properties of the current I-J-nearly lower and I-J-nearly
upper approximations.

Proposition 4.1. Let (X, ρ, ξJ) be a J-nbdS, I be an ideal on X and A,B ⊆ X. Then,

1. ρI−ζ
J

(A) ⊆ A ⊆ ρI−ζJ (A) equality hold if A = φ or X.

2. A ⊆ B⇒ ρI−ζJ (A) ⊆ ρI−ζJ (B).

3. A ⊆ B⇒ ρI−ζ
J

(A) ⊆ ρI−ζ
J

(B).

4. ρI−ζJ (A ∩ B) ⊆ ρI−ζJ (A) ∩ ρI−ζJ (B).

5. ρI−ζ
J

(A ∪ B) ⊇ ρI−ζ
J

(A) ∪ ρI−ζ
J

(B).

6. ρI−ζJ (A ∪ B) ⊇ ρI−ζJ (A) ∪ ρI−ζJ (B).

7. ρI−ζ
J

(A ∩ B) ⊆ ρI−ζ
J

(A) ∩ ρI−ζ
J

(B).

8. ρI−ζ
J

(A) = (ρI−ζJ (A′

))
′ , ρI−ζJ (A) = (ρI−ζ

J
(A′

))
′ .

9. ρI−ζJ (ρI−ζJ (A)) = ρI−ζJ (A).

10. ρI−ζ
J

(ρI−ζ
J

(A)) = ρI−ζ
J

(A).

11. ρI−ζ
J

(ρI−ζ
J

(A)) ⊆ ρI−ζJ (ρI−ζ
J

(A)).

12. ρI−ζ
J

(ρI−ζJ (A)) ⊆ ρI−ζJ (ρI−ζJ (A)).

13. x ∈ ρI−ζJ (A)⇔ G ∩ A , φ,∀G ∈ I-ζJO(X), x ∈ G.
14. x ∈ ρI−ζ

J
(A)⇔ ∃G ∈ I-ζJO(X), x ∈ G,G ⊆ A.

The proof of this proposition is simple using I-J-nearly interior and I-J-nearly closure, so I omit it.

Remark 4.1. Example 3.3 shows that

1. the inclusion in Proposition 4.1 parts 1, 4, 5, 6, 7, 11 and 12 can not be replaced by equality relation:

(i) for part 1, if A = {a}, ρI−P
L

(A) = φ, ρI−P
L (A) = {a, c}, then ρI−P

L (A) * A * ρI−P
L

(A).

(ii) for part 4, if A = {a},B = {b},A ∩ B = φ, ρI−P
L (A) = {a, c}, ρI−P

L (B)
= {a, b, c}, ρI−P

L (A ∩ B) = φ, then ρI−P
L (A) ∩ ρI−P

L (B) = {a, c} * φ = ρI−P
L (A ∩ B).

(iii) for part 5, if A = {c, d},B = {a, b, c},A ∪ B = X, ρI−P
L

(A) = {d}, ρI−P
L

(B) = {b}, ρI−P
L

(A ∪ B) = X, then

ρI−P
L

(A ∪ B) = X * {b, d} = ρI−P
L

(A) ∪ ρI−P
L

(B).
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(iv) for part 11, if A = {b}, ρI−P
L

(ρI−P
L

(A)) = A, ρI−P
L (ρI−P

L
(A)) = {a, b, c}, thenρI−P

L (ρI−P
L

(A)) * ρI−P
L

(ρI−P
L

(A)).

(v) for part 12, if A = {a, b, c}, ρI−P
L (ρI−P

L (A)) = A, ρI−P
L

(ρI−P
L (A)) = {b}, thenρI−P

L (ρI−P
L (A)) * ρI−P

L
(ρI−P

L (A)).

2. the converse of parts 2 and 3 is not necessarily true:

(i) for part 2, if A = {a},B = {b}, then ρI−P
L (A) = {a, c}, ρI−P

L (B) = {a, b, c}. Therefore, ρI−P
L (A) ⊆ ρI−P

L (B), but
A * B.

(ii) for part 3, if A = {a, c, d},B = {b, c, d}, then ρI−P
L

(A) = {d}, ρI−P
L

(B) = {b, d}. Therefore, ρI−P
L

(A) ⊆

ρI−P
L

(B), but A * B.

Definition 4.2. Let (X, ρ, ξJ) be a J-nbdS, I be an ideal on X, and A ⊆ X. A is I-ζJ-nearly definable (I-ζJ-nearly
exact) set if ρI−ζJ (A) = ρI−ζ

J
(A). Otherwise, A is I-ζJ-nearly rough set.

In Example 3.3 A = {d} is I-PL-exact, while B = {b} is I-PL-rough.

Remark 4.2. Let (X, ρ, ξJ) be a J-nbdS, I be an ideal on X and A ⊆ X. Then the intersection of two I-ζJ-rough
sets need not to be I-ζJ-rough set as in Example 3.3 {b, d} and {c, d}, are I-αL-rough sets, {b, d} ∩ {c, d} = {d} is not
I-αL-rough set.

The following theorem and corollary present the relationships between the current approximations in
Definition 4.1 and the previous one in Definitions 2.4 [2] and 2.7 [6].

Theorem 4.1. Let (X, ρ, ξJ) be a J-nbdS, I be an ideal on X and A ⊆ X. Then

1. ρζ
J
(A) ⊆ ρI−ζ

J
(A).

2. ρ
J
(A) ⊆ ρI−ζ

J
(A).

3. ρI−ζJ (A) ⊆ ρζJ (A).

4. ρI−ζJ (A) ⊆ ρJ(A).

Proof.

(1) ρζ
J
(A) = ∪{G ∈ ζJO(X) : G ⊆ A} ⊆ ∪{G ∈ I-ζJO(X) : G ⊆ A} = ρI−ζ

J
(A) (by Proposition 3.2).

(2) By Theorem 2.2, ρ
J
(A) ⊆ ρζ

J
(A), and by (1) ρζ

J
(A) ⊆ ρI−ζ

J
(A). Hence, ρ

J
(A) ⊆ ρI−ζ

J
(A).

(3) and (4) Similar to (1) and (2).

Corollary 4.1. Let (X, ρ, ξJ) be a J-nbdS, I be an ideal on U and A ⊆ X. Then

1. BI−ζJ (A) ⊆ BζJ (A).

2. BζJ (A) ⊆ BJ(A).

3. σζJ (A) 6 σI−ζJ (A).

4. σJ(A) 6 σI−ζJ (A).

Corollary 4.2. Let (X, ρ, ξJ) be a J-nbdS, I be an ideal on X and A ⊆ X. Then

1. Every ζJ-nearly exact subset in X is I-ζJ-nearly exact.
2. Every J-exact subset in X is I-ζJ-nearly exact.
3. Every I-ζJ-nearly rough subset in U is ζJ-nearly rough.
4. Every I-ζJ-nearly rough subset in U is J-rough.
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The converse of parts of Corollary 4.2 is not necessarily true as in Example 3.3:

1. If A = {a}, then it is I-βL-exact, but it is neither βL-exact nor L-exact.
2. If A = {d}, then it is l-rough, but it is neither I-βL-rough nor βL-rough.

The following proposition and corollary are introduced the relationships between the I-J-nearly lower
(upper) approximations, I-J-nearly boundary regions and I-J-nearly accuracy.

Proposition 4.2. Let (X, ρ, ξJ) be a J-nbdS, I be an ideal on X and A ⊆ X. Then

1. ρI−P
J

(A) ⊆ ρI−β
J

(A).

2. ρI−α
J

(A) ⊆ ρI−S
J

(A) ⊆ ρI−β
J

(A).

3. ρI−βJ (A) ⊆ ρI−P
J (A).

4. ρI−βJ (A) ⊆ ρI−S
J (A) ⊆ ρI−αJ (A).

Proof. By Proposition 3.2, the proof is obvious.

Corollary 4.3. Let (X, ρ, ξJ) be a J-nbdS, I be an ideal on X and A ⊆ X. Then

1. BI−βJ (A) ⊆ BI−P
J (A).

2. BI−βJ (A) ⊆ BI−S
J (A) ⊆ BI−αJ (A).

3. σI−P
J (A) 6 σI−βJ (A).

4. σI−αJ (A) 6 σI−S
J (A) 6 σI−βJ (A).

Corollary 4.4. Let (X, ρ, ξJ) be a J-nbdS, I be an ideal on U and A ⊆ X. Then

1. A is J-exact⇒ A is I-αJ-exact⇒I-SJ-exact⇒I-βJ-exact.
2. A is I-PJ-exact⇒I-βJ-exact.

Remark 4.3. Example 3.3 shows that the converse of the implications in Corollaries 4.3, 4.4 and Proposition 4.2 is
not true in general.

Remark 4.4. From the above results, it is noted that there are different methods to approximate the sets. The best of
these methods is there are given by using I-βJ in constructing the approximations of sets, since the boundary regions
in this case are decreased (or canceled) by increasing the lower approximation and decreasing the upper approximation.
Moreover, the I-βJ-accuracy is more accurate than the other types.

In Table 1, the lower, upper approximations, boundary region and accuracy are calculated by using Abd
El-Monsef et al.’s approximations 2.4 [2], Amer et al.’s approximations 2.7 [6], and the current approxima-
tions in Definition 4.1 by using Example 3.3.
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Table 1: Comparison between the boundary and accuracy by Abd El-Monsef et al.’s method 2.4 [2], Amer et al.’s method 2.7 [6] and
the current method in Definition 4.1 at ζ = β, J = L.

2*A Abd El-Monsef et al.’s method 2.4 [2] Amer et al.’s method 2.7 [6] The current method in Definition 4.1
ρ

L
(A) ρL(A) BL(A) σL(A) ρβ

L
(A) ρ

β
L(A) BβL(A) σ

β
L(A) ρβL

I
(A) ρ

βL

I
(A) BβL

I
(A) σ

βL

I
(A)

{a} φ {a, c} {a, c} 0 φ {a} {a} 0 {a} {a} φ 1
{b} {b} {a, b, c} {a, c} 1

3 {b} {b} φ 1 {b} {b} φ 1
{c} φ {a, c} {a, c} 0 φ {c} {c} 0 {c} {c} φ 1
{d} {d} {a, c, d} {a, c} 1

3 {d} {d} φ 1 {d} {d} φ 1
{a, b} {b} {a, b, c} {a, c} 1

3 {a, b} {a, b} φ 0 {a, b} {a, b} φ 1
{a, c} φ {a, c} {a, c} 0 φ {a, c} {a, c} 0 {a, c} {a, c} φ 1
{a, d} {d} {a, c, d} {a, c} 1

3 {a, d} {a, d} φ 1 {a, d} {a, d} φ 1
{b, c} {b} {a, b, c} {a, c} 1

3 {b, c} {b, c} φ 1 {b, c} {b, c} φ 1
{b, d} {b} X {a, c, d} 1

4 {b, d} X {a, c} 1
2 {b, d} {b, d} φ 1

{c, d} {d} {a, c, d} {a, c} 1
3 {c, d} {c, d} φ 1 {c, d} {c, d} φ 1

{a, b, c} {b} {a, b, c} {a, c} 1
3 {a, b, c} {a, b, c} φ 1 {a, b, c} {a, b, c} φ 1

{a, b, d} {b, d} X {a, c} 1
2 {a, b, d} X {c} 3

4 {a, b, d} {a, b, d} φ 1
{a, c, d} {d} {a, c, d} {a, c} 1

3 {a, c, d} X {b} 0 {a, c, d} {a, c, d} φ 1
{b, c, d} {b, d} X {a, c} 1

2 {b, c, d} X {a} 3
4 {b, c, d} {b, c, d} φ 1

X X X φ 1 X X φ 1 X X φ 1

For example, take A = {b, d}, then the boundary and accuracy by the present method in Definition 4.1 are φ
and 1 respectively. Whereas, the boundary and accuracy by using Abd El-Monsef et al.’s method 2.4 [2] are
{a, c, d} and 1

4 respectively and by using Amer et al.’s method 2.7 [6] are {a, c} and 1
2 respectively.

5. J-nearly rough membership functions via ideals

This section concentrates on generalization the concept of rough membership function by introducing
the concept of J-nearly rough membership functions via ideals.

Definition 5.1. Let (X, ρ, ξJ) be a J-nbdS, I be an ideal on X, x ∈ X and A ⊆ X :

1. if x ∈ ρI−ζ
J

(A), then x is J-nearly surely with respect to I ( I − ζJ-surely) belongs to A, denoted by x ∈I−ζJ A.

2. if x ∈ ρI−ζJ (A), then x is J-nearly possibly with respect to I (briefly I − ζJ-possibly) belongs to A, denoted by

x ∈I−ζJ A.

It is called J-nearly strong and J-nearly weak membership relations with respect to I respectively.

Remark 5.1. According to Definition 5.1 the J-nearly approximations via ideal for any A ⊆ X can be written as:

1. ρI−ζ
J

(A) = {x ∈ X : x ∈I−ζJ A}.

2. ρI−ζJ (A) = {x ∈ X : x ∈I−ζJ A}.

Lemma 5.1. Let (X, ρ, ξJ) be a J-nbdS, I be an ideal on X and A ⊆ X. Then

1. if x ∈I−ζJ A, then x ∈ A.

2. if x ∈ A, then x ∈I−ζJ A.

Proof. Straightforward.

Remark 5.2. The converse of Lemma 5.1 is not true in general, as it is shown in Example 3.3 that if A = {a}:

1. a ∈ A, but a<I−p
L A.

2. a ∈I−p
L A, but a < A.
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Proposition 5.1. Let (X, ρ, ξJ) be a J-nbdS, I be an ideal on X and A ⊆ X. Then

1. if x ∈JA⇒ x ∈ζJ A⇒ x ∈I−ζJ A.

2. if x ∈I−ζJ A⇒ x ∈ζJ A⇒ x ∈JA.

Proof. We prove (1) and the other similarly. x ∈JA ⇒ x ∈ζJ A by Proposition 2.2. Let x ∈ζJ A. Then,

x ∈ ρζ
J
(A)⇒ x ∈ ρI−ζ

J
(A)⇒ x ∈I−ζJ A.

Remark 5.3. The converse of Proposition 5.1 is not true in general, as it is shown in Example 3.3 that if A = {c},

1. then c ∈I−βL A, but c <βLA and c <
L
A.

2. then a ∈LA, but a ∈βLA and a ∈I−βL A.

Definition 5.2. Let (X, ρ, ξJ) be a J-nbdS, I be an ideal on X,A ⊆ X and x ∈ X. The J-nearly rough membership
functions of a J-nbdS on X for a A are defines by µI−ζJ

A → [0, 1], where

µ
I−ζJ

A (x) = {
1 i f 1∈ψ

I−ζJ
A (x).

min(ψ
I−ζJ
A (x)) otherwise.

}.

and ψI−ζJ

A (x) =
|I−ζJ(x)∩A|
|I−ζJ(x)| , x ∈ I − ζJ(x), I − ζJ(x) ∈ I-ζJO(X).

Remark 5.4. The I-J-nearly rough membership functions are used to define the I-J-nearly lower (upper) approxi-
mations as follows:

1. ρI−ζ
J

(A) = {x ∈ X : µI−ζJ

A (x) = 1}.

2. ρI−ζJ (A) = {x ∈ X : µI−ζJ

A (x) > 0}.

3. BI−ζJ (A) = {x ∈ X : 0 < µI−ζJ

A (x) < 1}.

Proposition 5.2. Let (X, ρ, ξJ) be a J-nbdS, I be an ideal on X and A,B ⊆ X. Then

1. if µI−ζJ

A (x) = 1⇔ x ∈ ∈I−ζJ

J A.

2. if µI−ζJ

A (x) = 0⇔ x ∈ X − ρI−ζJ (A).

3. if 0 < µI−ζJ

A (x) < 1⇔ x ∈ BI−ζJ (A).

4. if µI−ζJ

A′
(x) = 1 − µI−ζJ

A (x),∀ x ∈ X.

5. if µI−ζJ

A∪B (x) ≥ max(µI−ζJ

A (x), µI−ζJ

B (x)),∀ x ∈ X.
6. if µI−ζJ

A∩B (x) ≤ min(µI−ζJ

A (x), µI−ζJ

B (x)),∀ x ∈ X.

Proof. I prove (1), and the others similarly. x∈I−ζJ

J A⇔ xρI−ζ
J

(A). Since ρI−ζ
J

(A) is I-J-nearly open contained

in A, thus
|ρI−ζ

J
(A)∩A|

|ρI−ζ
J

(A)| =
|ρI−ζ

J
(A)|

|ρI−ζ
J

(A)| = 1. Then, 1 ∈ ψI−ζJ

A (x) and accordingly µI−ζJ

A (x) = 1.

Lemma 5.2. Let (X, ρ, ξJ) be a J-nbdS, I be an ideal on X and A ⊆ X. Then

1. µJ
A(x) = 1⇒ µ

ζJ

A (x) = 1⇒ µ
I−ζJ

A (x) = 1,∀ x ∈ X.
2. µJ

A(x) = 0⇒ µ
ζJ

A (x) = 0⇒ µ
I−ζJ

A (x) = 0,∀ x ∈ X.

Proof.

1. µJ
A(x) = 1 ⇒ µ

ζJ

A (x) = 1 directly from Lemma 2.1. Let µζJ

A (x) = 1, then x ∈ ρζ
J
(A) ⇒ x ∈ ρI−ζ

J
(A) ⇒

µ
I−ζJ

A (x) = 1,∀ x ∈ X.
2. µJ

A(x) = 0⇒ µ
ζJ

A (x) = 0 directly from Lemma 2.1. LetµζJ

A (x) = 0, then x ∈ X−ρζJ (A)⇒ x ∈ X−ρI−ζJ (A)⇒

µ
I−ζJ

A (x) = 0,∀ x ∈ X.

Remark 5.5. The converse of the previous lemma is not true in general, as it is shown in Example 3.3.
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6. Conclusions

General topology has been considered the entrance to understand topology science, moreover the base
of general topology is the topological space, which has been considered a representation of universal space
in general, and geometric shape in special, also the mathematical analysis concepts. The purpose of the
present work is to apply topological concepts into rough set. In classical rough set model approximations
are based on equivalence relations, but this condition does not always hold in many practical problems and
also this restriction limits the wide applications of this theory. For the mentioned reasoning we redefine
the approximations by using topological concepts. The topology induced by binary relations, ideals, and
nearly open sets generalize rough set. The properties of suggested methods are studied. The importance
of the current approximations is not only that it is reducing or deleting the boundary regions, but also it’s
satisfying all properties of Pawlak’s rough sets without any restrictions. Also, we defined the concept of
rough membership function using our approach. The results in this paper show that topology can be a
powerful method to study rough set models. We conclude that construction of topological properties on
rough sets will help us to find rough measure which will enable to find the missing attribute values. Topo-
logical properties of rough sets gives useful tool for creating the consistency base for Knowledge Discovery
in Database (KDD). According to this connection between rough set concepts and topological notions, we
can say that the improvements in abstract topology results help in some way for modifications of rough
sets theory and consequently in its real-life applications. Finally, topological structure of this theory brings
various techniques for Data Processing and Bio-mathematics.

The following points will be studied in the future:

1. New connections between rough set theory, rough multiset, soft set theory, fuzzy set theory based on
I-J-nearly open sets.

2. Applications of these new approximations in various real-life fields.
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