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Abstract. Let (M, d) be a metric space. In this paper we survey some of the most relevant results which
relate the three concepts involved in the title: a) the asymptotic regularity; b) the existence (and uniqueness)
of fixed points and c) the convergence of the sequence of successive approximations to the fixed point(s),
for a given operator f : M→M or for two operators f , 1 : M→M connected to each other in some sense.

1. Introduction

The concept of asymptotic regularity was introduced formally in 1966 by Browder and Petryshyn ([28],
Definition 1, page 572) in connection with the study of fixed points of nonexpansive mappings. We present
in the following the original definition of Browder and Petryshyn ([28], Definition 1, page 572): a (possibly)
nonlinear mapping T of a Banach space X into itself is said to be asymptotically regular if for each x in X,
Tn+1x − Tnx→ 0 strongly in X as n→∞.

This property was used in 1955 by Krasnosel’skiı̌ [99], see also [100], to prove that if K is a compact
convex subset of a uniformly convex Banach space and if T : K → K is nonexpansive, then, for any x0 ∈ K,
the sequence

xn+1 =
1
2

(xn + Txn) , n ≥ 0, (1)

converges to to a fixed point of T.
In proving his result, Krasnosel’skiı̌ used the fact that, if T is nonexpansive, then the averaged mapping

involved in (1), that is, 1
2 I + 1

2 T, is asymptotically regular. For the general averaged mapping

Tλ := (1 − λ)I + λT, λ ∈ (0, 1),
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and in the setting of a Hilbert space, the corresponding result has been stated by Browder and Petryshyn
([29], Corollary to Theorem 5).

Ishikawa [87] proved in 1976 the following general result with no restriction on the geometry of the
Banach space involved.

Theorem 1.1. If C is a nonempty bounded closed convex subset of a Banach space X and T : C→ C is nonexpansive,
then the mapping Tλ is asymptotically regular, for each λ ∈ (0, 1).

Other important results on this topic are due to Edelstein and O’Brien [58], who proved in 1978 that Tλ is
uniformly asymptotically regular over x ∈ C, and to Goebel and Kirk [66], who proved that the convergence
is uniform with respect to all nonexpansive mappings from C into C.

For other examples of asymptotically regular mappings in a locally convex space, see the result of Anzai
and Ishikawa [5]. We end this list by mentioning a very interesting result which makes use of the concept
of asymptotic regularity in a concrete context [49].

From the large list of papers which attest the impact of the asymptotic regularity property in the fixed
point theory of operators, mainly in Hilbert and Banach spaces, we mention the following [32], [33], [135],
[166], [58], [19], [112], [137], [89], [130], [83], [118], [157], [129], [126], [156], [92], [9], [141], [101], [67], [56],
[119], [53], [47], [60], [61], [17], [72], [10].

Let now (M, d) be a metric space and let f , 1 : M → M be two operators. A sequence {xn}n∈N in M is
called asymptotically regular if,

d(xn, xn+1)→ 0 as n→∞.

Clearly, any convergent sequence {xn}n∈N is asymptotically regular but the converse is not more true, as
shown by the sequence of partial sums of the harmonic series, xn =

∑n
i=1

1
i , n ≥ 1. This example also

illustrate a fundamental difference between the convergence property of sequences and the asymptotic
regularity of sequences: the fact that {xn}n∈N is asymptotically regular does not imply that a subsequence
of it is asymptotically regular as well.

The sequence {xn}n∈N is called f -asymptotically regular if,

d(xn, f (xn))→ 0 as n→∞.

The operator 1 is called asymptotically regular on M if the sequence of its iterates, {1n(x)}n∈N, is asymptotically
regular for all x ∈M, that is,

d(1n(x), 1n+1(x))→ 0 as n→∞,

for all x ∈ M. Similarly, the operator 1 is called f -asymptotically regular on M if the sequence of its iterates,
{1n(x)}n∈N, is f -asymptotically regular for all x ∈M, that is,

d(1n(x), f (1n(x)))→ 0 as n→∞,

for all x ∈M.
The various hypostases in which asymptotic regularity appears in the fixed point theory are covered by

the following problems formulated for a metric space (M, d) and an operator f : M→M.

Problem 1. Give metric conditions on f which imply that f is asymptotically regular.

Problem 2. In which conditions on M and f , the asymptotically regular property implies that the fixed point set
of f , F f , is nonempty?

Problem 3. Let f be asymptotically regular with F f , ∅. In which conditions we have that

f n(x)→ x∗(x) ∈ F f as n→∞,∀x ∈M,

i.e., f is a weakly Picard operator ?

Let now f , 1 : M→M be two operators with F f = F1.
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Problem 4. Give conditions on f and 1 which imply that 1 is f -asymptotically regular.

Problem 5. In which conditions on f and 1, the operator 1 is asymptotically regular ?

Problem 6. Let 1 be asymptotically regular. In which conditions on f and 1, we have that F f , ∅?

Problem 7. If the pair ( f , 1) is a solution of Problem 6, in which conditions 1 is is a weakly Picard operator ?

The aim of this paper is to survey what is known on these problems and to give some new related
results.

2. Preliminaries

2.1. Notations

Throughout this paper we shall use the following notations. Let (M, d) be a metric space andK be R or
C. Denote:

• (E,+,K, τ):= a linear topological space;

• (E,+,K, ‖ · ‖):= a linear normed space;

• (B,+,K, ‖ · ‖):= a Banach space;

• (H,+,K, 〈·, ·〉):= a Hilbert space.

Let (M, d) be a metric space. Denote:

• P(M):={Y : Y ⊂M};

• P(M):={Y ∈ P(M), Y , ∅};

• Pb(M):={Y ∈ P(M) : Y is bounded};

• Pcl(M):={Y ∈ P(M) : Y is closed};

• Pcp(M):={Y ∈ P(M) : Y is compact};

• Pb,cl(M):=Pcl(M) ∩ Pb(M);

Let (E,+,K, τ) be a linear topological space. Denote:

• Pcv(E):={Y ∈ P(E) : Y is convex};

• Pcv,cp(E):=Pcv(E) ∩ Pcp(E);

• Pcv,cl(E):=Pcv(E) ∩ Pcl(E);

Let (E,+,K, ‖ · ‖) be a linear normed space. Denote:

• Pcv,b(E):=Pcv(E) ∩ Pb(E);

Let (M, d) be a metric space and f : M→M. Denote

• O f (x):={x, f (x), . . . , f n(x), . . . };

• ω f (x):=the set of limit (cluster) points O f (x);

• δ(A) := sup{d(x, y) : x, y ∈ A}, the diameter of A.
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2.2. Some classes of operators on a metric space
Let (M, d) be a metric space and f : M→M be an operator. Then:

(1) f is an l-contraction if 0 < l < 1 and

d( f (x), f (y)) ≤ ld(x, y), ∀ x, y ∈M;

(2) f is a contractive operator if,

d( f (x), f (y)) < d(x, y), ∀ x, y ∈M, x , y;

(3) f is a graphic contraction if 0 < l < 1 and

d( f 2(x), f (x)) ≤ ld(x, f (x)), ∀ x ∈ X;

(4) f is nonexpansive if,
d( f (x), f (y)) ≤ d(x, y), ∀ x, y ∈M;

(5) f is quasinonexpansive (see [162], [56], [126]) if F f , ∅ and

d( f (x), x∗) ≤ d(x, x∗), ∀ x ∈M, ∀ x∗ ∈ F f ;

(6) f is quasicontractive if F f , ∅ and

d( f (x), x∗) < d(x, x∗), ∀ x ∈M \ F f , x∗ ∈ F f ;

(7) f is K-demicontractive (see [111], [83], [43], [112], . . .) if K < 1, F f , ∅ and

(d( f (x), x∗))2
≤ (d(x, x∗))2 + K(d(x, f (x)))2, ∀ x ∈M, ∀ x∗ ∈ F f ;

(8) f is demicompact (see [121], [28], [15]) if:
{xn}n∈N ⊂ M bounded, d(xn, f (xn)) → 0 as n → ∞ ⇒ ∃ a subsequence {xni }i∈N of {xn}n∈N which is
convergent;

(9) the fixed point problem for f is well posed if F f = {x∗} and
{xn}n∈N ⊂M, d(xn, f (xn))→ 0 as n→∞⇒ xn → x∗ as n→∞;

(10) the fixed point problem for f is well posed in the generalized sense if the following implication holds:
{xn}n∈N ⊂ M, d(xn, f (xn)) → 0 as n → ∞⇒ ∃ {xni }i∈N a subsequence of {xn}n∈N, which converges to a
fixed point of f .

2.3. Measure of noncompactness and condensing operators

Let (M, d) be a metric space. By definition (see [132], [137],...) a functional αDP : Pb(X) → R+ is called a
Daneš-Pasicki measure of noncompactness if

(i) αDP(Y) = 0⇒ Y ∈ Pcp(X), ∀Y ∈ Pb(X);
(ii) Y1,Y2 ∈ Pb(X), Y1 ⊂ Y2 ⇒ αDP(Y1) ≤ αDP(Y2);
(iii) Y ∈ Pb(X), x ∈ X⇒ αDP(Y ∪ {x}) = αDP(Y).
For example, the Kuratowski’s measure of noncompactness, αK, and the Hausdorff’s measure of non-

compactness, αH, are both Daneš-Pasicki measures of noncompactness.
Let (M, d) be a complete metric space. An operator f : M→M is called αDP-condensing iff

(i) A ∈ Pb(M)⇒ f (A) ∈ Pb(M);
(ii) A ∈ Pb(M), f (A) ⊂ A, αDP(A) , 0⇒ αDP( f (A)) < αDP(A).

The operator f : M→M is called strong αDP-condensing iff

(i) A ∈ Pb(M)⇒ f (A) ∈ Pb(M);
(ii) A ∈ Pb(M), αDP(A) , 0⇒ αDP( f (A)) < αDP(A).
For the above notions, see [94].
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2.4. Equivalent fixed point equations: Examples
Example 2.1. (see [30], [132], [8], [22],... ) Let X ⊂ M, ρ : M → X be a set retraction (i.e., ρ|X = 1X) and
f : X→M a nonself operator. By definition, f is retractible with respect to the retraction ρ iff

F f = Fρ◦ f ,

i.e., the fixed point equations x = f (x) and x = (ρ ◦ f )(x) are equivalent.

Remark 2.2. We note that ρ ◦ f : X → X is a self operator and that, if f is retractible with respect to ρ, then the
fixed point equations

x = f (x), x = (ρ ◦ f )(x)

are equivalent.

Example 2.3. (see [120] ) Let (M, d) be a metric space, X ∈ P(M) and f , 1 : X → M be two operators. We suppose
that

d( f (x), 1(x)) ≤ d(x, 1(x)),∀x ∈ X,

for some 0 < l < 1. Then the fixed point equations x = f (x) and x = 1(x) are equivalent.

Example 2.4. Let (E,+,K) be a linear space, X ⊂ E a linear subspace of E and f : X → E an operator. For each
λ ∈ K \ {0} we consider the operator fλ : X→ E defined by

fλ(x) := (1 − λ)x + λ f (x), x ∈ X.

Then the fixed point equations x = f (x) and x = fλ(x) are equivalent.

Example 2.5. (see [156], [157], [105], [15], [132],... ) Let (M, d) be a metric space with a convexity structure defined
by the operator W : M ×M × [0, 1]→M with the following properties:
(a) for all x, y ∈M and any λ ∈ [0, 1],

d(u,W(x, y;λ)) ≤ λd(u, x) + (1 − λ)d(u, y),∀u ∈M.

(b) λ ∈ (0, 1), x, y ∈M and W(x, y, λ) = x⇒ y = x.
Let f : M→M be an operator. For λ ∈ (0, 1) we define the operator fW,λ : M→M given by

fW,λ(x) := W(x, f (x), λ), ∀x ∈M.

Then the fixed point equations x = f (x) and x = fW,λ(x) are equivalent.

Example 2.6. (Rus [133]) Let M be a nonempty set and G : M ×M→M be an operator which satisfies:
(A1) G(x, x) = x,∀x ∈M;
(A2) x, y ∈M, G(x, y) = x⇒ y = x.
Let f : M→M be a given operator and consider the operator fG : M→M defined by

fG(x) := G(x, f (x)), ∀x ∈M.

Then the fixed point equations x = f (x) and x = fG(x) are equivalent.

Basic problem of the equivalent fixed point equations

Let (M, d) be a metric space and f : M → M be an operator with F f , ∅. The problem is to find an
operator 1 : M→M such that:

(1) F f = F1;
(2) 1 is a weakly Picard operator.

A direct way to investigate this problem is to study the Problems 1-7 formulated in Introduction.
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3. Problem 1

We start our considerations about solving Problem 1 with a general result which illustrates the relevance
of asymptotic regularity in the theory of weakly Picard operators.

Theorem 3.1. (Theorem of equivalent statements, Rus [128], [130]) Let X be a nonempty set and 1 : X→ X be
an operator. The following statements are equivalent:

(i) F1 = F1n , ∅;

(ii) there exists a metric d on X with respect to which 1 is WPO;

(iii) there exists a complete metric on X with respect to which 1 is a continuous graphic contraction;

(iv) F1 , ∅ and there exists a metric d on X with respect to which 1 is asymptotically regular.

Another result in the same direction is the following one.

Theorem 3.2. (Belluce and Kirk, [14]) Let (M, d) be a complete metric space and 1 : M → M be a nonexpansive
operator. Then the following statements are equivalent:

(1) 1 is asymptotically regular on M;

(2) 1 has diminishing orbital diameters on M, i.e.,

x ∈M, δ(O1(x)) > 0⇒ lim
n→∞

δ(O1(1n(x))) < δ(O1(x)).

Let f ∈ C([a, b] ×Rm,Rm) and consider the following Cauchy problem:

y′ = f (x, y), y(a) = y0 (2)

and the corresponding sequence of successive approximations associated to it,

yn+1(x) := y0 +

∫ x

a
f (s, yn(s))ds,n = 0, 1, . . . (3)

The following result was given by Dieudonné in 1945 [49], see also [21].

Theorem 3.3. We suppose that the Cauchy problem (2) has a unique solution. Then there exists h ∈]0, b−a[ such that
the sequence of successive approximations (3) converges to the unique solution of the Cauchy problem (2) uniformly
on [a, a + h], if and only if the sequence {yn}n∈N is uniformly asymptotically regular on [a, a + h].

Remark 3.4. Let (M, d) be a metric space. Remind, see Rus [130], that an operator 1 : M→M is said to be a Picard
operator if

(1) F f = {x∗};
(2) The sequence of successive approximations associated to 1, {1n(x)}n∈N, converges to x∗ as n → ∞, for any

x ∈M.

So, Theorem 3.3 provides a characterization of the asymptotic regularity by means of the concept of Picard operator,
see [21], [127], for more details.

The essence of Theorem 3.3 can be captured in the following context, see Hillam [84].

Theorem 3.5. (Hillam, [84]) Let T be a continuous map of [0, 1] into [0, 1]. The sequence {Tnx} of successive
approximations of T converges to a fixed point of T if and only if {Tnx} is asymptotically regular.
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Remark 3.6. Theorem 3.5 cannot be extended beyond the one dimensional case, as shown by Smart [153], who
constructed an example of a continuous mapping T of the closed unit disc in the Euclidean plane such that the origin
and points on the unit circle are fixed points of T and, for any other x, one has d(Tnx,Tn+1x) → 0, but {Tnx} is not
convergent.

This fact indicate how important is to study the connection between asymptotic regularity and convergence of a
sequence in a more general setting.

We present in the following a result based on a metric condition which implies the asymptotic regularity
in a metric space.

Theorem 3.7. (Rus [138]) Let (M, d) be a complete metric space and 1 : M → M be an operator which satisfies the
(α, β)-displacement condition, i.e., there exist α : R+ → R+ and β : M→ R+ such that

(1) tn ∈ R+ and α(tn)→ 0 as n→∞ implies tn → 0 as n→∞;

(2) α(d(x, 1(x))) ≤ β(x) − β(1(x)), ∀ x ∈M.

Then 1 is asymptotically regular.

For relevant examples of operators which satisfy the (α, β)-displacement condition, see Rus [138].
As mentioned in Introduction, the asymptotical regularity property is related to many important results

in the fixed point theory over metric spaces. All Banach contractions are (continuous) asymptotically
regular operators. The Kannan operators and, in general, all almost contractions are important examples
of discontinuous asymptotically regular operators, as shown by the next result.

Theorem 3.8. (Berinde [15], Theorem 2.11) Let (M, d) be a metric space and 1 : M → M be a (θ,L)-almost
contraction, i.e., an operator satisfying the condition

d(1(x), 1(y)) ≤ θd(x, y) + Ld(y, 1(x)),∀x, y ∈M,

where 0 < θ < 1 and L ≥ 0 are constants.
Then 1 is asymptotically regular.

Proof. Let x0 ∈M be given and denote xn := 1n(x0), n ≥ 1. Then, by the above inequality we obtain

d(xn, xn+1) ≤ θnd(x0, x1),n ≥ 1,

which proves the assertion.

4. Problem 2

The asymptotic regularity of an operator T does not guarantee in general neither the existence of a fixed
point of T nor the convergence of the sequence {Tnx} of successive approximations of T to a fixed point of
T. Some additional conditions are needed.

There exist some simple results in which asymptotic regularity implies the existence of a fixed point,
like the following ([33], [58], [122], [81], [138],...). For some other related results, see also [26], [80], [82],
[142].

Lemma 4.1. Let (M, d) be a metric space and 1 : M→M be a continuous and asymptotically regular operator. Then
ω1(x) ⊂ F1. So, if ω1(x) , ∅, then F1 , ∅.

Lemma 4.2. Let (M, d) be a compact metric space and 1 : M → M be a continuous and asymptotically regular
operator. Then F1 , ∅.

Lemma 4.3. Let (M, d) be a metric space and 1 : M → M be a continuous and asymptotically regular operator. If
1(M) ∈ Pcp(M), then F1 , ∅.
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Theorem 4.4. Let (M, d) be a bounded complete metric space and αDP be a Daneš-Pasicki measure of noncompactness
on M. If 1 : M→M is continuous, asymptotically regular and αDP-condensing, then F1 , ∅.

Proof. For x ∈M, we have that
O1(1(x)) = 1(O1(x)) ⊂ O1(x)

and
αDP(1(O1(x))) = αDP(O1(x)).

Since 1 is αDP-condensing, it follows that O1(x) is compact.
This implies that there exists a subsequence {1ni (x)} of {1n(x)} such that 1ni (x) → x∗(x) as i → ∞. From

the continuity of 1 it follows that
1ni+1(x)→ 1(x∗(x)) as i→∞

and by the asymptotic regularity of 1we get 1(x∗(x)) = x∗(x).

Theorem 4.5. ([138], [121], [103]) Let (M, d) be a metric space and 1 : M→M an operator. We suppose that
(1) 1 is asymptotically regular;
(2) the fixed point problem for 1 is well posed in the generalized sense.
Then F1 , ∅.

Proof. From (1) we have that

d(1n(x), 1n+1(x)) = d(1n(x), 1(1n(x)))→ 0 as n→∞.

By (2), there exists {1ni (x)} such that 1ni (x)→ x∗(x) ∈ F1.
Hence F1 , ∅.

Let (M, d) be a metric space and 1 : M→M be a Lipschitzian operator. Denote

‖1‖Lip := inf{L > 0|d(1(x), 1(y)) ≤ Ld(x, y),∀x, y ∈M}.

By the Lipschitz constant of a metric space M one understand the number

k(M) := sup{b > 0|∃a > 1,∀x, y ∈M,∀r > 0[
d(x, y) > r⇒ ∃z ∈M : B(x, br) ∩ B(y, br) ⊂ B(z, br)

]
}.

As an exotic result we mention the following one obtained by Górnicki [72].

Theorem 4.6. ([72]) Let (M, d) be a complete metric space and 1 : M → M be an operator. If 1 is asymptotically
regular,

lim inf
n→∞

‖1n
‖Lip < k(M)

and, for some x ∈M, O1(x) is bounded, then F1 , ∅.

We end this section with a result concerning operators which are not necessarily continuous, obtained
by Guay and Singh [82], see also [44], [125], [142].

Theorem 4.7. (Guay and Singh [82]) Let (M, d) be a complete metric space and 1 : M→M an operator satisfying
the contractive condition

d(1(x), 1(y)) ≤ ad(x, y) + b[d(x, 1(x) + d(y, 1(y))] + c[d(x, 1(y)) + d(y, 1(x))],

for all x, y ∈M, where 0 ≤ a, c; a + 2c < 1 and b + c < 1.
If 1 is asymptotically regular at some point of M, then 1 has a unique fixed point.
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Remark 4.8. Note that the asymptotic regularity of T cannot be dropped in Theorem 4.7, as shown by the next
example.

Example 4.9. (Guay and Singh [82]) Let M = {0} ∪ [1,∞) be endowed with the usual norm and 1 : M → M be
given by 1(x) = 0, if x , 0, and 1(0) = 1. Then 1 satisfies the contractive condition in Theorem 4.7 but is nowhere
asymptotically regular in M. Clearly, T has no fixed points.

For other references on Problem 2, see [33], [43], [105], [115], [122], [127], [140], [58], [168], [103], [120],
[52], [60], [14], [10], [138], [74]-[79], [26],...

5. Problem 3

This problem is concerned with finding conditions in which an asymptotically regular operator 1 : M→
M is a weakly Picard operator (WPO, for short).

In the case F1 = {x∗}, i.e., when 1 is a Picard operator, the problem was studied in [127] and [21], see also
[24] and [80].

In order to present our basic results for this problem, we introduce a new concept.

Definition 5.1. Let (M, d) be a metric space. An operator 1 : M → M is called orbitally quasinonexpansive iff the
following implication holds:

x ∈M, 1ni (x)→ x∗(x) ∈ F1 ⇒ d(1(u), 1(x∗)) ≤ d(u, x∗),∀u ∈ O1(x).

Example 5.2. Any Banach contraction is a continuous orbitally quasinonexpansive operator.

Example 5.3. Any Kannan contraction is, in general, a discontinuous orbitally quasinonexpansive operator.

Theorem 5.4. Let (M, d) be a compact metric space and 1 : M→M be an operator. We suppose that
(1) 1 is continuous;
(2) 1 is asymptotically regular;
(3) 1 is orbitally quasinonexpansive.
Then 1 is a WPO.

Proof. Let x ∈M. Since M is compact, there exists a subsequence {1ni (x)} of {1n(x)} such that

1ni (x)→ x∗(x) as i→∞.

Conditions (1) and (2) imply that x∗(x) ∈ F1. By condition (3),

d(1(u), x∗) ≤ d(u, x∗),∀u ∈ O1(x),

which shows that the sequence {d(1n(x), x∗(x))}n∈N is decreasing. Denote

lim
n→∞

d(1n(x), x∗(x)) := t ≥ 0.

Since
d(1ni (x), x∗(x))→ 0 as i→∞

it follows that 1 is WPO.

Theorem 5.5. Let (M, d) be a metric space and 1 : M→M an operator. We suppose that
(1) 1 is continuous and 1(M) ∈ Pcp(M);
(2) 1 is asymptotically regular;
(3) 1 is orbitally quasinonexpansive.
Then 1 is a WPO.
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Proof. Since O1(1(x)) ⊂ 1(M), the conclusion follows by Theorem 5.4.

Theorem 5.6. Let (M, d) be a bounded complete metric space, αDP a Daneš-Pasicki measure of noncompactness and
1 : M→M an operator. We suppose that

(1) 1 is continuous and αDP-condensing;
(2) 1 is asymptotically regular;
(3) 1 is orbitally quasinonexpansive.
Then 1 is a WPO.

Proof. We use the arguments in the proof of Theorem 4.4 and apply Theorem 5.5.

Theorem 5.7. Let (M, d) be a metric space and 1 : M→M an operator. We suppose that
(1) the fixed point problem for 1 is well posed in the generalized sense;
(2) 1 is asymptotically regular;
(3) 1 is orbitally quasinonexpansive.
Then 1 is a WPO.

Proof. Using (2) and (3), by Theorem 4.5 we get F1 , ∅. By (1) it follows that {1n(x)} → x∗(x) ∈ F1.

In a Banach space we have the following result.

Theorem 5.8. Let B be a uniformly convex Banach space, X ∈ Pcl,cv(B) and 1 : M → M a nonexpansive operator.
We suppose that

(i) X = −X;
(ii) 1 is odd;
(iii) 1 is asymptotically regular.
Then 1 is a WPO.

For other results on Problem 3, see Rus [135].
An interesting result in this direction, which does not assume the continuity of the operator and relies

on a general principle involving the images of balls when their centers are not moved too far, was obtained
in [81].

Theorem 5.9. (Granas and Dugundji [81], Theorem 5.1) Let (X, d) be a complete metric space and F : X → X a
map, not necessarily continuous. Assume

for each ε > 0 there is a δ = δ(ε) > 0 such that if d(x,Fx) < δ, then F[B(x, ε)] ⊂ B(x, ε).

If F is asymptotically regular at some point u ∈ X, then the sequence {Fnu} converges to a fixed point of F.

6. Problems 4 and 5

Let (M, d) be a metric space and f , 1 : M→M be two operators with F f = F1. The problem here is to find
conditions on f and 1which ensure that the operator 1 is asymptotically regular.

We start our considerations on Problem 4 with the following notion from Rus [138], see also Theorem
3.7.

Definition 6.1. We say that 1 satisfies a (α, β, f )-displacement condition iff there existα : R+ → R+ and β : M→ R+

such that

(1) tn ∈ R+ and α(tn)→ 0 as n→∞ implies tn → 0 as n→∞;

(2) α(d(x, 1(x))) ≤ β(x) − β(1(x)), ∀ x ∈M.

We note that if 1 satisfies a (α, β, f )-displacement condition, then (see Theorem 3.2 in Rus [138]) 1 is f -
asymptotically regular.
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Theorem 6.2. We suppose that
(1) 1 satisfies an (α, β, f )-displacement condition;
(2) there exists θ : R+ → R+ such that:

(a) tn ∈ R+, θ(tn)→ 0⇒ tn → 0;
(b) d(x, f (x)) ≥ θ(d(x, 1(x)),∀x ∈M.

Then 1 is asymptotically regular.

Remark 6.3. If f , 1 : M→M are such that there exists 0 < l < 1, for which

d(1(x), f (x)) ≤ ld(x, f (x)),∀x ∈M,

then f and 1 satisfy conditions (2) in Theorem 6.2 with θ(t) = (l + 1)t.

In the case of a normed linear space, for nonexpansive operators we have the following general result.

Theorem 6.4. (Ishikawa [138]; Edelstein-O’Brien [58]) Let E be a linear normed space, X ∈ Pcv(E) and f : X→ X
be a nonexpansive operator. For each λ ∈ (0, 1) we consider the operator fλ : X→ X defined by

fλ(x) := (1 − λ)x + λ f (x), x ∈ X.

(i) If the set { f n
λ (x)} is bounded for some x ∈ X, then fλ is asymptotically regular at x;

(ii) If X is a bounded subset of E, then fλ is asymptotically regular on X.

In order to state the next result on Problem 4, we need some definitions taken from [133], [16] and [19].

Definition 6.5. (Rus [133]) Let X be a nonempty set. A mapping G : X × X → X is called admissible if it
satisfies the following two conditions:
(A1) G(x, x) = x, for all x ∈ X;
(A2) G(x, y) = x implies y = x.

Definition 6.6. (Rus [133]) Let X be a nonempty set. If f : X→ X is a given operator and G : X × X→ X is
an admissible mapping, then the operator fG : X→ X, defined by

fG(x) = G(x, f (x)), ∀x ∈ X, (4)

is called the admissible perturbation of f .

Definition 6.7. (Berinde [16]) Let H be a Hilbert space and f : H → H be an operator with F f , ∅. We say that
the admissible mapping G : H ×H→ H has the property (C) with respect to f if there exists λ ∈ (0, 1) such that∥∥∥G(x, f (x)) − p

∥∥∥ ≤ λ2
·

∥∥∥x − p
∥∥∥2

+ (1 − λ)2
·

∥∥∥ f (x) − p
∥∥∥2

+2λ(1 − λ)
〈

f (x) − p, x − p
〉
, for all x ∈ H and all p ∈ F f .

Remark 6.8. Note that if f : X→ X is a given operator and fG is its admissible perturbation, then F f = F fG .
We also remark that the admissible mapping G corresponding to Theorem 6.4 is defined by

G(x, y) := λx + (1 − λ) f (x), x ∈ X, (5)

with λ ∈ (0, 1).
In a Hilbert space H, the admissible mapping given by (5) has the property (C) with respect to any operator

f : H→ H with F f , ∅, see [16] for more details.

Theorem 6.9. (Berinde [16]) Let C be a bounded closed convex subset of a Hilbert space H and let f : C→ C be a
nonexpansive operator. If G : H × H → H is an admissible mapping which has the property (C) with respect to f ,
then the sequence {xn+1 := G(xn,T(xn))} with x0 ∈ C given is T-asymptotically regular.

Proof. See the first part of the proof of Theorem 3.3 in [16].
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7. Problems 6 and 7

In the case of problem 6, we are looking for conditions on f and 1which guarantee that F f , ∅.

Theorem 7.1. We suppose that
(1) 1 is f -asymptotically regular;
(2) the fixed point problem for f is well posed in the generalized sense.
Then F f , ∅.

Proof. From (1) we have that
d(1n(x), f (1n(x)))→ 0 as n→∞.

By (2) it follows that there exists a subsequence {1ni } of {1n(x)} such that

1ni → x∗(x) ∈ F f .

Remark 7.2. The conclusion of Theorem 7.1 is that, for ecah x ∈ M, there exists a subsequence { f ni } of { f n(x)} such
that

f ni → x∗(x) ∈ F f .

Theorem 7.3. We suppose that
(1) 1 is asymptotically regular;
(2) there exists θ : R+ → R+ such that:

(a) tn ∈ R+, θ(tn)→ 0⇒ tn → 0;
(b) d(x, f (x)) ≥ θ(d(x, 1(x)),∀x ∈M.

(3) the fixed point problem for f is well posed in the generalized sense. Then F f , ∅.

Proof. Conditions (1) and (2) imply that the operator 1 is f -asymptotically regular.
Now, the proof follows by Theorem 7.1.

In the case of Problem 7, we seek for conditions on f and 1which imply that 1 is WPO.

Theorem 7.4. Let f and 1 be as in Theorem 7.1. In addition, we suppose that 1 is orbitally quasinonexpansive. Then
1 is WPO.

Proof. Similarly to the proof of Theorem 7.1, by (1) we have that

d(1n(x), f (1n(x)))→ 0 as n→∞.

By (2) it follows that there exists a subsequence {1ni } of {1n(x)} such that

1ni → x∗(x) ∈ F f .

By orbitally quasinonexpansiveness,

d(1(u), x∗) ≤ d(u, x∗),∀u ∈ O1(x),

which shows that the sequence {d(1n(x), x∗(x))}n∈N is decreasing. Denote

lim
n→∞

d(1n(x), x∗(x)) := t ≥ 0.

Since
d(1ni (x), x∗(x))→ 0 as i→∞

it follows that 1 is WPO.

Theorem 7.5. Let f and 1 be as in Theorem 7.3. In addition, we suppose that 1 is orbitally quasinonexpansive. Then
1 is WPO.

Proof. Similar to the proof of Theorem 7.4.
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8. Conclusions

In this paper we surveyed some of the most relevant results in nonlinear analysis which relate three
important concepts in the theory of fixed point problems:

(a) the asymptotic regularity and f -asymptotic regularity of an operator 1 : M→M;

(a) the existence (and uniqueness) of the fixed points of 1;

(a) the convergence of the sequence of successive approximations {1n
} to the fixed point(s) of f .

The aspects we went on through this survey were grouped in the Problems 1-7, which were designed to
cover the most significant results and connections involving the above notions.

There are many other aspects that were not covered in this paper for size reasons, like e.g., asymptotic
regularity and semigroups in Banach spaces, asymptotic regularity and common fixed point problems,
asymptotic regularity of multivalued operators etc.

A comprehensive but yet not complete list of references completes the material included in Sections 3-7
of the paper, see [1]-[170].
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