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Perturbation Determinants on Banach Spaces and Operator
Differentiability for Hirsch Functional Calculus

A. R. Mirotina

aFrancisk Skorina Gomel State University

Abstract. We consider a perturbation determinant for pairs of nonpositive (in a sense of Komatsu)
operators on Banach space with nuclear difference and prove the formula for the logarithmic derivative
of this determinant. To this end the Frechet differentiability of operator monotonic (negative complete
Bernstein) functions of negative and nonpositive operators on Banach spaces is investigated. The results
may be regarded as a contribution to the Hirsch functional calculus.

1. Introduction

The perturbation determinant plays an important role in perturbation theory for linear operators. It
was introduced by M. Krein in his seminal paper [17] for operators on Hilbert space and is crucial in
particular for Krein’s theory of trace formulas and spectral shift functions. Later this concept received
many other applications (see, e.g., [9, Chapter IV] where perturbation determinants are channels for the
use in operator theory of theorems of the theory of functions). For more recent results on perturbation
determinants see, e.g., [7], [8], [21], [20]. As was mentioned in [9, Chapter IV] a number of relations of the
theory of perturbation determinants can be traced as far back as an old paper by H. Bateman [2] on integral
operators. All aforementioned works deal with Hilbert space operators only.

The perturbation determinants for the pairs of generators of strongly continuous semigroups on Banach
spaces was considered by the author in [25]. In the present article, following [29] we extend the classical
concept of perturbation determinant to a more general setup of pairs of nonpositive operators on Banach
space with nuclear difference and prove a generalization of the important formula for the logarithmic
derivative of this determinant. The last formula was proved (by another method) in [29] for negative
operators. Our main tool is the notion of a Frechet derivative of a Bernstein function of an operator
argument.

Yu. Daletskiı̆ and S.G. Kreı̆n pioneered the study of the problem of differentiability of functions of self-
adjoint operators in [5]. Their study has been motivated by problems in perturbation theory. Existence of
the higher order derivatives was established in [31]. Differential calculus for functions of several commuting
Hermitian operators in Hilbert spaces was studied in [18]. For a survey and bibliography of the theory for
Hilbert spaces that resulted see the article [1]. The case of Banach spaces was considered in [24], and [25].
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In this paper (bearing in mind the applications to the theory of perturbation determinants on Banach
spaces) we investigate operator differentiability of operator monotonic (negative complete Bernstein) func-
tions of negative and nonpositive operators on Banach spaces. These results may also have an independent
interest.

The paper may be regarded as a contribution to a perturbation theory for Hirsch functional calculus.

2. Preliminaries

In this section we introduce classes of functions and operators and briefly describe a version of Hirsch
functional calculus we shall use below.

Definition 1. We say that a functionϕ is negative complete Bernstein and writeϕ ∈ OM− if it is holomorphic
in C \R+, satisfies ImwImϕ(w) ≥ 0 for w ∈ C \R+, and such that the limit ϕ(−0) exists and is real.

According to [33, Theorem 6.1] this means that −ϕ(−z) is a complete Bernstein function and ϕ has the
following integral representation

ϕ(z) = c + bz +

∫
(0,∞)

z
t − z

dµ(t), z ∈ C \ (0,+∞), (1)

where c ≤ 0, b ≥ 0 and µ is a unique positive measure such that
∫

(0,∞) dµ(t)/(1 + t) < ∞.
A lot of examples of complete Bernstein functions one can found in [33].
In the sequel unless otherwise stated we assume for the sake of simplicity that c = b = 0 in the integral

representation (1) (otherwise one should replace ϕ(z) by ϕ(z) − c − bz).
Remark 1. It is known (see, e.g., [33, Theorem 12.17]), that the families of complete Bernstein and

positive operator monotone functions coincide. It follows that the families of negative complete Bernstein
and negative operator monotone functions also coincide (we say that a real function ϕ on (−∞, 0] is negative
operator monotone if for every bounded self-adjoint operators A and B on a finite or infinite-dimensional real
Hilbert space the inequalities A ≤ B ≤ O imply ϕ(A) ≤ ϕ(B)). That is why we denote the family of negative
complete Bernstein functions by OM−.

Definition 2. We say that closed, densely defined operator A on a complex Banach space X is nonpositive
(negative) (in a sense of Komatsu) if (0,∞) is contained in ρ(A), the resolvent set of A (respectively [0,∞) ⊂
ρ(A)), and

MA := sup
t>0
‖tR(t,A)‖ < ∞

(respectively
MA := sup

t>0
‖(1 + t)R(t,A)‖ < ∞)

where R(t,A) = (tI − A)−1 stands for the resolvent of an operator A, and Ix = x for all x ∈ X.
We denote byNP(X) (N(X)) the class of nonpositive (respectively, negative) operators on the space X.
Remark 2. The operator A is nonpositive (negative) if and only if −A is nonnegative (positive) in

a sense of Komatsu [16] (see also [21, Chapter 1]). We deal with negative operators instead of positive
one because in this form our results are consistent with Bochner-Phillips functional calculus of semigroup
generators considered in [22] – [28]. According to the Hille-Yosida Theorem every generator of strongly
continuous uniformly bounded semigroup of operators belongs toNP(X). It follows that even for the case
of Hilbert space the class of nonpositive operators in a sense of Komatsu is wider that the class of self-adjoint
nonpositive operators in the classical sense.

Definition 3 [3]. For any function ϕ ∈ OM− with representing measure µ and any A ∈ NP(X) we put

ϕ(A)x =

∫
(0,∞)

AR(t,A)xdµ(t) (x ∈ D(A)) (2)

(the Bochner integral). This operator is closable (see, e.g., [3]) and its closure will be denoted by ϕ(A), too.
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It is known [10] –[14] (see also [21, Theorem 7.4.6]) that for ϕ ∈ OM− the operator ϕ(A) belongs to
NP(X) (N(X)) if A ∈ NP(X) (respectively, A ∈ N(X)).

Remark 3. In the Hirsch functional calculus [10] –[14] (see also [21], [32]) functions of the form

f (w) = a +

∫
[0,∞)

w
1 + ws

dλ(s)

(a ≥ 0, λ is a unique positive measure such that
∫

(0,∞)
dλ(s)/(1 + s) < ∞) are applied to nonnegative operators

T on Banach spaces via the formula

f (T)x = ax +

∫
[0,∞)

T(I + sT)xdλ(s) (x ∈ D(T)).

Since

f (w) = a + bw +

∫
(0,∞)

w
s−1 + w

s−1dλ(s),

every such function is complete Bernstein. Consequently, the functional calculus under consideration is in
fact a form of Hirsch functional calculus.

In what follows (I, ‖ · ‖I) stands for a symmetrically normed operator ideal in complex Banach space X, i.e.,
two-sided ideal of the algebra L(X) of bounded operators on X that is complete with respect to the norm
‖ · ‖I, and satisfies ‖ASB‖I ≤ ‖A‖|S‖I‖B‖, and ‖S‖ ≤ ‖|S‖I for all A,B ∈ L(X) and S ∈ I (the case I = L(X) is
also of interest).

3. Operator differentiability

Definition 4. Let ϕ ∈ OM−, A ∈ NP(X), and let I be an operator ideal. A bounded operator ϕ∇A on I
(transformer) is called an I-Frechet derivative of a function ϕ at the point A if for every ∆A ∈ I the following
asymptotic equality holds:

‖ϕ(A + ∆A) − ϕ(A) − ϕ∇A(∆A)‖I = o(‖∆A‖I) as ‖∆A‖I → 0.

We need the following lemmas.
Lemma 1. (i) Let A ∈ N(X). Then A + V ∈ N(X) and ρ(A + V) ⊃ ρ(A) for every V ∈ L(X) such that

‖V‖ < 1/MA. In this case MA+V ≤MA/(1 −MA‖V‖).
(ii) Let A ∈ NP(X). Then A + V ∈ NP(X) and ρ(A + V) ⊃ ρ(A) for every V ∈ L(X) such that ‖V‖ < 1/2MA.

In this case MA+V ≤ 2MA/(1 − 2MA‖V‖).
Proof. (i) First note that ‖V‖ < 1/MA ≤ 1/‖R(t,A)‖ for all t ∈ R+. It follows in view of [15, Remark IV.3.2]

that ρ(A + V) ⊃ ρ(A) ⊃ R+.
Next, applying [15, Theorem IV.1.16, Remark IV.1.17] we have for t ∈ R+

‖R(t,A + V) − R(t,A)‖ ≤
‖V‖‖R(t,A)‖2

1 − ‖V‖‖R(t,A)‖
(3)

since ‖V‖‖R(t,A)‖ < ‖R(t,A)‖/MA ≤ 1.
Thus, we obtain for t ∈ R+

‖R(t,A + V)‖ ≤ ‖R(t,A)‖ +
‖V‖‖R(t,A)‖2

1 − ‖V‖‖R(t,A)‖
=

‖R(t,A)‖
1 − ‖V‖‖R(t,A)‖

≤
‖R(t,A)‖

1 − ‖V‖MA
≤

MA/(1 −MA‖V‖)
1 + t
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which completes the proof of (i).
(ii) For all ε > 0 we have MA−εI ≤ 2MA, since

MA−εI = sup
λ>0
‖λ((λ + ε)I − A)−1

‖ ≤ sup
λ>0
‖(λ + ε)((λ + ε)I − A)−1

‖+

ε sup
λ>0
‖((λ + ε)I − A)−1

‖ ≤MA + ε sup
λ>0

MA

λ + ε
= 2MA.

Therefore for all ε > 0 the condition ‖V‖ < 1/2MA yields ‖V‖ < 1/MA−εI. So, by (i), A − εI + V ∈ N(X). It
follows first of all that ρ(A − εI + V) ⊃ ρ(A − εI) which implies ρ(A + V) ⊃ ρ(A).

Moreover,
sup
t>0
‖tR(t, (A − εI) + V)‖ ≤MA−εI/(1 −MA−εI‖V‖) ≤ 2MA/(1 − 2MA‖V‖).

Consequently, for all ε > 0, t > 0

‖tR(t + ε,A + V)‖ ≤ 2MA/(1 − 2MA‖V‖).

Letting ε tend to zero, we obtain ‖tR(t,A + V)‖ ≤ 2MA/(1 − 2MA‖V‖) for all t > 0 and the result follows.
Lemma 2. (Cf. [30].) (i) Let ϕ ∈ OM−. For any operators A,B ∈ N(X) such that D(A) ⊆ D(B), and A− B ∈ I

the operator ϕ(A) − ϕ(B) belongs to I, too, and satisfies the inequality

‖ϕ(A) − ϕ(B)‖I ≤MAMBϕ
′(−1)‖A − B‖I.

(ii) If, in addition, ϕ′(−0) , ∞, then ϕ(A) − ϕ(B) belongs to I for any operators A,B ∈ NP(X) such that
D(A) ⊆ D(B), and A − B ∈ I and

‖ϕ(A) − ϕ(B)‖I ≤MAMBϕ
′(−0)‖A − B‖I.

Proof. (i) Since AR(t,A)x = R(t,A)Ax for x ∈ D(A), we have

(ϕ(A) − ϕ(B))x =

∫
(0,∞)

(AR(t,A) − BR(t,B))xdµ(t) (x ∈ D(A))

Let 1(t) := AR(t,A) − BR(t,B) (t > 0). The well known equality AR(t,A) = −I + tR(t,A) (t ∈ ρ(A)) implies
in view of the second resolvent identity that 1(t) = t(R(t,A) − R(t,B)) = tR(t,A)(A − B)R(t,B). Therefore
‖1(t)‖I ≤ MAMB‖A − B‖It/(1 + t)2. It follows that the Bochner integral

∫
(0,∞) 1(t)dµ(t) exists with respect to

the I norm, and the desired inequality is valid, because
∫

(0,∞) tdµ(t)/(1 + t)2 = ϕ′(−1).

(ii) In this case, ‖1(t)‖I ≤ MAMB‖A − B‖I/t. Then the Bochner integral
∫

(0,∞) 1(t)dµ(t) exists with respect

to the I norm and the desired inequality holds, since
∫

(0,∞) dµ(t)/t = ϕ′(−0) , ∞.
Definition 5. We introduce on NP(X) the following equivalence relation: operators A and A′ from

NP(X) are equivalent if A′ − A ∈ L(X). Formula ‖A′ − A‖ defines metrics in every equivalence class.
Theorem 1. 1) (a) A function ϕ ∈ OM− is I-differentiable in Frechet sense at any point A ∈ N(X), and its

I-Frechet derivative is given by the formula

ϕ∇A(V) =

∞∫
0

R(t,A)VR(t,A)tdµ(t) (V ∈ I). (4)

(b) For every equivalence class C of operators fromN(X) the mapping A 7→ ϕ∇A from C toL(L(X)) is continuous.
2) Let the function ϕ ∈ OM− satisfies ϕ′(−0) , ∞, ϕ′′(−0) , ∞. Then ϕ is I-differentiable in Frechet sense at

any point A ∈ NP(X), and its I-Frechet derivative is given by formula (4).
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Proof. 1) (a). Fix A ∈ N(X). The transformer FA : I → I which is defined by the right-hand side of
formula (4) is bounded, because

‖FA(V)‖I ≤M2
A

∞∫
0

tdµ(t)
(1 + t)2 ‖V‖I.

Let ∆A ∈ Ibe such that ‖∆A‖I < 1/MA.Then A+∆A ∈ N(X) (see lemma 1) and by means of consideration
from the proof of lemma 2 we obtain the equality

ϕ(A + ∆A) − ϕ(A) − FA(∆A) =

∞∫
0

(R(t,A + ∆A) − R(t,A))∆AR(t,A)tdµ(t). (5)

Furthermore, we have by lemma 1

‖R(t,A + ∆A) − R(t,A)‖ = ‖R(t,A + ∆A)∆AR(t,A)‖ ≤

MA+∆AMA

(1 + t)2 ‖∆A‖I ≤
2M2

A

1 −MA‖∆A‖I
‖∆A‖I
(1 + t)2 .

In view of this inequality formula (5) implies

‖ϕ(A + ∆A) − ϕ(A) − FA(∆A)‖I ≤ 2M3
A

∞∫
0

tdµ(t)
(1 + t)3

‖∆A‖2
I

1 − 2MA‖∆A‖I
= o(‖∆A‖I)

and the first statement follows.
(b). Let operators A and A′ fromN(X) be equivalent. By virtue of formula (4) for any B ∈ L(X) we have

(ϕ∇A′ − ϕ
∇

A)(B) =

∞∫
0

R(t,A′)B(R(t,A′) − R(t,A))tdµ(t) +

∞∫
0

(R(t,A′) − R(t,A))BR(t,A)tdµ(t).

Hence,

‖(ϕ∇A′ − ϕ
∇

A)(B)‖ ≤ 2 max{MA′ ,MA}‖B‖

∞∫
0

‖R(t,A′) − R(t,A)‖
t

1 + t
dµ(t). (6)

Choose arbitrary ε ∈ (0, 1) and let ‖A′−A‖ < ε/(2MA).Then ‖A′−A‖‖R(t,A)‖ < 1/2, and therefore MA′ ≤ 2MA
by lemma 1 with V = A′ − A. Moreover, formula (3) implies for V = A′ − A that

‖R(t,A′) − R(t,A)‖ < 2‖A′ − A‖‖R(t,A)‖2 ≤ 2‖A′ − A‖
M2

A

(1 + t)2 <
MA

(1 + t)2 ε.

So, by virtue of formula (6)

‖(ϕ∇A′ − ϕ
∇

A)B‖ ≤ 4M3
A

∞∫
0

tdµ(t)
(1 + t)3 ε‖B‖,

and then

‖ϕ∇A′ − ϕ
∇

A‖L(L(X)) ≤

4M3
A

∞∫
0

tdµ(t)
(1 + t)3

 ε,
which completes the proof of the part (b).
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2). Since
∫

(0,∞) dµ(t)/t = ϕ′(−0) , ∞, the transformer FA : I → Iwhich is defined by the right-hand side
of formula (4) is bounded. Moreover, formula (5) implies by the second resolvent identity that

‖ϕ(A + ∆A) − ϕ(A) − FA(∆A)‖I =∥∥∥∥∥∥∥∥
∞∫

0

R(t,A + ∆A)∆AR(t,A)∆AR(t,A)tdµ(t)

∥∥∥∥∥∥∥∥
I

≤

∞∫
0

‖R(t,A + ∆A)‖‖R(t,A)‖2tdµ(t)‖∆A‖2
I
.

If ‖∆A‖I < 1/2MA we have by lemma 1 that ‖R(t,A + ∆A)‖ ≤ MA+∆A/t ≤ 2MA(1 − 2MA‖∆A‖)−1/t. Since∫
(0,∞) dµ(t)/t2 = ϕ′′(−0) , ∞, it follows that

‖ϕ(A + ∆A) − ϕ(A) − FA(∆A)‖I ≤ 2M3
A

∞∫
0

dµ(t)
t2

‖∆A‖2
I

1 − 2MA‖∆A‖I
= o(‖∆A‖I)

and the proof is complete.
Remark 4. If ϕ ∈ OM− has integral representation (1) (with a = b = 0), then ϕ′(s) =

∫
∞

0 tdµ(t)/(t − s)2.
Therefore for A ∈ N(X) or A ∈ NP(X) and ϕ′(−0) , ∞ one can put

ϕ′(A) :=

∞∫
0

R(t,A)2tdµ(t).

If V ∈ I and A and V commutes it is easy to verify that ϕ∇A(V) = ϕ′(A)V.
Examples. 1) The function ψλ(s) := logλ − log(λ − s) (λ > 0) belongs to OM− and has the integral

representation (s < 0)

ψλ(s) =

∞∫
λ

s
t − s

dt
t
.

Thus, theorem 1 implies that for A ∈ NP(X), and V ∈ I

(ψλ)∇A(V) =

∞∫
λ

R(t,A)VR(t,A)dt.

If A and V commutes it follows that (ψλ)∇A(V) = ψ′λ(A)V = (λI − A)−1V.
2) The function ϕ(s) := −(−s)α (α ∈ (0, 1)) belongs to OM− and has the integral representation

ϕ(s) =
sinαπ
π

∞∫
0

s
t − s

tα−1dt.

So, theorem 1 implies that for A ∈ N(X), and V ∈ I

ϕ∇A(V) =
sinαπ
π

∞∫
0

R(t,A)VR(t,A)tαdt.

Before we formulate our next theorem note that there exist differentiable functions f on R such that for
some self-adjoint operators A and V the function t 7→ f (A + tV)− f (A) is not differentiable at the origin (see,
e. g., [1, Theorem 1.2.8]).
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Theorem 2. If ϕ ∈ OM−, A ∈ N(X), V ∈ I, then the I-valued function z 7→ ϕ(A + zV) − ϕ(A) is analytic in
the neighborhood of the origin OA,V := {z ∈ C : |z| < 1/(‖V‖IMA)}, and it allows in this neighborhood the expansion

ϕ(A + zV) − ϕ(A) =

∞∑
n=1

znCn, (7)

where the series absolutely converges in the I norm and

Cn =
1
n!

dn

dznϕ(A + zV)
∣∣∣∣∣
z=0

=

∞∫
0

(R(t,A)V)nR(t,A)tdµ(t) (8)

(the derivatives are understood in the sense of the I norm).
Proof. For every z ∈ OA,V operator A+zV belongs toN(X) by lemma 1 and thereforeϕ(A+zV)−ϕ(A) ∈ I

by lemma 2. Since the function ϕ is I-Frechet differentiable at the point A + zV by theorem 1, its I-Gateaux
derivative at the point A + zV, the transformer d/dhϕ(A + (z + h)V)|h=0, coincides with ϕ∇A+zV. This means,
due to formula (4), that

d
dz
ϕ(A + zV) = ϕ∇A+zV =

∞∫
0

R(t,A + zV)VR(t,A + zV)tdµ(t). (9)

Consequently, I-valued function ϕ(A + zV)−ϕ(A) is analytic inOA,V and allows an expansion (7), where Cn
is determined by the first of equalities (8).The second equality is the consequence of the following equality
(z ∈ OA,V)

dn

dznϕ(A + zV) = n!

∞∫
0

(R(t,A + zV)V)nR(t,A + zV)tdµ(t) (10)

which we will prove by induction. For n = 1 it holds by virtue of (9). Assume that it is valid for certain n and
let |z| < q/(‖V‖IMA) for q ∈ (0, 1). Since d/dzR(t,A + zV) = R(t,A + zV)VR(t,A + zV),we have differentiating
under the integral sign

dn+1

dzn+1ϕ(A + zV) = n!

∞∫
0

d
dz

((R(t,A + zV)V)nR(t,A + zV))tdµ(t) =

n!

∞∫
0

((nR(t,A + zV)V)n−1 d
dz

(R(t,A + zV))VR(t,A + zV) + (R(t,A + zV)V)n d
dz

R(t,A + zV))tdµ(t) =

(n + 1)!

∞∫
0

(R(t,A + zV)V)n+1R(t,A + zV)tdµ(t).

Since, by lemma 1, MA+zV ≤ MA/(1 − MA‖zV‖I) < MA/(1 − q), the validity of differentiation under the
integral sign follows from the estimate

‖(R(t,A + zV)V)n+1R(t,A + zV)t‖I ≤ ‖R(t,A + zV)‖n+2
‖V‖n+1

I
t ≤

(MA+zV

1 + t

)n+2

‖V‖n+1
I

t <
(

MA

1 − q

)n+2

‖V‖n+1
I

t
(1 + t)n+2 .
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Finally, for z ∈ OA,V we have

‖znCn‖I ≤
1

‖V‖n
I

Mn
A
‖Cn‖I ≤

1
‖V‖n

I
Mn

A

∞∫
0

‖(R(t,A)V)nR(t,A)‖Itdµ(t) ≤MA

∞∫
0

tdµ(t)
(1 + t)n+1 .

Since
∞∑

n=1

∞∫
0

tdµ(t)
(1 + t)n+1 =

∞∫
0

dµ(t)
1 + t

< ∞,

the series in (7) absolutely converges in the I norm. This completes the proof.
The analog of theorem 2 is valid for A ∈ NP(X) as well.
Theorem 3. Let ϕ ∈ OM− be such that ϕ(n)(−0) , ∞ for all n ∈ N, A ∈ NP(X), V ∈ I. Then the I-valued

function z 7→ ϕ(A + zV) − ϕ(A) is analytic in the neighborhood of the origin O(2)
A,V := {z ∈ C : |z| < 1/(2‖V‖IMA)},

and it allows in this neighborhood the expansion (7) where the series absolutely converges in the I norm and formula
(8) holds.

The proof is similar to the proof of theorem 2.

4. Application to perturbation determinants

We shall apply theorem 3 to prove the important formula for a logarithmic derivative of a perturbation
determinant of operators on Banach spaces [25], [29]. Recall that operator on X is nuclear if it is representable
as the sum of absolutely convergent in operator norm series of rank one operators; if, in addition, X has
the approximation property, the continuous trace tr is defined on the operator ideal S1 = S1(X) of nuclear
operators on X, see, e.g., [6].

Definition 6 [29]. Let X has the approximation property. For A,B ∈ NP(X) such that D(A) ⊆ D(B) and
B − A is nuclear define the perturbation determinant for the pair (A,B) by

∆B/A(λ) := exp(tr(ψλ(B) − ψλ(A))) (λ > 0)

where ψλ(s) := logλ − log(λ − s) (see example 1 above).
This is a generalization of the classical notion of a perturbation determinant for pairs of self-adjoint

operators on Hilbert space (see, e.g., [4, formula (3.25)]).
Now we list several important properties of a perturbation determinant.
1) If operators A,B,C ∈ NP(X) be such that A − B and B − C are nuclear, then

∆B/A(λ)∆C/B(λ) = ∆C/A(λ),

in particular,
∆B/A(λ)∆A/B(λ) = 1 (λ > 0).

This property is an immediate consequence of the definition.
2) lim

λ→+∞
∆B/A(λ) = 1.

Indeed, by the lemma 2

‖ψλ(A) − ψλ(B)‖S1 ≤MAMBψ
′

λ(−0)‖A − B‖S1 =
1
λ

MAMB‖A − B‖S1 → 0 as λ→ +∞.

Since ψλ enjoys the conditions of theorem 3, we get also the next property.
Corollary 1. Let X has the approximation property. Let A ∈ NP(X) and V ∈ S1.Then the map z 7→ ∆(A+zV)/A(λ)

is analytic in O(2)
A,V for every λ > 0 and it allows in this neighborhood the representation

∆(A+zV)/A(λ) =

∞∏
n=1

etr(Cn(λ))zn
(λ > 0)
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where

tr(Cn(λ)) =

∞∫
λ

tr((R(t,A)V)nR(t,A))dt.

Proof. This follows from theorem 3 applied to the function ψλ.
Now we are able to prove a generalization of the formula for the logarithmic derivative of a perturbation

determinant (for negative operators on Banach spaces this formula was proved by another method in [29]).
Theorem 4. Let X has the approximation property, A,B ∈ NP(X),A , B and B − A ∈ S1(X). Then for all

λ > 1/2‖A − B‖
∆′B/A(λ)

∆B/A(λ)
= tr(R(λ,A) − R(λ,B)).

Proof. The proof of this theorem is broken into two steps.
1) First consider the case ‖B−A‖S1 < 1/2MA.One can assume that B−A = zV,where V ∈ S1(X), z ∈ O(2)

A,V
(for example, we can take V = (B − A)/‖B − A‖S1 , z = ‖B − A‖S1 ). Then, by corollary 1,

∆′B/A(λ)

∆B/A(λ)
=

d
dλ

log ∆(A+zV)/A(λ) =

∞∑
n=1

d
dλ

tr(Cn(λ))zn (λ > MA) (11)

because the series in the right-hand side converges uniformly in λ > MA. Indeed, by corollary 1

d
dλ

tr(Cn(λ)) = −tr((R(λ,A)V)nR(λ,A)) (12)

and for all λ > MA and z ∈ O(2)
A,V we have

‖zR(λ,A)V‖ ≤ ‖zR(λ,A)V‖S1 ≤ |z|
MA

λ
‖V‖S1 <

1
2
. (13)

Consequently, ∣∣∣∣∣ d
dλ

tr(Cn(λ))zn
∣∣∣∣∣ = |tr((zR(λ,A)V)nR(λ,A))| ≤ ‖(zR(λ,A)V)nR(λ,A)‖S1 =

‖(zR(λ,A)V)n−1(zR(λ,A)V)R(λ,A)‖S1 ≤ ‖(zR(λ,A)V)n−1
‖‖zR(λ,A)V‖S1‖R(λ,A)‖ ≤

1
2n−1 |z|‖V‖S1

(MA

λ

)2

<
1

MA

1
2n . (14)

Formulas (11) and (12) imply that

∆′B/A(λ)

∆B/A(λ)
= −tr

∞∑
n=1

((zR(λ,A)V)nR(λ,A)) (λ > MA) (15)

(the series in the right-hand side converges absolutely with respect to the nuclear norm as the proof of (14)
shows).

Moreover, since the estimate (13) is valid for λ > MA and z ∈ O(2)
A,V, we have

∞∑
n=1

((zR(λ,A)V)n = zR(λ,A)V(I − zR(λ,A)V)−1. (16)

We claim that
zR(λ,A)V(I − zR(λ,A)V)−1R(λ,A) = R(λ,A + zV) − R(λ,A). (17)
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To this end, we shall show that for all x ∈ D(A)

(I − zR(λ,A)V)−1x = R(λ,A + zV)(λI − A)x. (18)

Indeed, this follows from the next calculations (Im(R(λ,A + zV)) = D(A)):

(I − zR(λ,A)V)R(λ,A + zV)(λI − A)x = (R(λ,A)(λI − A) − zR(λ,A)V)R(λ,A + zV)(λI − A)x =

R(λ,A)(λI − A − zV)R(λ,A + zV)(λI − A)x = R(λ,A)(λI − A)x = x.

Now, in view of (18) the left-hand side of (17) takes the form

zR(λ,A)V(I − zR(λ,A)V)−1R(λ,A) = zR(λ,A)VR(λ,A + zV)(λI − A)R(λ,A) =

zR(λ,A)VR(λ,A + zV) = −(R(λ,A) − R(λ,A + zV))

and (17) follows. Putting together (17), (16) and (15) we get for λ > MA that

∆′B/A(λ)

∆B/A(λ)
= tr(R(λ,A) − R(λ,A + zV)) = tr(R(λ,A) − R(λ,B)).

For λ > MA the proof of the case 1) is complete.
2) Now let ‖B − A‖S1 be an arbitrary positive number, and λ > 1/2‖A − B‖. Note that for all positive k

and λ we have R(λ, kA) = k−1R(k−1λ,A). First of all it follows that kA, kB ∈ NP(X) and MkA = MA. Now we
choose k < 1/(2MA‖A − B‖) (and then ‖kA − kB‖ < 1/2MA). According to the case 1) we have for λ > MA

d
dλ

(log ∆kB/kA)(λ) = tr(R(λ, kA) − R(λ, kB)) = k−1tr(R(k−1λ,A) − R(k−1λ,B)).

On the other hand,

log ∆kB/kA(λ) = tr(ψλ(kB) − ψλ(kA)) = tr(ψk−1λ(B) − ψk−1λ(A)) = log ∆B/A(k−1λ)

which implies
d

dλ
(log ∆kB/kA)(λ) = k−1 d

dλ
(log ∆B/A)(k−1λ).

Thus the equality under consideration is valid for all λ > kMA, the more so, this is true for λ > 1/2‖A − B‖.
This completes the proof.

Remark. Using the same arguments as in the proof of theorem 4.2 in [29] (see formula (10) there) one can
show that ∆A,B possesses an analytic continuation into some open sector Sθ ⊂ ρ(A)∩ ρ(B) symmetric about
the positive real semiaxis. It follows that the above mentioned properties of the perturbation determinant
are valid for λ ∈ Sθ.

Corollary 2. Let the conditions of theorem 4 are fulfilled. Let the Banach space X has the extra property that the
trace on S1(X) is nilpotent in a sense that tr(N) = 0 for every nilpotent operator N. Suppose z1 is a regular point
or an isolated eigenvalue of the operators B and A of finite algebraic multiplicities k0 and k. Then at the point z1 the
function ∆B/A(z) has a pole (or zero) of order k0 − k (respectively of order k − k0).

Proof. Due to the theorem 4 the proof of this assertion is similar to the proof of the property 4 of the
perturbation determinant given in [34, p. 267] (formula (5) from [34, pp. 266–267] is valid for Banach
spaces, see [15, Chapter III, subsection 6.5]).
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