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Abstract. The rigidity of the materials used in the structures affects most deformation characteristics.
Therefore, obtaining information about the rigidity of materials is essential for the behavior of the structures.
In the study, 32 different equations were derived by usage of eight parameters in various combinations to
estimate elastic modulus of concrete. These parameters are compressive strength, unit weight, water-cement
ratio, consistency, cement amount, fine aggregate – course aggregate ratio and air content. Multidimensional
nonlinear regression models were generated between equation models and test results. The optimization
process is applied to solve regression models. An improved version of Artificial Bee Colony Optimization
algorithm by adding levy flight distribution (ABC LF) is used as the optimization method. Estimated
values are compared to test results to determine the goodness of the equations. The effectiveness of the
parameters is investigated according to the comparison as well.

1. Introduction

Elastic Modulus is one of the essential mechanical property of concrete to predict its behavior. In some
cases, the elastic modulus of concrete can change with different mixture even if the same compressive
strength of concrete is provided [1–3]. Stress-Strain curve is an exact way to obtain the elastic modulus.
However, experimental tests are required to get a stress-strain curve that causes time and money loss.
Usage of the general equation presents a fast and economical solution to estimate the elastic modulus of
concrete. Different formulas are proposed by many researchers to compute the modulus of elasticity [4].
Most of them based on the compressive strength are not suitable for both normal and high strength. Many
models suggested in the literature could not precisely predict the modulus of elasticity made with different
compositions.

In the literature, there are few studies available which contain a mathematical model for prediction of the
elastic modulus of concrete [5]. In 2005, Demir proposed a fuzzy-logic model to predict elastic modulus [6].
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Demir also predicted elastic modulus of standard and high strength concrete by artificial neural networks
in 2008 [7]. Gandomi et al. formulate elastic modulus of concrete using linear genetic programming [8].
N. Ahmadi-Nedushan predicted elastic modulus of standard and high strength concrete using adaptive-
network-based fuzzy inference system (ANFIS) and optimal nonlinear regression models [9]. Yan and Shi
predicted elastic modulus of standard and high strength concrete by support vector machine [10]. Aydin
et al. predicted concrete elastic modulus using an adaptive neuro-fuzzy inference system [11]. Topçu
and Sarıdemir predicted elastic modulus of waste AAC aggregate concrete using artificial neural network
[12]. In general, the prediction models obtained from these studies depend on few parameters such as the
strength of concrete. Hence, multi-parameter elastic modulus estimation model was not encountered in
the literature.

Nonlinear regression models should be preferred to generate good estimation model. The solution of non-
linear regression models standard is not an easy task for researchers. Using a large number of parameters
in the models makes it more difficult to get the solution. Standard mathematical methods are not adequate
to solve these models. Meta-heuristic optimization techniques are useful tools for these problems. ABC
method is one of the well-known meta-heuristic optimization method developed by Karaboga and Basturk
[13–15]. Researchers used the ABC method in many engineering fields such as electric power systems
[16], air vehicle path planning [17], the design of civil engineering structures [18–25]. The ABC method is
also used to solve regression models such as symbolic regression [26], support vector regression system
[27, 28], stepwise regression – correlation [29]. The ABC method showed efficient performance in these
studies. In the survey, multi parameters have been used for regression models. This case increases the
dimension of the optimization problem. Divergence might be encountered when the classical version of
the ABC algorithm is used for large scale optimization problems. Some researchers [19, 20, 30] have used
Levy Flight distribution to improve the ABC algorithm’s performance and have achieved satisfactory results
in their studies. Therefore, the improved version of the ABC method called ABC LF is preferred in the study.

As a result of the literature study, it is seen that the study has novelties in terms of testing the performance
of the ABC method in multi-dimensional regression problems and investigating experimental parameters
to predict concrete elastic modulus.

2. Mathematical Modeling

2.1. Nonlinear regression model
In the study, the equation models have been investigated to determine the modulus of elasticity of concrete
with respect compressive strength, unit weight, water-cement ratio, consistency, cement amount, fine
aggregate – course aggregate ratio and air content. The general formula of the equation models is described
as follows;

E∗(σB, γ,w/c,Sl,C,A,AC) = x1 · σ
x2
B · γ

x3 · w/cx4 · Slx5 · Cx6 · Ax7 · ACx8 (1)

where, σB is compressive strength, γ is unit weight, (w/c) is water–cement ratio, Sl is consistency, C is cement
amount, A is fine aggregate–course aggregate ratio, AC is air content and −→x = [x1, x2, . . . , x8] are the factors
of the equations. Usage of some parameters together may have negative effects on the model estimation.
Therefore, thirty-two different equations are derived with respect to combinations of the parameters.

2.2. Optimization problem
To the solve nonlinear regression model, the optimization tool has been used. The optimization process
consists of two main phases. These are modeling and analyses stages. In the modeling phase, the design
problem is converted to the optimization problem. The appropriate optimization method is selected and
applied to the optimization problem in the analyses phase.
Two primary parameters called objective function, and the design variable vector should be defined to
generate the optimization problem. The objective of the optimization problem is defined as minimizing the
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error (the difference between the test data and the estimated data obtained from the equation model). Root
Mean Square Error (RMSE) function of mean square error is used as an error function which is described
as follows;

RMSE(−→x ) =

√√√√
N∑

i=1

(
Ei − E∗i (

−→x )
)2

N
(2)

where N is the total number of test data, i is the subscript representing the data number, E is the value of
the obtained from tests, E∗is the approximate value of the data obtained from the equation model. Design
variable vector is a vector which contains parameters traded as a variable during the optimization process.
Factor vector of the equation parameters (−→x ) is defined as design in the current optimization problem.Fitness
(performance) of each equation model (Fi) is inversely proportional to its objective function value.

3. Optimization Method: Artificial Bee Colony Optimization Method with Levy Flight Distribution
(ABC LF)

3.1. Theory
The ABC method is one of the well-known meta-heuristic based optimization technique which emerged
in 2005 [13]. The hypothesis of the ABC method is based on the community behavior of honey worker
bees. In the ABC algorithm, the worker bees are categorized into three groups called employed, onlooker
and scout bees. Employed bees collect nectars around determined food sources, record information about
better food sources and share with the colony. Onlooker bees decide the most convenient food sources and
fly to collect nectars. Scout bees detect the consumed food sources and find new food sources on behalf of
the food sources.
A Levy flight is a random walk strategy developed by French mathematician Paul Levy. Step-lengths of the
random walk are calculated using heavy-tailed probability distribution. In the literature, many simplified
distribution functions represents the Levy Flight distribution function.In the study, Mantegna function [31]
is utilized to calculate the step length and its simpfilied version are described as follows:

SL = α ⊕ levy(β) = 0.01
N

(
0, σ2

u

)
N

(
0, σ2

v

) 1
β

; σu =

Γ
(
1 + β

)
sin

(
πβ
2

)
Γ
( 1+β

2

)
β 2

β−1
2


1/β

; σV = 1 (3)

where, α is random step size constant, β is Levy flight parameter, levy is the Levy flight distribution
function, ⊕ is entry wise multiplication, N(m, σ) is random number function obtained from a normal
distribution having m mean and σ standard deviation and, Γ is the gamma function (Γ (z) =

∫
∞

0 tz−1
• e−z ).

3.2. ABC LF method for nonlinear regression analysis
In the study, the ABC method is utilized to find the optimum equation parameters described in section 2,
concerning minimizing modeling error. The expressions of the ABC theory are explained for the current
optimization problem in Table 1.
According to these expressions, the main steps of the ABC algorithm can be defined as follows;
Step1: Initial equation models are randomly generated as follows;

Xi, j = int
(
lb j +

(
ub j − lb j

)
• rnd(0, 1)

)
; i = 1, 2, . . . ,FS j = 1, 2, . . . ,n (4)

Where; X is the solution pool which contains the factors of the all equation models in the algorithm
memory, lb and ub respectively are the lower and the upper boundaries of the equation constants, FS is the
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total number of food source defined in the algorithm, n is total number of factors in the equation, rnd(0, 1)
is a random number generated from interval the [0-1] and int is a function which rounds the result with
respect to predefined decimal. Then, the algorithm calculated the fitness values of the initial equation
models according to Eq. 2 and assign an initial trial number of the models as zero.
Step 2: Employed phase is performed in this step. In this phase, current equation models are modified
according to the following formula;

Xnew
i, j = int

(
Xi, j +

(
Xi, j − Xi,k

)
• rnd(−1, 1)

)
; i , k (5)

Where k is a subscript of the neighbor equation model which is chosen randomly from among current
equation models in the algorithm memory, then, the fitness values of the equation models are calculated
and compared with their previous versions. If the modified solutions have better fitness values, they
substitute with their previous ones. Otherwise, the algorithm does not accept the replacements and holds
the previous versions. This update process is named as “Greedy Selection.” If replacement is performed,
the algorithm assigns the trial number of the modified equation model as zeros. Otherwise, the algorithm
increases the trial numbers of the previous equation models by one.
Step 3: Onlooker bee phase is performed in this step. In the onlooker bee phase, the most appropriate food
sources are detected according to the selection probabilities of the equation models. Selection probability
(Pr) of each equation depends on is fitness value which is described as follow;

Pr =
F(−→x )∑NS

j F(−→x ) j

(6)

Then the detected food sources are modified, and greedy selection is applied in the same manner
described in step 2
Step 4: The algorithm uses the scout bee phase in this step. Scout bees determine the consumed food source.
In other words, equation models whose trial values exceed the food limit are detected. Then these models
assigned to absorbed food sources are subtracted from the algorithm memory.
The classical version of the ABC algorithm adds new solutions using the random selection method as
illustrated in Eq. 4. Candidate solutions randomly generated using a random selection method is unlikely
to be better than the current solutions. Therefore divergence may occur in the algorithm. The algorithm uses
Levy Flight distribution to overcome the problem in step 4. In the Levy Flight distribution, the candidate
solution is generated according to the following formula:

Xnew
ic, j = int

(
Xic, j + SL •

(
Xic, j − Xib, j

))
; j = 1, 2, . . . ,n (7)

where ib and ic respectively are subscripts of consumed food source and the best food source in the
memory.
After step 4, the algorithm checks the stopping criterion which is defined as reaching the maximum
generation number of the candidate equation models. If the stopping criterion is satisfied, the algorithm is
terminated, and the best equation model in the memory is assigned as the optimum solution. Otherwise,
the algorithm goes back to step 2.

3.3. Determination of search parameters of the ABC LF method
The ABC method uses four search parameters called the total number of food source (FS), food source
limit (L), Levy flight parameter (β), the maximum generation number(1enmax) . These parameters should be
defined at the beginning of the algorithm and do not change in the optimization process. Values of these
parameters directly affect the performance of the ABC method. Therefore, it is very important to determine
the most appropriate search parameter values. Generally, sensitivity analysis is used to determine search
parameter values. However, some researchers perform sensitivity analysis and find the most appropriate
search parameter values [17, 19]. Based on these studies, search parameters of the current studies are
determined as: FS = 10, 1enmax = 500, L = 50 and β = 1.5.
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Table 1: Explanation of the ABC algorithm expressions
Expression Explanation
Food source Candidate equation model
Location of the food source Values of the equation parameters in the model
nectars around determined food sources Modifying the current equation model and

calculating its performance
Deciding the most convenient food sources Selection the equation model according to its fitness
Consuming the food source Usage of the equation model in the algorithm memory

4. Results

In the study, twenty-seven experimental tests having different concrete mixtures have been performed are
tested to find the equation models. The components and mechanical properties of the concretes obtained
by the experiments are taken from the literature[32]. The constants of the equation models mentioned
in section 2 are optimized using ABC LF algorithm. The lower boundaries, the upper boundaries, and
increments of the equation constants are shown in Table 2. Obtained the optimum equations constants and
RMSE error values of equations are illustrated in Table 3. According to the table, the 25th equation model
has the minimum RMSE error value which is described as follows;

E∗(σB, γ,w/c,Sl) = 2570 · σ0.407
B · γ0.161

· (w/c)0.042
· Sl−0.098 (8)

The estimated rigidity values of the best model are compared to real data in Figure 1. Performance
of the equation models also tested in six different correlation and error functions called the determination
coefficient (R2), the adjusted determination coefficient (R2

adj), the mean absolute error (MAE), the mean
absolute percentage error (MAPE) and normalized root mean square error (NRMSE).

The correlation and error values obtained from these functions are given in Table 4. According to the
table, R2 and R2

adj values respectively vary from 0.91 and 0.83 to 0.98 and 0.96; the maximum MAPE value
is 3.3%; the average value of the NRMSE is 0.06. Although values of the MAE seem to be high, these errors
do not indicate that the models present good estimations due to the fact that actual data is quite big.
In general, the predicted values were very close to the experimental data. Compared with the results of
some methods in the literature, it shows the usability of the method utilised in practice.

5. Conclusion

In the study, novel, nonlinear and multidimensional equation models are derived using ABC LF method.
According to the results, ABC LF algorithm showed efficient performance to find optimum equation
models.
Thus, the rigidity of the materials which are determinative in the behavior of the structures that are
important in engineering applications can be easily estimated even if they have different compositions.
It is also an advantage that the method used provides different options. If desired, different relations
established as output may be preferred for various purposes. In practice, the presence of too many
variables normally limits predictability. However, this method has proved its potential to give accurate
and precise outputs, although there are many variables. In addition, it is observed that σB, γ, w/c and Sl
parameters are more effective in model determination.
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Table 2: lower and upper boundaries of equation factors
ub lb incr

x1 1000 6000 10
x2 0 0.6 0.001
x3 0 0.3 0.001
x4 0 0.2 0.001
x5 -0.5 0.1 0.001
x6 0 0.5 0.001
x7 0 0.5 0.001
x8 -0.5 0 0.001

Table 3: the optimum equations constants and RMSE error values of equations
Eq. ID x1 x2 x3 x4 x5 x6 x7 x8 RMSE
1 3930 0.362 0.087 N.A. N.A. N.A. N.A. N.A. 758.8
2 1630 0.409 0.179 N.A. N.A. N.A. N.A. -0.001 952.0
3 1320 0.353 0.232 N.A. N.A. N.A. 0 N.A. 765.1
4 3590 0.342 0.108 N.A. N.A. N.A. 0 -0.001 781.0
5 3590 0.364 0.075 N.A. N.A. 0.03 N.A. N.A. 787.4
6 4420 0.349 0.056 N.A. N.A. 0.029 N.A. -0.001 779.2
7 1000 0.33 0.278 N.A. N.A. 0 0 N.A. 777.2
8 3430 0.37 0.093 N.A. N.A. 0 0.079 -0.001 837.8
9 2490 0.344 0.192 N.A. -0.105 N.A. N.A. N.A. 682.2
10 1360 0.41 0.265 N.A. -0.174 N.A. N.A. -0.001 706.2
11 1960 0.443 0.175 N.A. -0.11 N.A. 0.044 N.A. 836.2
12 5840 0.337 0.08 N.A. -0.106 N.A. 0.054 -0.001 902.5
13 1000 0.391 0.299 N.A. -0.162 0.013 N.A. N.A. 675.3
14 4280 0.288 0 N.A. -0.21 0.246 N.A. -0.002 1041.2
15 5760 0.362 0.087 N.A. -0.205 0.03 0.019 N.A. 872.7
16 4390 0.437 0.049 N.A. -0.243 0.064 0.288 -0.001 1083.6
17 2100 0.401 0.157 0.065 N.A. N.A. N.A. N.A. 728.9
18 3290 0.411 0.093 0.055 N.A. N.A. N.A. -0.001 745.7
19 3500 0.448 0.076 0.125 N.A. N.A. 0 N.A. 740.2
20 1580 0.441 0.18 0.109 N.A. N.A. 0 -0.001 745.6
21 2330 0.382 0.15 0.044 N.A. 0 N.A. N.A. 733.7
22 2300 0.323 0.172 0 N.A. 0.003 N.A. -0.001 818.4
23 1320 0.416 0.101 0.165 N.A. 0.158 0 N.A. 789.6
24 1000 0.369 0.269 0.057 N.A. 0 0 -0.016 831.1
25 1090 0.441 0.273 0.094 -0.129 N.A. N.A. N.A. 540.8
26 2130 0.456 0.195 0.09 -0.172 N.A. N.A. -0.001 589.4
27 2180 0.495 0.16 0.094 -0.138 N.A. 0.023 N.A. 645.0
28 5290 0.557 0.024 0.2 -0.128 N.A. 0.033 -0.001 643.1
29 3420 0.421 0.079 0.075 -0.113 0.063 N.A. N.A. 560.3
30 1600 0.35 0.133 0.081 -0.096 0.157 N.A. -0.001 682.8
31 4070 0.472 0.056 0.112 -0.152 0.057 0 N.A. 561.9
32 1390 0.493 0.036 0.2 -0.182 0.267 0.1 -0.001 715.3
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Table 4: The correlation and error values of the function estimations
Eq. R2 R2

adj MAE MAPE NRMSE Eq. R2 R2
adj MAE MAPE NRMSE

1 0.9568 0.9135 577 2.200 0.06127 17 0.9604 0.9208 582 2.238 0.05861
2 0.9319 0.8638 797 2.861 0.07688 18 0.9583 0.9166 6049 2.289 0.06017
3 0.9561 0.9121 601 2.274 0.06175 19 0.9590 0.9180 605 2.358 0.05964
4 0.9543 0.9085 613 2.377 0.06302 20 0.9583 0.9166 633 2.406 .06015
5 0.9535 0.9069 616 2.303 0.06355 21 0.9597 0.9193 562 2.172 0.05918
6 0.9544 0.9088 591 2.271 0.06290 22 0.9497 0.8993 643 2.519 0.06610
7 0.9547 0.9093 609 2.359 0.06273 23 0.9550 0.9100 617 2.419 0.06251
8 0.9474 0.8948 654 2.520 0.06755 24 0.9485 0.8969 675 2.618 0.06688
9 0.9651 0.9303 541 2.077 0.05502 25 0.9780 0.9561 455 1.724 0.04366
10 0.9625 0.9251 578 2.143 0.05702 26 0.9739 0.9478 493 1.886 0.04760
11 0.9480 0.8961 644 2.269 0.06716 27 0.9687 0.9375 555 1.991 0.05209
12 0.9389 0.8777 784 2.972 0.07285 28 0.9690 0.9381 462 1.705 0.05184
13 0.9663 0.9327 553 2.068 0.05405 29 0.9776 0.9551 446 1.687 0.04414
14 0.9206 0.8412 845 3.255 0.08300 30 0.9650 0.9301 533 2.076 0.05508
15 0.9428 0.8857 675 2.600 0.07044 31 0.9767 0.9535 480 1.799 0.04493
16 0.9127 0.8254 856 3.304 0.08704 32 0.9616 0.9231 595 2.236 0.05776

Figure 1: Comparison of real and the best-estimated values of rigidity.
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