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Abstract. In this article, we show that the presence of a concircular vector field on a Riemannian manifold
can be used to obtain rigidity results for Riemannian and Kaehler manifolds. More precisely, we find new
geometrical characterizations of spheres, Euclidean spaces as well as of complex Euclidean spaces using
non-trivial concircular vector fields.

1. Introduction

Throughout this article, we assume that manifolds are connected and differentiable. The notion of
concircular vector fields was first introduced by A. Fialkow in [14]. By a concircular vector field on a
Riemannian manifold (M, 1), we mean a smooth vector field ξ defined on M satisfying

∇Xξ = ρX, X ∈ X(M), (1)

where ∇ denotes the covariant derivative operator with respect to the Riemannian connection of (M, 1),
ρ : M → R is a smooth function, and X(M) is the Lie algebra of smooth vector fields on M. The function ρ
in equation (1) is called the potential function of ξ.

A concircular vector field ξ on M is called non-trivial if the zero set Z(ρ) = {p ∈ M : ρ(p) = 0} of its
potential function ρ is of measure zero in M. Further, a concircular vector field ξ is called a concurrent vector
field if its potential function ρ in (1) is a non-zero constant. (Note that non-trivial concircular vector fields
defined in this article is different from the one defined in [6]).

It is well-known that concircular vector fields play important roles in differential geometry as well
as in physics. For example, concircular vector fields appeared in the study of concircular mappings,
i.e., conformal mappings preserving geodesic circles [6, 22]. Such vector fields play important roles in
the theories of projective and conformal transformations as well. Further, concircular vector fields have
interesting applications in general relativity, e.g., trajectories of time-like concircular fields in the de Sitter
space-time model determine the world lines of receding or colliding galaxies satisfying the Weyl hypothesis

2010 Mathematics Subject Classification. Primary 53C20; Secondary 53C21; 53C24
Keywords. Concircular vector field, concurrent vector field, potential function, Ricci curvature, sphere, Euclidean space, Kaehler

manifold
Received: 14 November 2019; Accepted: 04 December 2019
Communicated by Mića S. Stanković
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(see [21]). Moreover, it was proved by one of the authors in [3] that a Lorentzian manifold is a generalized
Robertson-Walker space-time if and only if it admits a time-like concircular vector field (for a nice survey
on generalized Robertson-Walker spacetimes, see [16]).

In differential geometry, one important research topic is to discover how the existence of a special vector
field on a Riemannian manifold affects the geometry and topology of the Riemannian manifold. Some
important special vector fields on Riemannian manifolds include geodesic vector fields, concurrent vector
fields, concircular vector fields, Killing vector fields, and conformal vector fields. For such special vector
fields, see e.g., [3–11, 13, 15, 16, 17].

The main purpose of this article is to prove that the presence of a concircular vector field on a Riemannian
manifold can be used to obtain rigidity results for some Riemannian manifolds. More precisely, in this
article by applying non-trivial concircular vector fields, we obtain new geometrical characterizations of
spheres, Euclidean spaces, and complex Euclidean spaces.

2. Preliminaries

Let ξ be a concircular vector field on a Riemannian manifold (M, 1) with the potential function ρ. We
denote by α the smooth 1-form dual to the concircular vector field ξ. Then it follows from (1) that the 1-form
α is closed.

The curvature tensor field R and the Ricci tensor Ric of (M, 1) are given respectively by (cf. e.g., [1, 2])

R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z (2)

and

Ric(X,Y) =

n∑
i=1

1 (R(ei,X)Y, ei) , (3)

where n = dim M and {e1, .., en} is a local orthonormal frame on M.
The Ricci operator Q of M is a symmetric operator defined by

1(QX,Y) = Ric(X,Y)

for X,Y ∈ X(M). The scalar curvature S of M is the trace of the Ricci operator, i.e., S = Tr Q. The gradient ∇S
of the scalar curvature satisfies (cf. [6])

1
2
∇S =

n∑
i=1

(∇Q) (ei, ei), (4)

where the covariant derivative ∇Q of Q is defined by

(∇Q) (X,Y) = ∇XQY −Q∇XY.

By choosing Z = ξ in equation (2) and by using equations (1) and (4), we have

R(X,Y)ξ = (Xρ)Y − (Yρ)X (5)

for X,Y ∈ X(M), which gives

Ric (Y, ξ) = −(n − 1)(Yρ).

Hence, we have

Q(ξ) = −(n − 1)∇ρ, (6)
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where ∇ρ denotes the gradient of the potential function ρ.
Associated with the concircular vector field ξ on M, we define a smooth function h : M→ R by

h =
1
2
‖ξ‖2 . (7)

Hence, after applying equation (1), we derive the following simple expression of the gradient ∇h of h:

∇h = ρξ. (8)

Note that for a smooth function f : M→ R on a Riemannian manifold M, the Hessian operatorH f and the
Laplacian ∆ f of f are defined respectively by

H f X = ∇X∇ f , ∆ f = div(∇f), (9)

where

div(X) =

n∑
i=1

1
(
∇ei X, ei

)
.

The Hessian of f , Hess f , is given by

Hess f (X,Y) = 1
(
H f X,Y

)
, X,Y ∈ X(M). (10)

Recall that if f is a non-constant function on a compact Riemannian manifold M satisfying∫
M

f dv = 0,

then a minimum principle yields∫
M
||∇ f ||2dv ≥ λ1

∫
M

f 2dv, (11)

where dv is the volume element of M and λ1 denotes the first nonzero eigenvalue of the Laplace operator
∆ acting on smooth functions.

3. A geometric characterization of spheres

In this section, we apply non-trivial concircular vector fields to derive a geometric characterization of
spheres.

Let Sn(c) denote the hypersphere with radius 1
√

c
centered at the origin o in a Euclidean (n+1)-spaceEn+1

and let N be a unit normal vector field of Sn(c) in En+1. Then the Weingarten map A = AN of Sn(c) satisfies
A = −

√
cI (cf. [2]). From Gauss’ formula, we have

DXY = ∇XY −
√

c1(X,Y)N (12)

for vector fields X,Y ∈ X(Sn(c)), where 1denotes the induced metric on Sn(c), and D and∇ are the Riemannian
connections of En+1, and of Sn(c), respectively.

For a given constant non-zero vector w in En+1, let us consider the function f = 〈w,N〉 defined on Sn(c),
where 〈 , 〉 is the inner product on En+1. Then for any vector field X tangent to Sn(c), we have

X f =
〈
w,
√

cX
〉

=
√

c1(wT,X), (13)
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where wT is the component of w tangential to Sn(c). From (13), we get

∇ f =
√

cwT. (14)

Since w is a constant vector field in En+1, we have DXw = 0. Thus, it follows from formula (12) of Gauss
and equation (14) that

0 = 〈DXw,Y〉 = X 〈w,Y〉 −
〈
w,∇XY −

√
c1(X,Y)N

〉
= X1(wT,Y) − 1(wT,∇XY) +

√
c f1(X,Y)

= 1
(
∇XwT,Y

)
+
√

c f1(X,Y).

Thus

∇XwT = −
√

c f X, (15)

which shows that wT is a concircular vector field on Sn(c). Also, it is to verify that the potential function
ρ = −

√
c f of wT vanishes exactly on the great hypersphere Sn−1(c) ⊂ Sn(c) obtained by the intersection

Sn(c) ∩ E, where E is the hyperplane of En+1 containing the origin o with N as its hyperplane normal. Since
Sn−1(c) is of measure zero in Sn(c), wT is a non-trivial concircular vector field on Sn(c).

Further, by using equations (14) and (15), we have

∆ρ = −
√

c∆ f = −c (div wT) = c
√

cn f = −ncρ.

Hence(
∆ρ

)2 = n2c2ρ2. (16)

Note that the first non-zero eigenvalue λ1 of the Laplace operator ∆ on Sn(c) is λ1 = nc. Therefore, we obtain

nc (2λ1 − nc)ρ2 = n2c2ρ2. (17)

Thus, it follows from equations (16) and (17) that the potential function of ρ of the non-trivial concircular
vector field wT on Sn(c) satisfies the following equation:(

∆ρ
)2 = nc (2λ1 − nc)ρ2.

Now, we prove the following geometrical characterization of spheres.

Theorem 3.1. Let M be an n-dimensional compact Riemannian manifold with positive Ricci curvature. Then M
admits a non-trivial concircular vector field whose potential function ρ satisfies(

∆ρ
)2
≤ nc (2λ1 − nc)ρ2

for a constant c if and only if M is isometric to the n-sphere.

Proof. Assume that (M, 1) is an n-dimensional compact Riemannian manifold of positive Ricci curvature
which admits a non-trivial concircular vector field ξ whose potential function ρ satisfying(

∆ρ
)2
≤ nc (2λ1 − nc)ρ2, (18)

for some constant c. Then equation (1) yields div(ξ) = nρ. Thus we have∫
M
ρdv = 0. (19)



B.-Y. Chen, S. Deshmukh / Filomat 34:3 (2020), 835–842 839

We observe that the constant c appearing in inequality (18) is non-zero. Since otherwise, if c = 0, then
inequality (18) implies ∆ρ = 0. Thus, by compactness of M, ρ is a constant and then equation (19) gives
ρ = 0. This contradicts to ξ being a non-trivial concircular vector field.

Now, using equation (1), we find that div(ρξ) = ξρ+ nρ2. So, after integrating this equation over M, we
obtain∫

M
(ξρ)dv = −n

∫
M
ρ2dv. (20)

On the other hand, by applying equation (6), we get

Ric(ξ, ξ) = −(n − 1)ξ(ρ) (21)

and

Ric(∇ρ, ξ) = −(n − 1)
∥∥∥∇ρ∥∥∥2

. (22)

From the Bochner formula for the potential function ρ, we have∫
M

{
Ric(∇ρ,∇ρ) +

∥∥∥Hρ

∥∥∥2
−

(
∆ρ

)2
}

dv = 0. (23)

Now, we may use the non-zero constant c to compute

Ric
(
∇ρ + cξ,∇ρ + cξ

)
= Ric(∇ρ,∇ρ) + 2cRic

(
∇ f , ξ

)
+ c2Ric(ξ, ξ),

which on using equations (21) and (22) gives

Ric
(
∇ρ + cξ,∇ρ + cξ

)
= Ric(∇ρ,∇ρ) − 2(n − 1)c

∥∥∥∇ρ∥∥∥2
− (n − 1)c2ξ(ρ).

Thus, integrating the above equation and applying equations (20) and (23), we may conclude that∫
M

Ric
(
∇ρ + cξ,∇ρ + cξ

)
dv

=

∫
M

(
−

∥∥∥Hρ

∥∥∥2
+

(
∆ρ

)2
− 2(n − 1)c

∥∥∥∇ρ∥∥∥2
+ n(n − 1)c2ρ2

)
dv.

Now, using inequality (11) (which holds in view of equation (25)), we obtain∫
M

Ric
(
∇ρ + cξ,∇ρ + cξ

)
dv ≤

∫
M

{
−

∥∥∥Hρ

∥∥∥2
+

(
∆ρ

)2
− 2(n − 1)cλ1ρ

2 + n(n − 1)c2ρ2
}
dv,

which can be rearranged as∫
M

Ric(∇ρ + cξ,∇ρ + cξ)dv ≤
∫

M

{
−

( ∥∥∥Hρ

∥∥∥2
−

1
n

(∆ρ)2
)
−

(n − 1)
n

{
nc (2λ1 − nc)ρ2

− (∆ρ)2
}}

dv.

Next, by applying Schwartz’s inequality n
∥∥∥Hρ

∥∥∥2
≥

(
∆ρ

)2, the inequality (18), and the fact that the Ricci
curvature of M is positive in above inequality, we conclude ∇ρ + cξ = 0, or

∇ρ = −cξ. (24)

The above equation implies ∆ρ = −ncρ. Therefore, the non-constant function ρ is an eigenfunction of ∆
with eigenvalue −nc. Hence, as M being compact, it implies that c > 0. Now, by taking the covariant
derivative of equation (24) with respect to any X ∈ X(M) and using equation (1), we find

∇X∇ρ = −cρX, (25)

Therefore, the compact Riemannian manifold M admits a non-constant function ρwhich satisfies the Obata
differential equation (25) (see [18]). Consequently, the Riemannian manifold M is isometric to a sphere of
constant curvature c according to Obata’s theorem (cf. [18]).

The converse was already proved before the statement of the theorem.
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4. A simple characterization of Euclidean spaces

In this section, we use concircular vector fields on complete Riemannian manifolds to derive a simple
geometrical characterization of Euclidean spaces. In order to do so, we need the following.

Lemma 4.1. A complete Riemannian manifold admits a concurrent vector field if and only if it is isometric to a
Euclidean space.

Proof. If M is a Euclidean n-space En, it is well-known that the position vector field of En is a concurrent
vector field.

Conversely, assume that M is a complete Riemannian manifold which admits a concurrent vector field
η such that

∇Xη = cX, X ∈ X(M), (26)

for a non-zero constant c.
Let us put f = 1

2 ||η||
2. Then it follows from (26) that the gradient of f satisfies

∇ f = cη. (27)

Now, by taking the covariant derivative of equation (27) with respect to a tangent vector field X, we have
the following expression of the Hessian operatorH f of f :

H f (X) = c2X.

Thus we find

Hess f ( · , · ) = c21( · , · ).

Therefore, M is isometric to a Euclidean space according to Theorem 1 of [20].

Theorem 4.2. A complete Riemannian manifold admits a non-trivial concircular vector field ξ whose potential
function ρ is constant along each integral curve of ξ if and only if it is isometric to a Euclidean space.

Proof. Suppose that ξ is a non-trivial concircular vector field on an n-dimensional complete Riemannian
manifold M whose potential function ρ satisfies ξρ = 0. As before, let h be the function given by h = 1

2 ||ξ||
2.

Then we know from Section 2 that the gradient of h satisfies equation (8), i.e., ∇h = ρξ.
Now, we observe that the function h is non-constant, due to ξ is non-trivial. This can be seen as follows.

First, we have ∇ξξ = ρξ from equation (1). So, after taking the inner product of this equation with ξ, we
get ξh = 2ρh. Hence

2ρ = ξ (ln h) (28)

on any open subset U ⊂ M on which ξ , 0. If h is a constant function, equation (28) implies ρ = 0 on
U, which contradicts to the assumption that the concircular vector field ξ is non-trivial. This shows the
observation.

Next, by taking covariant derivative of equation (8) with respect to a tangent vector field X, we obtain
the following expression for the Hessian operatorHh:

Hh(X) = (Xρ)ξ + ρ2X,

which implies

Hessh(X,Y) = (Xρ)η(Y) + ρ21(X,Y), (29)
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where η denotes the 1-form dual to ξ. So, by using symmetry of the Hessian in equation (29), we conclude

(Xρ)η(Y) = (Yρ)η(X)

or equivalently, (Xρ)ξ = η(X)∇ρ. Hence, using ξρ = 0 in the above equation, we obtain

η(ξ)∇ρ = ‖ξ‖2 ∇ρ = 0. (30)

Since the concircular vector field ξ vanishes only on a measure zero subset of M, by continuity we get
∇ρ = 0 from (30). Therefore, ρ is a constant c. Moreover, since ξ is a non-trivial concircular vector field, we
must have c , 0. Hence, ξ is a concurrent vector field. Consequently, by applying Lemma 4.1, we conclude
that M is isometric to a Euclidean space.

The converse is trivial since the position vector field of En is concurrent.

5. Concircular vector fields on Kaehler manifolds

A Riemannian metric 1 on a complex manifold (M̃, J) is called Hermitian if the metric 1 and the complex
structure J on M̃ are compatible, i.e.,

1(JX, JY) = 1(X,Y), X,Y ∈ X(M̃). (31)

A Hermitian manifold (M̃, 1, J) is called a Kaehler manifold if its complex structure J is parallel with respect
to its Riemannian connection ∇, i.e., ∇J = 0.

It is well-known that the Riemann curvature tensor R of a Kaehler manifold (M̃, 1, J) satisfies the
following relations (cf., e.g. [2]):

R(X,Y) = −R(Y,X), (32)
R(X,Y)JZ = J(R(X,Y)Z), (33)
R(JX, JY)Z = R(X,Y)Z, (34)
1(R(X,Y)Z,W) = 1(R(Z,W)X,Y), (35)

for X,Y,Z,W ∈ X(M̃).
For concircular vector fields on Kaehler manifolds, we have the following.

Theorem 5.1. If a complete Kaehler n-manifold (M̃, J, 1) with n ≥ 2 admits a non-trivial concircular vector field,
then it is holomorphically isometric to a complex Euclidean n-space Cn.

Proof. Let (M̃, J, 1) be a complete Kaehler n-manifold with n = dimC M̃ ≥ 2. Assume that (M̃, J, 1) admits a
non-trivial concircular vector field ξ such that

∇Xξ = ρX, X ∈ X(M̃). (36)

Then it follows from (2) and (36) that the curvature tensor R satisfies

R(X, ξ)ξ = (Xρ)ξ − (ξρ)X (37)

for any tangent vector field X. By taking the inner product of (37) with ξ we get

(Xρ)||ξ||2 = (ξρ)1(X, ξ), (38)

which implies Xρ = 0 whenever ξ , 0 and 1(X, ξ) = 0. Since ξ is a non-trivial concircular vector field,
equation (1) shows that the zero set Z(ξ) of ξ is of measure zero. Hence, by continuity, we obtain

Xρ = 0, whenever 1(X, ξ) = 0. (39)
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Also, by taking the inner product of (37) with any vector field X perpendicular to ξ, we have

1(R(X, ξ)ξ,X) = −(ξρ)||X||2. (40)

Similarly, by applying (2), (33) and (36), we find

R(Y, Jξ)Jξ = −(Yρ)ξ − ((Jξ)ρ)JY (41)

for any tangent vector field Y. Thus, after combining (38) with (41), we obtain

1(R(Y, Jξ)Jξ,Y) = 0 (42)

for any tangent vector field Y satisfying 1(Y, ξ) = 0.
Next, by applying (32), (34), (35) and (42) we have

0 = −1(R(Y, Jξ)Jξ,Y) = 1(R(JY, ξ)Jξ,Y)
= 1(R(Jξ,Y)JY, ξ) = −1(R(ξ, JY)JY, ξ)
= 1(R(JY, ξ)ξ, JY)

(43)

for any tangent vector field Y satisfying 1(Y, ξ) = 0. Now, by combining (40) and (43) we get

(ξρ)||X||2 = 0 (44)

for any tangent vector field X satisfying 1(X, ξ) = 1(JX, ξ) = 0. Since dimC M̃ ≥ 2 by hypothesis, there exists
a non-zero vector field X which is perpendicular to ξ and Jξ. Hence, ξρ = 0 by (44). Thus, after combining
this with (39), we conclude that ρ is a non-zero constant function. Hence, ξ is a concurrent vector field
(cf. [6]). Consequently, M̃ is isometric to a Euclidean 2n-space E2n according to Lemma 4.1. Hence, the
Kaehler n-manifold (M̃, J, 1) is a complete, simply-connected, flat Kaehler manifold. Consequently, (M̃, J, 1)
is holomorphically isometric to a complex Euclidean n-space Cn.
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