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bSopot, Poland

Abstract. We prove that the inclusion of the space of gradient local maps into the space of all local maps
from Hilbert space to itself induces a bijection between the sets of the respective otopy classes of these
maps, where by a local map we mean a compact perturbation of identity with a compact preimage of zero.

1. Introduction

In 1985 E. N. Dancer ([10]) discovered that there is a better topological invariant than the equivariant
degree for gradient maps in the case of S1 group action, which means that in that case there are more
equivariant gradient homotopy classes than equivariant homotopy ones. A few years later A. Parusiński
([13]) showed that for a disc without group action there is no better invariant for gradient maps than the
usual topological degree. In other words, there is a bijection between sets of gradient and continuous
homotopy classes. In 2005 E. N. Dancer, K. Gęba, S. Rybicki ([11]) provided the homotopy classification of
equivariant gradient maps on the disc in the case of a compact Lie group action. In their proof the authors
used the notion of otopy introduced in the 1990’s by J. C. Becker and D. H. Gottlieb ([8, 9]). Later, in [2, 12]
the equivariant and equivariant gradient otopy classifications instead of homotopy ones were studied.

The investigations mentioned above suggest the following general approach. Let us consider vector
fields on open domains contained in some Riemannian manifold X (in some cases equipped with an action
of a compact Lie group). If the set of zeros of such a vector field is compact, we call them local maps. We
introduce the following notation. Let

• C(X) (G(X)) be the set of continuous (gradient) local maps,

• C[X] (G[X]) be the set of usual (gradient) otopy classes of continuous (gradient) local maps,

• ι : G[X]→ C[X] be the function between the respective otopy classes induced by the inclusionG(X) ↪→
C(X).

We will say that the inclusion G(X) ↪→ C(X) has the Parusiński property if ι : G[X] → C[X] is bijective. In a
series of papers [3–6] we proved that the respective inclusions have the Parusiński property if X is an open
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subset of Rn or, more generally, a Riemannian manifold (not necessarily compact) without boundary. On
the other hand, in [7] we showed that for an open invariant subset of a finite-dimensional representation
of a compact Lie group the inclusion ι does not have the Parusiński property in general. Moreover, we
gave in that case necessary and sufficient conditions for the Parusiński property in terms of Weyl group
dimensions, which explains the phenomenon discovered by E. N. Dancer in 1985.

The presented paper is a natural continuation of our previous work. Namely, the main aim of this article
is to prove that the inclusion of the space of gradient local maps into the space of all local maps has the
Parusiński property if X is an open subset of a real separable Hilbert space. By local map we mean here
a compact perturbation of identity with a compact preimage of zero. It is worth pointing out that in the
proof of our main theorem we use a topological invariant, which is a version of the classical Leray-Schauder
degree. But in our construction we manage to guarantee that finite-dimensional approximations of gradient
maps are gradient, which is crucial for the proof of Theorem A. The results presented here may also be
treated as an introduction to the study of Parusiński property for a representation of a compact Lie group
G in a Hilbert space.

The organization of the paper is as follows. Section 2 contains some preliminaries. In Section 3 we
describe a construction of the topological degree used in the proof of Theorem A. Our main results are
stated in Section 4 and proved in Section 5. Final remarks are contained in Section 6. Finally, Appendix A
presents technical facts used in Section 5.

2. Basic definitions

Assume that

• E is an infinite-dimensional real separable Hilbert space,

• Ω is an open connected subset of E.

Recall that a continuous map from a metric space A into a metric space B is called compact if it takes bounded
subsets of A into relatively compact ones of B. Some authors use the term completely continuous instead of
compact.

2.1. Local maps in Hilbert space

We write f ∈ C(Ω) if

• f : D f ⊂ Ω→ E,

• D f is an open subset of Ω,

• f (x) = x − F(x), where F : D f → E is compact,

• f−1(0) is compact.

Elements of C(Ω) are called local maps.
It is easy to check that the compactness of F implies that in the above definition the last condition that

f−1(0) is compact can be equivalently replaced by the assumption that f−1(0) is bounded and closed in E.
From this observation follows that if f is defined on cl U, where U is open and bounded, and f does not
vanish on the boundary then f� U is a local map.

Moreover, we write f ∈ G(Ω) if

• f ∈ C(Ω),

• f is gradient i.e. there is a C1-function ϕ : D f → R such that f = ∇ϕ.

Elements of G(Ω) are called gradient local maps.
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2.2. Sets of otopy classes in Hilbert space
A map h : Λ ⊂ I ×Ω→ E is called an otopy if

• Λ is an open subset of I ×Ω,

• h(t, x) = x − F(t, x), where F : Λ→ E is compact,

• h−1(0) is compact.

Similarly as in the case of local maps, the assumption that the set h−1(0) is bounded and closed in I × E
implies its compactness. In particular, if Λ ⊂ I ×Ω is open and bounded, h is defined on cl Λ (not only on
Λ) and does not vanish on ∂Λ then h� Λ is an otopy.

From the above and an easy to check fact that a straight-line homotopy between two compact maps is
compact we obtain the following result.

Lemma 2.1 Assume that U ⊂ E is open and bounded and h : I × cl U→ E is a straight-line homotopy. If h(t, x) , 0
for t ∈ I and x ∈ ∂U and h0� U and h1� U are local maps, then h� I×U is an otopy.

An otopy is called gradient, if additionally

F(t, x) = ∇xη(t, x),

where η : Λ→ R is C1 with respect to x.
Given an otopy h : Λ ⊂ I ×Ω→ E we can define for each t ∈ I:

• sets Λt = {x ∈ Ω | (t, x) ∈ Λ},

• maps ht : Λt → E with ht(x) = h(t, x).

If h is a (gradient) otopy, we can say that h0 and h1 are (gradient) otopic. Observe that (gradient) otopy
establishes an equivalence relation in C(Ω) (G(Ω)). Sets of otopy classes of the respective relation will be
denoted by C[Ω] and G[Ω].

Observe that if f is a (gradient) local map and U is an open subset of D f such that f−1(0) ⊂ U, then f
and f� U are (gradient) otopic. This property of (gradient) local maps will be called restriction property. In
particular, if f−1(0) = ∅ then f is (gradient) otopic to the empty map.

Remark 2.2. It is worth pointing out that in [3, 5] we consider local maps and otopies in finite dimensional
spaces. Unlike as in the case of Hilbert space we assume in the definition of both a local map and an otopy
only the condition that the preimage of zero is compact. There is no need to assume the form Id−F with F
compact. However, subsequently in the proof of the main result of this paper we will need the form identity
minus compact in a finite dimensional case. This will be guaranteed by boundedness of a domain of a map.

3. Definition of degree Deg

In this section we give a definition of the degree Deg: C(Ω) → Z and prove its correctness and otopy
invariance.

3.1. Preparatory lemmas
Let us start with the following lemma concerning f ∈ C(Ω).

Lemma 3.1 Assume that X ⊂ D f is closed in E and bounded. If X ∩ f−1(0) = ∅ then there is ε > 0 such that∣∣∣ f (x)
∣∣∣ ≥ 2ε for all x ∈ X.

Proof. Suppose that there is a sequence {xn} ⊂ X such that lim f (xn) = 0. By compactness of F there is a
subsequence {xkn } of {xn} such that lim F(xkn ) = y and therefore lim xkn = y. Since X is closed, we have y ∈ X
and, in consequence, f (y) , 0. But f (y) = lim f (xkn ) = 0, a contradiction.
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Observe that there is an open bounded set U such that

f−1(0) ⊂ U ⊂ cl U ⊂ D f .

Corollary 3.2 There is ε > 0 such that
∣∣∣ f (x)

∣∣∣ ≥ 2ε for all x ∈ ∂U.

Let {ei | i ∈N} be an orthonormal basis in E. Let us introduce the following notation for n ∈N:

• Vn = span{e1, . . . , en},

• Un = U ∩ Vn for any U ⊂ E,

• fn(x) = x − PnF(x), where Pn : E→ Vn is an orthogonal projection.

Throughout the paper we will make use of the following well-known characterization of relatively
compact sets in Hilbert space.

Proposition 3.3 A set X ⊂ E is relatively compact iff it is bounded and

∀δ > 0∃n0 ∀n ≥ n0 ∀x ∈ X |x − Pnx| < δ.

Now we are in position to show that for n large enough f and fn are close to each other on cl U. Next
from this observation we conclude that fn are uniformly separated from 0 on ∂U.

Lemma 3.4 There is N such that for all n ≥ N and all x ∈ cl U we have:∣∣∣ f (x) − fn(x)
∣∣∣ < ε and consequently

∣∣∣ fn+1(x) − fn(x)
∣∣∣ < ε.

Proof. Since cl U is bounded, F(cl U) is relatively compact. By Proposition 3.3 there is N such that for all
n ≥ N and all x ∈ ∂U we have |F(x) − PnF(x)| < ε. Since

∣∣∣ f (x) − fn(x)
∣∣∣ = |F(x) − PnF(x)|, we obtain our

assertion.

From now on let N be chosen as in the previous lemma.

Lemma 3.5
∣∣∣ fn(x)

∣∣∣ ≥ ε for x ∈ ∂U and n ≥ N.

Proof. It is an easy consequence of Corollary 3.2 and Lemma 3.4.

3.2. Definition of Deg
In what follows, deg denotes the classical Brouwer degree. The infinite-dimensional degree that we are

going to define in this paper will be denoted by Deg.
Since ∂Un ⊂ ∂U for any n, the next result follows from Lemma 3.5.

Corollary 3.6 deg( fn,Un) is well-defined for n ≥ N.

The following fact shows that the sequence {deg( fn,Un)}n≥N is constant.

Lemma 3.7 deg( fn+1,Un+1) = deg( fn,Un) for n ≥ N.

Proof. Since f−1
n (0) ⊂ Un, there is an open subset W ⊂ Vn such that

f−1
n (0) ⊂W ⊂ cl W ⊂ Un

and there is δ > 0 such that Wδ := W × (−δ, δ) ⊂ Un+1. Let 1n : Wδ → E be given by 1n(x) = x − PnF(Pnx) (in
other words 1n is a suspension of fn�W). By definition, 1n�W = fn�W and 1−1

n (0) = f−1
n (0). Let us check the

following sequence of equalities

deg( fn+1,Un+1)
(1)
= deg( fn,Un+1)

(2)
= deg( fn,Wδ)

(3)
= deg(1n,Wδ)

(4)
= deg( fn,W)

(5)
= deg( fn,Un).

The equalities (1) and (3) can be obtained using straight-line homotopies, which are otopies by Lemmas 3.4
and 3.5. In turn (2) and (5) are based on the restriction property of the degree and, finally, (4) follows from
the fact that 1n is a suspension of fn over W. This completes the proof.
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Lemma 3.7 guarantees that the following definition does not depend on the choice of admissible N.

Definition 3.8. Define Deg f = Deg( f ,U) = deg( fN,UN).

Remark 3.9. Our degree gives the same values as the classical Leray-Schauder degree, which follows easily
from the comparison of our construction and the definition and the proof of the well-definedness of the
Leray-Schauder degree. However, in the proof of bijectivity of our degree in the gradient case we use the
fact that finite-dimensional approximations of a gradient map appearing in our construction are gradient,
which is not guaranteed by the original Leray-Schauder construction.

3.3. Correctness
Let us note that for the above construction we have chosen a neighbourhood U of f−1(0) and an

orthonormal basis of E. Now we are going to prove that our definition of Deg f does not depend on the
choice of these both elements.

Proposition 3.10 Let W and U be open bounded such that

f−1(0) ⊂W ⊂ U ⊂ cl U ⊂ D f .

Then Deg( f ,W) = Deg( f ,U).

Proof. By Lemma 3.4, we have
∣∣∣ f (x) − fn(x)

∣∣∣ < ε for x ∈ cl U and, consequently, fn(x) , 0 for x ∈ cl Un \Wn ⊂

cl U \W for sufficiently large n. Hence

Deg( f ,W) = deg( fn,Wn) = deg( fn,Un) = Deg( f ,U).

Corollary 3.11 Let U and U′ be open bounded subsets of D f such that

f−1(0) ⊂ U ∩U′ ⊂ cl(U ∩U′) ⊂ cl(U ∪U′) ⊂ D f .

Then Deg( f ,U) = Deg( f ,U ∩U′) = Deg( f ,U′).

In this way we have proved that Deg f does not depend on the choice of U.
In the remainder of this subsection we show that deg f does not depend on the choice of an orthonormal

basis in E. The reasoning requires some additional notation. Let V be a finite dimensional linear subspace
of E. Set

• UV = U ∩ V,

• PV : E→ V — an orthogonal projection,

• fV(x) = x − PVF(x).

Analogously to Corollary 3.6 and Lemma 3.7 one can prove the following result.

Lemma 3.12 If V is a finite dimensional linear subspace of E such that VN ⊂ V then deg( fV,UV) is well defined and
deg( fN,UN) = deg( fV,UV).

Corollary 3.13 Deg f does not depend on the choice of an orthonormal basis in E.

Proof. Let {ei} and {e′i } be two orthonormal bases in E. We will use analogous notation for them both writing
prime where needed. For example, Vn = span{e1, . . . , en} and V′n = span{e′1, . . . , e

′
n}. Let us choose N and N′

for {ei} and {e′i } respectively as in Lemma 3.4. Put V = VN + V′N′ . By Lemma 3.12,

deg( fN,UN) = deg( fV,UV) = deg( f ′N′ ,U
′

N′ ),

which is our assertion.
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3.4. Otopy invariance of degree
Let the map h : Λ ⊂ I × Ω → E given by h(t, x) = x − F(t, x) be an otopy. We introduce the following

notation:

Λt ={x ∈ Ω | (t, x) ∈ Λ}, ht : Λt
→ E, ht(x) = h(t, x),

Λn =Λ ∩ (I × Vn), hn : Λ→ Vn, hn(t, x) = x − PnF(t, x),
Λt

n =Λt
∩ Vn, ht

n : Λt
→ Vn, ht

n(x) = hn(t, x).

Note that for the needs of this subsection the time parameter t of otopy is a superscript, not a subscript.

Proposition 3.14 (otopy invariance) If h : Λ ⊂ I ×Ω→ E is an otopy then Deg(h0,Λ0) = Deg(h1,Λ1).

Proof. Since h−1(0) is compact, there is an open bounded set W ⊂ I × E such that

h−1(0) ⊂W ⊂ cl W ⊂ Λ. (3.1)

Hence for i = 0, 1 we have

(hi)(0)−1
⊂Wi

⊂ cl Wi
⊂ Λi, (3.2)

where Wi = {x ∈ Ω | (i, x) ∈ W}. Analogously, as in Lemma 3.1, from (3.1) there is ε > 0 such that |h(z)| ≥ 2ε
for z ∈ ∂W and, as in Lemma 3.4, there is N such that |h(z) − hn(z)| < ε for n ≥ N and z ∈ ∂W. Hence
|hn(z)| ≥ ε for z ∈ ∂Wn ⊂ ∂W and, in consequence,

• Deg(hi,Λi) = deg(hi
n,Wi

n) for i = 0, 1,

• hn�Wn is a finite-dimensional otopy,

which gives

Deg(h0,Λ0) = deg(h0
n,W

0
n) = deg(h1

n,W
1
n) = Deg(h1,Λ1).

Remark 3.15. Since our degree is otopy invariant, it can be defined on the set of otopy class, i.e. Deg: C[Ω]→
Z. Moreover, any gradient otopy class (as a set of functions) is contained in a usual otopy class, and hence
the degree makes sense as a function Deg: G[Ω] → Z. Without ambiguity we will use the symbol Deg in
all the above cases.

4. Main results

Let us formulate the main results of our paper.

Theorem A The functions Deg: C[Ω]→ Z and Deg: G[Ω]→ Z are bijections.

It is obvious that the inclusion G(Ω) ↪→ C(Ω) induces a well-defined function ι : G[Ω]→ C[Ω]. The next
result follows immediately from Theorem A and the commutativity of the diagram

G[Ω]

Deg
""

ι
// C[Ω]

Deg
}}

Z

Theorem B The function ι : G[Ω]→ C[Ω] is bijective.

Remark 4.1. In other words, there is no better invariant than the Leray-Schauder degree that distinguishes
between two gradient local maps which are not gradient otopic.
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5. Proof of Theorem A

5.1. Injectivity of Deg: C[Ω]→ Z

Let f : D f → E and 1 : D1 → E be local maps such that Deg f = Deg 1. We show that f and 1 are otopic.
The proof of that will be divided into two steps. In the first step we show that f is otopic to the suspension
of its finite dimensional approximation and in the second step that suspensions of approximations for f
and 1 are otopic one to another. We start with the observation that there exists an open bounded U ⊂ E
such that

• f−1(0) ⊂ U ⊂ cl U ⊂ D f ,

• there is N such that Pn(cl U) ⊂ D f for all n ≥ N.

The proof of this observation will be postponed to Appendix A (see Lemma A.1).

Step 1. For n ≥ N let Σ fn : cl U ∪ P−1
n (Un)→ E be given by Σ fn(x) = x − PnF(Pnx). Note that Σ fn� P−1

n (Un) is a
suspension of fn� Un (see Section 3). We prove the following sequence of otopy relations for n large enough:

f (1)
∼ f� U

(2)
∼ Σ fn� U

(3)
∼ Σ fn� U∪(P−1

n (Un)∩Ω)
(4)
∼ Σ fn� P−1

n (Un)∩Ω. (5.1)

The sets appearing in (5.1) are shown in Figure 1. First observe that all the maps in the above sequence
are local, because (Σ fn)−1(0) b Un from Lemma 3.5. The relations (1), (3) and (4) follow immediately from
the restriction property. To obtain (2) let us consider the straight-line homotopy hn : I × cl U → E given by
hn(t, x) = (1− t) f (x) + tΣ fn(x). We show that there is M ≥ N such that hn(t, x) , 0 for t ∈ I, x ∈ ∂U and n ≥M.
Thus hn� I×U is an otopy, which proves the relation (2). On the contrary, suppose that there is an increasing
subsequence {nk} of natural numbers (nk ≥ N) and sequences {tk} ⊂ I and {xk} ⊂ ∂U such that hnk (tk, xk) = 0,
i.e.,

xk = F(xk) + tk(Pnk F(Pnk xk) − F(xk)).

By compactness of F and I, we can assume that sequences tk, F(xk) and F(Pnk xk) are convergent, so {xk} is
also convergent to some point x0 ∈ ∂U. Since xk → x0 implies Pnk xk → x0, we obtain f (x0) = x0 − F(x0) = 0,
which contradicts the fact that f does not vanish on ∂U.

Ω

P−1
n (Un)

Un

U

Vn

Figure 1: Domains in (5.1).
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Step 2. The same reasoning can be applied to the map 1. Similarly as for f let us introduce the notation
Σ1n and a set W ⊂ D1 (a counterpart of U ⊂ D f ). We obtain in this way an analogical sequence of relations,
which gives 1 ∼ Σ1n� P−1

n (Wn)∩Ω. To finish the proof of injectivity it is enough to show that

Σ fn� P−1
n (Un)∩Ω ∼ Σ1n� P−1

n (Wn)∩Ω.

To do that we will use Lemma A.5, which shows how to suspend finite dimensional otopies.
By the definition of our degree, we have

deg fn� Un = Deg f = Deg 1 = deg 1n�Wn .

Unfortunately, this does not imply that fn� Un and 1n�Wn are finite dimensionally otopic, since Un and Wn
may not be contained in the same component of Ωn. Therefore, using Lemma A.4, the problem will be
lifted to a higher dimension, where the relation of otopy holds.

Precisely, note first that f−1
n (0) ⊂ Un, 1−1

n (0) ⊂Wn and K = f−1
n (0)∪1−1

n (0) ⊂ Vn is compact. By Lemma A.4,
K is contained in one component of Ωm for m ≥ n large enough. Let us denote this component by Ω′m.

Set X = P−1
n (Un) ∩U ∩Ω′m and Y = P−1

n (Wn) ∩W ∩Ω′m. Observe that

• X and Y are open bounded,

• cl X ⊂ cl U ⊂ D f and cl Y ⊂ cl W ⊂ D1,

• X ∪ Y ⊂ Ω′m ⊂ Vm.

Since deg fn� Un = deg 1n�Wn , we have deg Σ fn� X = deg Σ1n� Y. Moreover, the maps Σ fn� X and Σ1n� Y
are bounded, because Σ fn and Σ1n are defined on cl X and cl Y respectively. Since Ω′m is connected
there is a bounded finite dimensional otopy k : Γ ⊂ I × Ω′m → Vm between Σ fn� X and Σ1n� Y (see [1,
Rem. 2.3]). By Lemma A.5, there is an otopy in Ω between Σ fn� P−1

m (X)∩Ω and Σ1n� P−1
m (Y)∩Ω. Finally, since

P−1
m (X) ⊂ P−1

m (P−1
n (Un)) = P−1

n (Un) and similarly P−1
m (Y) ⊂ P−1

n (Wn), we obtain

Σ fn� P−1
n (Un)∩Ω ∼ Σ fn� P−1

m (X)∩Ω ∼ Σ1n� P−1
m (Y)∩Ω ∼ Σ1n� P−1

n (Wn)∩Ω,

which completes the proof of injectivity of Deg: C[Ω]→ Z.

5.2. Injectivity of Deg: G[Ω]→ Z

Let f , 1 ∈ G(Ω) and Deg f = Deg 1. To show that [ f ] = [1] in G[Ω] it is enough to observe that all otopies
appearing in the sequence connecting f and 1 as in 5.1. are in fact gradient. Namely

1. otopies connecting gradient local maps with their restrictions are obviously gradient,
2. the straight-line homotopy (1− t) f + tΣ fn is gradient, because f and Σ fn are gradient (note that if ϕ is

a potential for F then ϕ ◦ Pn is a potential for PnFPn),
3. the otopy between Σ fn� P−1

m (X)∩Ω and Σ1n� P−1
m (Y)∩Ω appearing in Step 2 of 5.1 (see Lemma A.5) can be

considered gradient, because by Main Theorem in [6, Sec. 2] k(t, x) can be chosen gradient (if ϕ(t, x) is
a family of potentials for k(t, x) then we can take ϕ(t, x) + 1

2 |y|
2 as a family of potentials for our otopy).

5.3. Surjectivity of Deg: G[Ω]→ Z

Using standard local maps (see Section 3 in [3]) it is easy to construct for any m ∈ Z a gradient local map
f : D f ⊂ Vn ∩Ω→ Vn such that deg f = m (Vn ∩Ω is nonempty for n large enough). Since as we observed
suspensions of gradient local maps are also gradient local, the map Σ f : P−1

n (D f ) ∩Ω → E is an element of
G[Ω] and Deg Σ f = deg f = m.

5.4. Surjectivity of Deg: C[Ω]→ Z

Since any gradient local map is also a local map, it is an obvious consequence of 5.3.
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6. Final remarks

This section is devoted to two possible directions of developments of subject presented here. Namely,
we can additionally consider a group action and/or linear operators other than identity.

6.1. The case of a compact Lie group action

In [7] we proved that for a finite dimensional representation of a compact Lie group the function induced
on the sets on otopy classes by the inclusion of the set of equivariant gradient local maps into the set of
equivariant local maps is a bijection if and only if all Weyl groups appearing in the representation are finite.
In consequence, contrary to our Theorem B the function ι need not be bijective. We expect that an analogical
result holds for a Hilbert representation of a compact Lie group. Here we will just give an example of two
equivariant gradient local maps in Hilbert space that are otopic but not gradient otopic, which illustrates
that the function analogical to ι in Theorem B may not be bijective.

Example 6.1. Let E′ be a Hilbert space and E = C ⊕ E′. Assume that S1 acts on C ⊕ E′ by 1(z, x) = (1z, x).
Consider for i = 0, 1 potentials ϕi : C→ R given by

ϕi(z) =

{
(|z| − 1)2 if |z| ≥ 1,
(1 − 2i)(|z| − 1)2 if |z| < 1.

Set fi = ∇ϕi (see Figure 2) and U = {z ∈ C | 1/2 < |z| < 3/2}. Let Id denote the identity on E′. Define
f̃i : U × E′ → E by f̃i = fi × Id. It follows easily that f̃0 and f̃1 are equivariant otopic. We expect that it is
possible to show that they are not equivariant gradient otopic.

Figure 2: Maps f0 and f1.

6.2. The case of an unbounded operator

In this paper we considered perturbations of the identity operator in Hilbert space. Possible applications
in Hamiltonian systems and in the Seiberg-Witten theory suggest replacing the identity by an unbounded
self-adjoint operator with a purely discrete spectrum. In that case in the absence of a group action we expect
the result similar to Theorem B. However, if we take into account a group action similarly as in Subsection
6.1 we may obtain the function ι that is not bijective. This means that in the equivariant gradient case we
may get an extra topological invariant.

Acknowledgements. The authors wish to express their thanks to the referee for helpful comments
concerning the paper.
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Appendix A

In this appendix we have collected some technical results needed in Section 5.

Lemma A.1 Let Ω be an open subset of a separable Hilbert space E and K a compact subset of Ω. There exist an open
bounded U ⊂ E and natural number N such that

• K ⊂ U ⊂ cl U ⊂ Ω,

• Pn(cl U) ⊂ Ω for all n ≥ N.

Proof. Let us denote by B(x,R) the open ball and by D(x,R) the closed ball in E of radius R > 0 centered at x.
Note that for any x ∈ Ω there is Rx > 0 and Nx ∈ N such that B(x,Rx) ⊂ Ω and |Pnx − x| < Rx/2 for n ≥ Nx.
If

∣∣∣y − x
∣∣∣ ≤ Rx/2 then

∣∣∣Pny − x
∣∣∣ ≤ ∣∣∣Pny − Pnx

∣∣∣ + |Pnx − x| <
∣∣∣y − x

∣∣∣ + Rx/2 ≤ Rx, and hence Pny ∈ B(x,Rx) ⊂ Ω.
In other words Pn(D(x,Rx/2)) ⊂ Ω for n ≥ Nx. Since K is compact, we can choose x1, . . . , xm ∈ K such that
K ⊂

⋃m
i=1 B(xi,Rxi/2). Set U =

⋃m
i=1 B(xi,Rxi/2) and N = max {Nxi | i = 1, . . . ,m}. It is easy to see that

Pn(cl U) = Pn

( m⋃
i=1

D(xi,Rxi/2)
)
⊂ Ω

for n ≥ N.

Corollary A.2 With the same notation and assumptions as above, there is N such that Pn(K) ⊂ Ω for n ≥ N.

Remark A.3. The corollary is an immediate consequence of Lemma A.1, but it can also be easily concluded
from the characterization of compact sets in E (Prop. 3.3).

Lemma A.4 Let Ω be an open connected subset of E and K ⊂ Ωn := Ω∩Vn be compact. Then K is contained in one
component of Ωm for m large enough.

Proof. Since K is compact, it can be covered by a finite number of balls Bi ⊂ Ωn. Ω is connected, so there is
a path ωi j ⊂ Ω from Bi to B j for each pair i, j. By Corollary A.2, Pli j (ωi j) ⊂ Ωli j for li j sufficiently large, so all
balls Bi are contained in the same component of Ωm, where m := max {li j | i, j}.

Let Ωn := Ω ∩ Vn and Γ ⊂ I × Ωn are open. Assume that k : Γ → Vn is a bounded finite dimensional
otopy (see Remark 2.2). Let us define:

• Λ =
(
Γ × V⊥n

)
∩

(
I ×Ω

)
• h : Λ → E given by h(t, x, y) = (k(t, x), y), where t ∈ I, x ∈ Vn, y ∈ V⊥n (note that (t, x, y) ∈ Λ implies

(t, x) ∈ Γ).

Lemma A.5 h is an otopy in Ω.

Proof. Observe that

1. h−1(0) = k−1(0) × {0} is compact,
2. k is bounded and hence Id�Ωn − k is compact; in consequence h(t, x, y) = (x, y) − (x − k(t, x), 0) is of the

desired form ‘identity minus compact’.

Thus h is an otopy in Ω.
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