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On the Upper Dual Zariski Topology
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Abstract. Let R be a ring with identity and M be a left R-module. The set of all second submodules
of M is called the second spectrum of M and denoted by Specs(M). For each prime ideal p of R we define
Specs

p(M) := {S ∈ Specs(M) : annR(S) = p}. A second submodule Q of M is called an upper second submodule
if there exists a prime ideal p of R such that Specs

p(M) , ∅ and Q =
∑

S∈Specs
p(M)

S. The set of all upper second

submodules of M is called upper second spectrum of M and denoted by u.Specs(M). In this paper, we discuss
the relationships between various algebraic properties of M and the topological conditions on u.Specs(M)
with the dual Zarsiki topology. Also, we topologize u.Specs(M) with the patch topology and the finer patch
topology. We show that for every left R-module M, u.Specs(M) with the finer patch topology is a Hausdorff,
totally disconnected space and if M is Artinian then u.Specs(M) is a compact space with the patch and finer
patch topology. Finally, by applying Hochster’s characterization of a spectral space, we show that if M is
an Artinian left R-module, then u.Specs(M) with the dual Zariski topology is a spectral space.

1. Introduction

Throughout this paper all rings will be associative rings with identity elements and all modules will
be unital left modules. Unless otherwise stated R will denote a ring. By a proper submodule N of a
left R-module M, we mean a submodule N with N , M. Given a left R-module M, we shall denote the
annihilator of M (in R) by annR(M).

A non-zero R-module M is called a prime module if annR(M) = annR(K) for every non-zero submodule K
of M. A proper submodule N of a module M is called a prime submodule of M if M/N is a prime module. If N
is a prime submodule of a module M, then annR(M/N) = p is a prime ideal of R and in this case N is called
a p-prime submodule of M. The set of all prime submodules of a module M is called the prime spectrum of M
and denoted by Spec(M). Also, the set of all p-prime submodules of M is denoted by Specp(M) for a prime
ideal p of R. Several authors investigated and topologized the prime spectrum of a given module (see for
example [7], [8], [18], [19], [22]).

In [23], S. Yassemi introduced second submodules of modules over commutative rings as the dual
notion of prime submodules. Second modules over arbitrary rings were defined in [2] and used as a tool
for the study of attached primes over noncommutative rings. A right R-module M is called a second module
provided M , (0) and annR(M) = annR(M/N) for every proper submodule N of M. By a second submodule of
a module, we mean a submodule which is also a second module. If N is a second submodule of a module
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M, then annR(N) = p is a prime ideal of R and in this case N is called a p-second submodule of M. Recently,
second submodules have attracted attention of many authors and they have been extensively studied in a
number of papers (see for example [1], [3], [4], [5], [6], [10], [11], [12], [13]).

The set of all second submodules of a module M is called the second spectrum of M and denoted by
Specs(M). Also, the set of all p-second submodules of M is denoted by Specs

p(M) for a prime ideal p of R.
Following [1, Lemma 4.1], for any submodule N of a left R-module M we define Vs(N) = {S ∈ Specs(M) :
annR(N) ⊆ annR(S)}. Let Zs(M) := {Vs(N) : N ≤ M}. Then [1, Lemma 4.1] shows that Zs(M) satisfies the
axioms for closed sets in a topological space and so it induces a topology on Specs(M). We call this topology
the dual Zariski topology on Specs(M). The dual Zariski topology of modules over commutative rings has
been investigated in [1], [5], [10] and [14].

In [9], Behboodi and Shojaee introduced the notion of lower prime submodules and investigated a
topology on the set of these submodules. A prime submodule Q of a module M is called a lower prime
submodule if there exists a prime ideal p of R such that Specp(M) , ∅ and Q =

⋂
P∈Specp (M)

P. Motivated by this

notion, in this paper, we define the concept of upper second submodule and investigate some topologies
on the set of these submodules.

2. Upper Second Submodules and Upper Dual Zariski Topology

Note that sum of p-second submodules is also a second submodule.

Definition 2.1. Let M be a left R-module. For a prime ideal p of R, if there exits a p-second submodule of M, then
the sum of all p-second submodules of M is called upper p-second submodule or an upper second submodule for short.
The set of all upper second submodules of M is called upper second spectrum of M and denoted by u.Specs(M).

Clearly, u.Specs(M) ⊆ Specs(M) and if S, Q ∈ u.Specs(M), then S = Q if and only if annR(S) = annR(Q).
In [15], we characterized the upper second submodules of an Artinian module. To do this we generalized

the notion of p-interior of a submodule which was defined in [3] for modules over commutative rings. Let
R be an arbitrary ring, p be a prime ideal of R and M be an R-module. In [15] we generalized the p-interior
of a submodule N of M as follows.

IM
p (N) = ∩{L : L is a completely irreducible submodule of M and AN ⊆ L for some ideal A * p}.

Clearly, IM
p (N) is a submodule of M and IM

p (N) ⊆ N.

Theorem 2.2. [15, Theorem 3]Let N be a submodule of a left R-module M such that annR(N) = p is a prime ideal
of R. If M/IM

p (N) is a finitely cogenerated R-module, then IM
p (N) =

∑
S∈Specs

p(N) S, i.e. IM
p (N) is an upper second

submodule of N.

Corollary 2.3. [15, Corollary 4]Let p be a prime ideal of R and M be an R-module such that M/IM
p ((0 :M p)) is a

finitely cogenerated R-module. If IM
p ((0 :M p)) , 0, then IM

p ((0 :M p)) is an upper second submodule of M.

Corollary 2.4. [15, Corollary 5]Let p be a prime ideal of R and M be an R-module such that M/IM
p ((0 :M p)) is a

finitely cogenerated R-module. Then the following statements are equivalent.
(1) annR((0 :M p)) = p.
(2) IM

p ((0 :M p)) is an upper second submodule of M.
(3) There exists a second submodule K of M such that p = annR(K).
(4) IM

p ((0 :M p)) , 0.

Corollary 2.5. [15, Corollary 6]Let M be an Artinian left R-module. Then
u.Specs(M) = {IM

p ((0 :M p)) : p is a prime ideal of R and Specs
p(M) , ∅}.

Let M be a left R-module. For a submodule N of M, we define Vu(N) := {Q ∈ u.Specs(M) : annR(N) ⊆
annR(Q)}. Clearly, Vu(N) = Vs(N) ∩ u.Specs(M). Since the family Zs(M) = {Vs(N) : N ≤ M} is the family of
closed subsets of Specs(M) with respect to dual Zariski topology, the family Zu(M) := {Vu(N) : N ≤ M} is
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the family of closed subsets of u.Specs(M) with respect to the subspace topology on u.Specs(M) induced by
the dual Zariski topology on Specs(M). We call this topology as the upper dual Zariski topology of M. The
following properties are easily obtained.

(i) Vu(0) = ∅ and Vu(M) = u.Specs(M).
(ii) ∩ı∈IVu(Ni) = Vu(∩i∈I(0 :M annR(Ni))) where {Ni}i∈I is a family of submodules of M.
(iii) Vu(N) ∪ Vu(L) = Vu(N + L) where N, L ≤M.
Also, for each submodule N of M we denote the complement of Vu(N) in u.Specs(M) by Uu(N).

3. Finer Upper Patch and Upper Patch Topologies of a Module

Definition 3.1. Let M be a left R-module.
(1) Let βu(M) = {Vu(N) ∪ Uu(K) : N, K ≤ M, Uu(K) is an upper dual Zariski-quasi-compact subset}. Clearly,

βu(M) is closed under finite unions and contains u.Specs(M) and ∅ since ∅ = Vu(0) ∪ Uu(M) and u.Specs(M) =
Vu(M) ∪Uu(M). Therefore, βu(M) is a basis for the family of closed subsets of a topology on u.Specs(M), and we call
this topology upper patch topology of M.

(2) Let γu(M) = {Vu(N) ∩ Uu(K) : N, K ≤ M}. Clearly, γu(M) is closed under finite intersections and contains
u.Specs(M) and ∅ since u.Specs(M) = Vu(M) ∩ Uu(0) and ∅ = Vu(0) ∩ Uu(M). Therefore, γu(M) is a basis for the
family of open subsets of a topology on u.Specs(M) and we call this topology finer upper patch topology of M.

Note that the family β̃u(M) = {Vu(K) ∩ Uu(N) : N, K ≤ M, Uu(K) is an upper dual Zariski-quasi-compact
subset} is a basis for the open subsets of upper patch topology, i.e., the upper patch-open subsets of
u.Specs(M) are precisely the unions of sets from β̃u(M).

Lemma 3.2. Let M be a left R-module and S ∈ u.Specs(M). Then for each finer upper patch neighborhood Gu of S,
there exists a submodule L of M such that annR(S) ( annR(L) and S ∈ Vu(S) ∩Uu(L) ⊆ Gu.

Proof. Since S ∈ Gu, there exists a neighborhood of the form Vu(K)∩Uu(N) ⊆ Gu such that S ∈ Vu(K)∩Uu(N).
So, annR(K) ⊆ annR(S) and annR(N) * annR(S). Since S ∈ Vu(S) ⊆ Vu(K), we have S ∈ Vu(S) ∩ Uu(N) ⊆ Gu.
Now, we claim that Vu(S) ∩ Uu(N) = Vu(S) ∩ Uu((0 :M I + p)) where p = annR(S) and I = annR(N). Since
Uu((0 :M I)) ⊆ Uu((0 :M I+p)), we have Vu(S)∩Uu(N) = Vu(S)∩Uu((0 :M I)) ⊆ Vu(S)∩Uu((0 :M I+p)). Suppose
that Q ∈ Vu(S) ∩Uu((0 :M I + p)). Then Q < Uu(S). On the other hand, Q ∈ Uu((0 :M I + p)) = Uu(N) ∪Uu(S).
This implies that Q ∈ Uu(N). Thus Q ∈ Vu(S)∩Uu(N) and so Vu(S)∩Uu(N) = Vu(S)∩Uu((0 :M I + p)). Now,
let L := (0 :M I + p). Then, p ( I + p ⊆ annR(L) and S ∈ Vu(S) ∩Uu(L) ⊆ Gu as desired.

Theorem 3.3. Let M be a left R-module. Then u.Specs(M) is Hausdoff with the finer upper patch topology. Moreover,
u.Specs(M) with this topology is totally disconnected.

Proof. Suppose that S, Q ∈ u.Specs(M) are distinct points. Then annR(S) , annR(Q). Therefore either
annR(S) * annR(Q) or annR(Q) * annR(S). Without loss of generality we may assume that annR(S) *
annR(Q). Then U1 := Uu(0) ∩ Vu(S) is a finer upper patch neighborhood of S and since annR(S) * annR(Q),
U2 := Uu(S) ∩ Vu(Q) is a finer upper patch neighborhood of Q. Clearly, U1 ∩ U2 = ∅. Thus, u.Specs(M) is a
Hausdorff space. It is well-known that if a Hausdorff space has an open base whose sets are also closed,
then X is totally disconnected. For every submodule N od M, observe that Uu(N) = Vu(M) ∩ Uu(N) and
Vu(N) = Vu(N) ∩ Uu(0). Therefore the sets Uu(N) and Vu(N) are both open and closed. Thus, the finer
upper patch topology of M has a base of open sets which are also closed, and hence u.Specs(M) is totally
disconnected with this topology.

Definition 3.4. Let M be a left R-module. M is called quasi-secondful if for each prime ideal p of R such that
annR((0 :M p)) = p, there exists a second submodule S of M such that annR(S) = p.

Example 3.5. (1) Let R be a ring such that the ring R/p is right or left Goldie for every prime ideal p and M be a non-
zero injective R-module. Then (0 :M p) is a p-second submodule if annR((0 :M p)) = p. Thus M is a quasi-secondful
R-module.

(2) Every Artinian module is quasi-secondful by Corollary 2.4.
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Theorem 3.6. Let M be a quasi-secondful left R-module such that R/annR(M) satisfies ascending chain condition
on ideals. Then u.Specs(M) is a compact space with the finer upper patch topology.

Proof. Suppose that M is a quasi-secondful left R-module such that R/annR(M) satisfies ascending chain
condition on ideals. LetA be a family of finer upper patch-open sets covering u.Specs(M) and suppose that
no finite subfamily ofA covers u.Specs(M). LetS = {L : L is an ideal of R such that annR(M) ⊆ L and no finite
subfamily ofA covers Vu((0 :M L))}. Since Vu((0 :M annR(M)) = Vu(M) = u.Specs(M), we have annR(M) ∈ S
and so S , ∅. By the hypothesis we can choose a maximal element q of S. Clearly, (0 :M q) , 0. We claim
that q is a prime ideal of R. For if not, suppose that I and J are two ideals of R properly containing q and
IJ ⊆ q. Then Vu((0 :M I)) and Vu((0 :M J)) are covered by a finite subfamily ofA. Suppose N ∈ Vu((0 :M IJ)).
Then IJ ⊆ annR(N) := p. Since p is prime, either I ⊆ p or J ⊆ p. This implies that either N ∈ Vu((0 :M I))
or N ∈ Vu((0 :M J)). Thus Vu((0 :M IJ)) ⊆ Vu((0 :M I)) ∪ Vu((0 :M J)). This shows that Vu((0 :M IJ)) can be
covered by a finite subfamily of A. Since IJ ⊆ q, we have Vu((0 :M q)) ⊆ Vu((0 :M IJ)). Thus Vu((0 :M q))
can be covered by a finite subfamily of A, a contradiction. Hence, q is a prime ideal of R. We claim that
q = annR((0 :M q)). For if not, then there exists an ideal q1 of R such that q1 = annR((0 :M q)) and q  q1.
This implies that (0 :M q) = (0 :M q1) and so no finite subfamily of A covers Vu((0 :M q1)). This shows
that q1 ∈ S, contrary to maximality of q. Therefore, q = annR(0 :M q)). Since M is quasi-secondful, there
exits Q ∈ u.Specs(M) such that q = annR(Q). Let U ∈ A such that Q ∈ U. By Lemma 3.2, there exists a
submodule K of M such that q = annR(Q) ( annR(K) and Q ∈ Vu(Q) ∩ Uu(K) ⊆ U. Put I := annR(K). Then
Uu(K) = Uu((0 :M I)) and Vu(Q) = Vu((0 :M q)). It follows that Q ∈ Uu((0 :M I)) ∩ Vu((0 :M q)) ⊆ U. Since
q  I, Vu((0 :M I)) can be covered by a finite subfamily A′ of A. But Vu((0 :M q))\Vu((0 :M I)) = Vu((0 :M
q))\[Uu((0 :M I))]c = Vu((0 :M q)) ∩ Uu((0 :M I)) ⊆ U. So Vu((0 :M q)) can be covered by A′ ∪ {U}, contrary
to our choice of q. Thus there exists a finite subfamily of A which covers u.Specs(M). Also, u.Specs(M) is
Hausdorff by Theorem 3.3. Therefore, u.Specs(M) is compact with the finer upper patch topology of M.

Theorem 3.7. Let M be an Artinian left R-module. Then u.Specs(M) is a compact space with the finer upper patch
topology.

Proof. Let M be an Artinian left R-module and let A be a family of finer upper patch-open sets covering
u.Specs(M). Suppose that no finite subfamily of A covers u.Specs(M). Let T = {(0 :M L) : L is an ideal
of R such that no finite subfamily of A covers Vu((0 :M L))}. Since Vu((0 :M 0)) = Vu(M) = u.Specs(M),
T , ∅. By the hypothesis, we can choose an ideal F of R such that (0 :M F) is a minimal element of T .
Let annR((0 :M F)) = q. Then Vu((0 :M F)) = Vu((0 :M q)). Clearly, (0 :M q) , 0. We claim that q is a prime
ideal of R. For if not, suppose that I and J are two ideals of R properly containing q anf IJ ⊆ q. Then
(0 :M I) ( (0 :M F) and (0 :M J) ( (0 :M F). By the minimality of F, Vu((0 :M I)) and Vu((0 :M J)) are covered
by a finite subfamily ofA. As in the proof of Theorem 3.6, we have Vu((0 :M IJ) ⊆ Vu((0 :M I))∪Vu((0 :M J))
and so Vu((0 :M IJ)) can be covered by a finite subfamily of A. Since IJ ⊆ q, Vu((0 :M q)) ⊆ Vu((0 :M IJ).
Thus Vu((0 :M q)) = Vu((0 :M F)) can be covered by a finite subfamily of A, a contradiction.Thus q is a
prime ideal of R. Now, we claim that annR((0 :M q)) = q. For if not, there exists an ideal q1 of R such
that hence q1 = annR((0 :M q)) and q ( q1. It follows that (0 :M F) ⊆ (0 :M q) ⊆ (0 :M q1) and hence
q1 ⊆ annR((0 :M F)) = q, a contradiction. Thus annR((0 :M q)) = q. Since M is quasi-secondful, there exists
Q ∈ u.Spe0cs(M) such that annR(Q) = q. Let U ∈ A such that Q ∈ U. By Lemma 3.2, there exists a
submodule K of M such that q = annR(Q)  annR(K) and Q ∈ Vu(Q) ∩ Uu(K) ⊆ U. Put I := annR(K). Then
Uu(K) = Uu((0 :M I)) and Vu(Q) = Vu((0 :M q)). So Q ∈ Vu((0 :M q)) ∩ Uu((0 :M I)) ⊆ U. Since F ⊆ q  I,
we have (0 :M I)  (0 :M F). By the minimality of (0 :M F), Vu((0 :M I)) can be covered by a finite subfamily
A
′ of A. But Vu((0 :M q))\Vu((0 :M I)) = Vu((0 :M q))\[Uu((0 :M I))]c = Vu((0 :M q)) ∩ Uu((0 :M I)) ⊆ U. So

Vu((0 :M q)) = Vu((0 :M F)) can be covered by A′ ∪ {U}, contrary to our choice of F. Thus there exists a
finite subfamily of A which covers u.Specs(M). Also, u.Specs(M) is Hausdorff by Theorem 3.3. Therefore,
u.Specs(M) is compact with the finer upper patch topology of M.

Let τ and τ∗ be two topologies on a set X such that τ ⊆ τ∗. It is easy to observe that if X is τ∗-quasi-compact,
then X is τ-quasi-conpact.
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Theorem 3.8. Let M be a left R-module. If u.Specs(M) is compact with the finer upper patch topology, then for
each submodule N of M, Uu(N) is a quasi-compact subset of u.Specs(M) with respect to upper dual Zariski topology.
Consequently, u.Specs(M) is quasi-compact with upper dual Zariski topology.

Proof. For each submodule N of M, Vu(N) = Vu(N) ∩ Uu(0) is an open subset of u.Specs(M) with the finer
upper patch topology, and hence for each submodule N of M, Uu(N) is a closed subset in u.Specs(M) with the
finer upper patch topology. Since every closed subset of a compact space is compact, Uu(N) is compact with
the finer upper patch topology. Thus Uu(N) is also quasi-compact with the upper dual Zariski topology.
Now, since u.Specs(M) = Uu(0), u.Specs(M) is quasi-compact with the upper dual Zariski topology.

Corollary 3.9. Let M be a left R-module. If u.specs(M) is compact with the finer upper patch topology, then the finer
upper patch topology and the upper patch topology of M coincide.

Proof. By Theorem 3.8, for each submodule K of M, Uu(K) is quasi-compact with the upper dual Zariski
topology. Therefore, the bases of the finer upper patch topology and the upper patch topology are the same.
Thus these two topologies coincide.

Corollary 3.10. Suppose that M is an Artinian left R-module or M is a quasi-secondful left R-module such that
R/annR(M) satisfies ascending chain condition on ideals. Then:

(1) The finer upper patch topology and the upper patch topology of M coincide.
(2) The upper dual Zariski topology of M is quasi-compact.

Proof. By Theorems 3.6, 3.7, 3.8 and Corollary 3.9.

4. Modules Whose Upper Dual Zariski Topologies Are Spectral

Let M be a left R-module and Y ⊆ u.Specs(M). We denote the closure of Y with respect to the upper dual
Zariski topology by Cludz(Y).

Proposition 4.1. Let M be a left R-module and Y ⊆ u.Specs(M).Then Cludz(Y) = Vu(Tu(Y)) where Tu(Y) is the sum
of all elements in Y. In particular, Cludz({S}) = Vu(S) for every S ∈ u.Specs(M).

Proof. Clearly, Y ⊆ Vu(Tu(Y)). Let Vu(N) be a closed subset of u.Specs(M) containing Y where N is a
submodule of M. Then annR(N) ⊆ annR(S) for every S ∈ Y so that annR(N) ⊆ ∩S∈YannR(S) = annR(

∑
S∈Y S) =

annR(Tu(Y)). Hence for every Q ∈ Vu(Tu(Y)), annR(N) ⊆ annR(Tu(Y)) ⊆ annR(Q) and so Q ∈ Vu(N). Therefore,
Vu(Tu(Y)) ⊆ Vu(N). This shows that Cludz(Y) = Vu(Tu(Y)).

Lemma 4.2. Let M be a left R-module and S, Q ∈ u.Specs(M). If Vu(S) = Vu(Q), then S = Q.

Proof. Vu(S) ⊆ Vu(Q) implies S ∈ Vu(Q) and so annR(Q) ⊆ annR(S). Similarly, we get annR(S) ⊆ annR(Q).
Therefore, annR(Q) = annR(S) and hence S = Q.

Proposition 4.3. Let M be a left R-module Then u.Specs(M) is a T0-space with the upper dual Zariski topology.

Proof. The result follows from Proposition 4.1, Lemma 4.2 and the fact that a topological space is T0 if and
only if the closures of distinct points are distinct.

Lemma 4.4. Let M be a left R-module. Then for each S ∈ Specs(M), Vu(S) is irreducible with the upper dual Zariski
topology.

Proof. Let Vu(S) ⊆ Y1 ∪ Y2 where Y1 and Y2 are closed sets. Then there exists submodules N1 and N2 of
M such that Y1 = Vu(N1) and Y2 = Vu(N2). There exists an upper second submodule Q of M such that
annR(Q) = annR(S). Since Q ∈ Vu(S), either Q ∈ Y1 or Q ∈ Y2. Without loss of generality we may assume
that Q ∈ Y1 = Vu(N1). Then annR(N1) ⊆ annR(Q) = annR(S). This implies that Vu(S) ⊆ Vu(N1) = Y1. Thus
Vu(S) is irreducible.
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Corollary 4.5. Let M be a left R-module and S ∈ Specs(M). If Q ∈ u.Specs(M) such that annR(Q) = annR(S), then
Q is a generic point of the irreducible closed subset Vu(S) of u.Specs(M) with the dual Zariski topology..

Proof. By Lemma 4.4, Vu(S) is an irreducible closed subset of u.Specs(M). On the other hand Cludz({Q}) =
Vu(Q) = Vu(S) by Proposition 4.1. Thus Q is a generic point of Vu(S).

Proposition 4.6. Let M be a left R-module and Y ⊆ u.Specs(M). If Tu(Y) is a second submodule of M, then Y is
irreducible with the dual Zariski topology.

Proof. Suppose that S := Tu(Y) is a second submodule of M. By Proposition 4.1, Cludz(Y) = Vu(S). Now let
Y ⊆ Y1 ∪Y2 where Y1 and Y2 are closed subsets of u.Specs(M). Then Cludz = Vu(S) ⊆ Y1 ∪Y2. By Lemma 4.4,
Vu(S) is irreducible. Therefore we obtain Y ⊆ Y1 or Y ⊆ Y2. Thus Y is irreducible.

Proposition 4.7. Let M be a left R-module. If u.Specs(M) is quasi-compact with the finer upper patch topology, then
every irreducible closed subset of u.Specs(M) with the upper dual Zariski topology has a generic point.

Proof. Let Y be an irreducible closed subset of u.Specs(M). First, we show that Y = ∪S∈YVu(S). Clearly,
Y ⊆ ∪S∈YVu(S). By Proposition 4.1, for each S ∈ Y, we have Vu(S) = Cludz({S}) ⊆ Cludz(Y), and since
Cludz(Y) = Y, ∪S∈YVu(S) ⊆ Y. Thus Y = ∪S∈YVu(S). For each S ∈ Y, Vu(S) = Vu(S) ∩Uu(0) is an open subset
of u.Specs(M) with the finer upper patch topology. Since Y is closed with the upper dual Zariski topology,
Y = Vu(N) for some submodule N of M. Since Uu(N) = Uu(N) ∩ Vu(M) is open with the finer upper patch
topology, Vu(N) is closed in u.Specs(M) with the finer upper patch topology. Therefore, Y is compact with
the finer upper patch topology. Thus there exists a finite subset Y′ of Y such that Y = ∪S∈Y′Vu(S). Also,
since Y is irreducible, Y = Vu(S) = Cludz({S}) for some S ∈ Y′ and so Y has a generic point with the upper
dual Zariski topology.

Theorem 4.8. Let M be a left R-module. If u.Specs(M) is quasi-compact with the finer upper patch topology, then
u.Specs(M) is a spectral space with the upper dual Zariski topology.

Proof. By Proposition 4.3, u.Specs(M) is a T0-space and by Theorem 3.8, u.Specs(M) is quasi-compact and has
a basis of quasi-compact open subsets which are closed under finite intersections. Finally, by Proposition
4.7, every irreducible closed subset of u.Specs(M) has a generic point. Thus, u.Specs(M) is a spectral space
by Hochster’s characterization.

Corollary 4.9. Let M be a left R-module. Then the following hold.
(1) If u.Specs(M) is finite, then u.Specs(M) is a spectral space with the upper dual Zariski topology.
(2) If M is an Artinian R-module or M is a quasi-secondful R-module such that R/annR(M) satisfies ascending

chain condition on ideals, then u.Specs(M) is a spectral space with the upper dual Zariski topology.
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[15] S. Çeken, On the Upper Second Submodules, Proceedings Book of MICOPAM 2018, ISBN 978-86-6016-036-4, 99-102.
[16] K. R. Goodearl and R. B. Warfield, An introduction to noncommutative noetherian rings, London Math. Soc. Student Texts 16,

Cambridge Univ. Press, Cambridge, 2004.
[17] C.P. Lu, Prime submodules of modules, Comm. Math. Univ. Sancti Pauli 33 (1984), 61-69.
[18] C.P. Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math. 25 (1999), 417-432.
[19] R. L. McCasland, M. E. Moore and P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra 25 (1997),

79-103.
[20] J.C. McConnell and J.C. Robson, Noncommutative noetherian rings, Wiley, Chichester, 1987.
[21] D.W. Sharpe and P. Vamos, Injective modules, Cambridge University Press, London, 1972.
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