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Abstract. In this paper, a primal-dual interior point algorithm for solving linear optimization problems
based on a new kernel function with a trigonometric barrier term which is not only used for determining
the search directions but also for measuring the distance between the given iterate and the µ-center for
the algorithm is proposed. Using some simple analysis tools and prove that our algorithm based on the
new proposed trigonometric kernel function meets O

(√
n log n log n

ε

)
and O

(√
n log n

ε

)
as the worst case

complexity bounds for large and small-update methods. Finally, some numerical results of performing our
algorithm are presented.

1. Introduction

The main concern of this paper is to propose a primal-dual interior point algorithm for solving Linear
Optimization (LO) problem:

(P) min{cTx : Ax = b, x ≥ 0},

and its dual as:
(D) max{bT y : AT y + s = c, s ≥ 0},

where A ∈ Rm×n, x, c, s ∈ Rn and y, b ∈ Rm.
In recent years, many researchers have attempted to find methods that have the best theoretical and

practical results in solving mathematical programming problems. The class of Interior Point Methods (IPMs)
is one of these kind of methods that received a lot of attention by the researchers. An important and pioneer
work in this direction goes back to the landmark paper proposed by Karmarkar in [14]. He introduced the
the so-called polynomial time IPMs for solving LO problems. Some later, the concept of primal-dual IPMs
was suggested by Kojima et al. [16] and Megiddo [20]. Nesterov and Nemirovskii in [22] extended IPMs
from LO to more general convex optimization problems such as Convex Quadratic Optimization (CQO),
Semidefinite Optimization (SDO), Second Order Cone Optimization (SOCO), Nonlinear Complementarity
Problem (NCP), Linear Complementarity Problem (LCP), and Convex Quadratic Semidefinite Optimization
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(CQSDO).
In addition to practical performance of IPMs, iteration complexity bound is one of the crucial problems in
IPMs. Although, Karmarkar [14] showed that their algorithm has a polynomial complexity O(nL) iteration
with O(n

7
2 L) bit operations, Nesterov and Nemirovskii proved that their algorithms for solving convex

problems in large neighborhood of the central path has O(n log n
ε ) iteration complexity bound.

The concept of kernel-based interior point methods was first introduced by Peng in [23]. Kernel functions play
an important role in the design and analysis of primal-dual IPMs. They are not only used to measure the
distance between the given iterate and the µ-center but also to determine the search directions. Peng et al.
in [24] proved that their algorithm for solving LO problems based on the so-called Self-Regular (SR) kernel
functions has the best known iteration complexity bounds for large and small-update methods, namely,
O(
√

n log n log n
ε ) and O(

√
n log n

ε ), respectively. Since then, several attempts for introducing non-SR kernel
functions in order to at least meeting the complexity results of SR barrier functions have been started. A
comparative study on the kernel functions was provided in [1–3, 9, 17, 24, 25, 32].

Due to literature, nowadays, it seems that primal-dual IPMs based on trigonometric kernel functions
received a great of interest by the researchers in this field. For more information on new interior point
algorithms based on the trigonometric kernel function, we refer the interested reader to the works proposed
in [5–8, 10–13, 15, 18, 19, 26–29]. Some of these functions obtained the so far best known iteration complexity,
see e.g. [5, 10–13, 26, 27]. It has to be noted that, due to [1], all the researches in introducing new kernel
functions are basically focused on finding a kernel function for which the complexity of large-update
methods is equal to (or even better than) O(

√
n log n

ε ), or show that such a kernel function does not exist.
This motivates us to work on theoretical complexity aspects of several kernel functions which are not
self-regular. The research line of this paper coincides to this fact. Indeed, our main concern is on deriving
the theoretical complexity of a new proposed kernel function in the way of verifying the aforementioned
question.

Motivate by these works, in this paper we introduce a new kernel function with a new trigonometric
barrier term. By means of some simple analysis tools, we analyze the large-update primal dual IPM based
on the new proposed kernel function and show that the algorithm enjoys O(

√
n log n log n

ε ) as the worst
case iteration complexity bound. Finally, we present some numerical results. The results are obtained by
performing interior point algorithm based on the new proposed kernel function and six kernel functions
defined in literature. Comparison of the obtained results shows that the new proposed kernel function
outperforms the other considered kernel functions.

The paper is organized as follows: In Section 2, we recall some concepts of IPMs LO problems. In
Section 3, we introduce the new kernel function and some of its properties. Section 4 is devoted to describe
the proximity reduction during an inner iteration. We also obtain a default value for the step size in this
section. The worst case iteration bound for the large update primal-dual IPMs based on the new kernel
function is provided in Section 5. In section 6, we present some numerical results. Finally, some concluding
remarks are given in Section 7.

We use the following notational conventions: Throughout the paper, the Euclidian norm of a vector is
denoted by ‖.‖. We denote the nonnegative and positive orthants byRn

+ andRn
++, respectively. For a vector

x = (x1, . . . , xn) ∈ Rn, x∗ is the minimum component of x. For given vectors x and s, the vectors xs and x
s

denote the coordinate-wise operations on the vectors, i.e., whose components are xisi and xi
si

, respectively.
We say that f (t) = Θ

(
1(t)

)
, if there exist positive constants ω1 and ω2 so that ω11(t) ≤ f (t) ≤ ω21(t), for all

t ∈ R++. We also say that f (t) = O
(
1(t)

)
, if there exists a positive constant ω so that f (t) ≤ ω1(t), for all

t ∈ R++.

2. Preliminaries

In this section, we recall some concepts of the IPMs such as central path, search direction and large- and
small-update methods. Moreover, a generic interior point algorithm for LO problems is presented.

Throughout the paper, we assume that the following assumptions hold:
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A1 : Interior Point Condition (IPC) holds, i.e., there exists a strictly feasible point, namely, x0 > 0 and
(y0, s0) with s0 > 0, so that:

Ax0 = b, x0 > 0,
AT y0 + s0 = c, s0 > 0.

A2 : The matrix A has full row rank, i.e., rank(A) = m ≤ n.

The optimality conditions for problems (P) and (D) are given by:

Ax = b, x ≥ 0;
AT y + s = c, s ≥ 0; (1)

xs = 0.

The key idea behind the primal-dual IPMs for solving LO problems is to replace the last equation in (1),
the so called complementarity condition, with the nonlinear parametric equation xs = µe, where µ is a real
positive parameter and e = (1, 1, . . . , 1)T. This leads us to the following parametric system:

Ax = b, x ≥ 0;
AT y + s = c, s ≥ 0; (2)

xs = µe.

Using Assumptions A1 and A2, one can deduce that system (2) has a unique solution for any µ > 0, see
e.g. [24]. Let (x(µ), y(µ), s(µ)) be the unique solution of system (2) for µ > 0. We call x(µ) and (y(µ), s(µ)) the
µ-centers of (P) and (D), respectively. The set of µ-centers, for all µ > 0, defines a homotopy path which is
called the central path of (2) [21]. As µ→ 0, the limit of the central path exists and converges to the analytic
center of the optimal solution set of (P) and (D), see e.g. [20, 31].
For fixed µ > 0, applying the Newton method to the parameterized system (2) implies the following system
for the search direction (∆x,∆y,∆s):

A∆x = 0;
AT∆y + ∆s = 0; (3)
x∆s + s∆x = µe − xs.

To simplify, we define the scaled vector v as:

v :=
√

xs
µ
.

Now, let us further define, the new search directions dx and ds as:

dx =
v∆x

x
, ds =

v∆s
s
. (4)

By using the above notation and some simple calculus, the search direction (dx,∆y, ds) is obtained by solving
the following system:

Ādx = 0;
ĀT∆y + ds = 0; (5)

dx + ds = v−1
− v,

where

Ā :=
1
µ

AV−1X = AS−1V;

V := dia1(v),X := dia1(x),S := dia1(s). (6)
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Note that, system (5) has a unique solution and we can get the search direction (∆x,∆y,∆s) easily by using
(4). Now, consider the univariate kernel function ψc(t) as follows:

ψc(t) : R++ → R+,

ψc(t) =
t2
− 1
2
− log t.

One can simply see that the right-hand side of the last equation in (5) is equal to the negative gradient of
the proximity function Ψc(v) =

∑n
i=1 ψc(vi), induced from ψc(t). Note that ψc(t) is a strictly convex function

on R++ and satisfies:

ψc(1) = ψ′c(1) = 0, (7)
lim
t→∞

ψc(t) = lim
t→0

ψc(t) = +∞. (8)

Now, by replacing the right-hand side of the last equation in (5) by −∇Ψ(v), one can get the following
system for (dx,∆y, ds):

Ādx = 0;
ĀT∆y + ds = 0; (9)

dx + ds = −∇Ψ(v).

This system has a unique solution [24]. From discussion above, we conclude that:

dx = ds = 0⇔ ψ′(v) = 0⇔ v = e⇔ Ψ(v) = 0,

namely, if and only if xs = µe, i.e. if and only if x = x(µ) and s = s(µ). Otherwise, we have Ψ(v) > 0. Hence,
if (x, y, s) , (x(µ), y(µ), s(µ)), then (∆x,∆y,∆s) , 0 which implies that we can compute the step size α by
some line search rules to obtain a new triple (x+, y+, s+) as below:

x+ = x + α∆x, y+ = y + α∆y, s+ = s + α∆s. (10)

Summarizing the above argument, we can outline this procedure in the following primal-dual interior point
scheme [24].

Algorithm 1. Generic Primal-dual IPM for LO

Input
a proximity function Ψ(v)
a threshold parameter τ > 0
an accuracy parameter ε > 0
a barrier update parameter θ, 0 < θ < 1

begin
x := e; s := e;µ := 1; v := e;
while nµ > ε do
begin
µ := (1 − θ)µ;
while Ψ(v) > τ do
begin

x := x + α∆x
s := s + α∆s
y = y + α∆y
v :=

√
xs
µ

end
end

end
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Now, we illustrate an iteration of Algorithm 1. Starting a strictly feasible point (x0, y0, s0), assume that, for
given µ > 0, an approximation of the µ-center (x(µ), y(µ), s(µ)) is at hand. If nµ ≤ ε, then the algorithm
is terminated. Otherwise, the parameter µ is decreased by the factor 1 − θ, where θ ∈ (0, 1). This part of
the algorithm is known as outer iteration loop. While the value of Ψ(v) is greater than the threshold τ, the
new iterate is computed by taking Newton steps. In fact, this part of the algorithm constitutes the inner
iterations loop. This procedure is repeated until we get to the point in which nµ ≤ ε. We note that the total
number of iterations is given by multiplication of the inner and outer iterations.

3. The new kernel function

In this section, we introduce a new kernel function with trigonometric barrier term and investigate its
properties. We define the new kernel function:

ψ(t) =
t2
− 1
2
−

∫ t

1
e5p tan(h(x))dx, p ≥ 1, (11)

where

h(x) =
1 − x

2 + 4x
π. (12)

It can be easily seen that, when t goes to zero, then h(t)→ π
2 and therefore ψ(t)→ +∞. On the other hand,

when t→ +∞, we can conclude that h(t)→ 0, which in turn implies that ψ(t)→ +∞. These relations show
that ψ(t) is a barrier (kernel) function [1].
The first three derivatives of the proposed kernel function are given by:

ψ′(t) = t − e5p tan(h(t)) (13)

ψ′′(t) = 1 +
30pπ

(2 + 4t)2

(
1 + tan2(h(t))

)
e5p tan(h(t)) (14)

ψ′′′(t) =
(
1 + tan2(h(t))

)
e5p tan(h(t))k(t) (15)

where

k(t) = −
240pπ

(2 + 4t)3 −
360pπ2

(2 + 4t)4 tan(h(t)) −
900p2π2

(2 + 4t)4

(
1 + tan2(h(t))

)
(16)

Obviously, ψ(1) = ψ′(1) = 0. Therefore, one can easily describe the function ψ(t) by its second derivative
according to:

ψ(t) =

∫ t

1

∫ ξ

1
ψ′′(ζ)dζdξ. (17)

For the kernel function ψ(t), given by (11), we have the following results:

Lemma 3.1. (Lemma 2.1 in [7]) For the function h(t) given by (12), one has:

tan(h(t)) −
1

3πt
> 0, 0 < t ≤

1
2
.

Lemma 3.2. For the kernel function defined by (11), we have:

i) ψ′′(t) > 1, ∀ t > 0,

ii) tψ′′(t) − ψ′(t) > 0, ∀ t > 1,
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iii) tψ′′(t) + ψ′(t) > 0, ∀ t > 0,

iv) ψ′′′(t) < 0, ∀ t > 0.

Proof. First of all, it has to be noted that, for the function h(t), given by (12), we have:

tan(h(t)) ≥ 0, for all t ∈ (0, 1],
tan(h(t)) ∈ [−1, 0), for all t > 1.

To prove (i), for all t > 0, we have:

ψ′′(t) = 1 +
30pπ

(2 + 4t)2

(
1 + tan2(h(t))

)
e5p tan(h(t))

≥ 1.

To prove (ii), we have:

tψ′′(t) − ψ′(t) =

(
30pπt

(2 + 4t)2 (1 + tan2(h(t))) + 1
)

e5p tan(h(t)) > 0.

For proving (iii), first suppose that t ∈ (0, 1
4 ]. Using Lemma 3.1, and the fact that tan(h(t)) ≥ 1, we have:

tψ′′(t) + ψ′(t) = 2t +

(
30pπt

(2 + 4t)2 (1 + tan2(h(t))) − 1
)

e5p tan(h(t))

> 2t +

(
30pπt

(2 + 4t)2 (1 +
tan(h(t))

3πt
) − 1

)
e5p tan(h(t))

= 2t +

(
30pπt

(2 + 4t)2 +
10p

(2 + 4t)2 tan(h(t)) − 1
)

e5p tan(h(t))

≥ 2t +

(
30pπt

(2 + 4t)2 +
10p

(2 + 4t)2 − 1
)

e5p tan(h(t)) > 0.

If t ∈ ( 1
4 ,

1
2 ], then

tψ′′(t) + ψ′(t) ≥ 2t +

(
15pπ

2(2 + 4t)2 (1 + tan2(h(t))) − 1
)

e5p tan(h(t))

≥ 2t +

(
15pπ

2(2 + 4t)2 − 1
)

e5p tan(h(t)) > 0.

If t ∈ ( 1
2 , 1], then

tψ′′(t) + ψ′(t) ≥ 2t +

(
15pπ

(2 + 4t)2 (1 + tan2(h(t))) − 1
)

e5p tan(h(t))

≥ 2t +

(
15pπ

(2 + 4t)2 − 1
)

e5p tan(h(t)) > 0.

For case t > 1, using the fact thatψ′(1) = 0 andψ′′(t) > 1, the functionψ′(t) is an increasing and non-negative
function, for all t > 0. This implies that tψ′′(t) + ψ′(t) > 0, for all t > 1.
In order to prove (iv), we note that, for t ∈ (0, 1], it can be easily seen that ψ′′′(t) < 0. Now, let t > 1. To
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prove the statement in this case, it is sufficient to show that k(t) < 0. To do so, we have:

k(t) = −
240pπ

(2 + 4t)3 −
360pπ2

(2 + 4t)4 tan(h(t)) −
900p2π2

(2 + 4t)4

(
1 + tan2(h(t))

)
≤ −

240pπ
(2 + 4t)3 −

360pπ2

(2 + 4t)4 tan(h(t)) −
900p2π2

(2 + 4t)4

≤ −
240pπ

(2 + 4t)3 +
360pπ2

(2 + 4t)4 −
900p2π2

(2 + 4t)4

=
−240pπ(2 + 4t) + 360pπ2

− 900p2π2

(2 + 4t)4 < 0.

This completes the proof of the lemma.

As a consequence of Lemma 3.2, we conclude that the new proposed kernel function is an eligible kernel
function [1].
The so called exponential convexity (e-convexity) property of the kernel functions plays an important role
in the complexity analysis of the primal-dual IPMs based on these functions. The following technical lemma
provides equivalent statements for the e-convexity property of a function.

Lemma 3.3. (Lemma 2.1.2 in [24]) Suppose that ψ(t), for t > 0, is a twice continuously differentiable function.
Then, the following statements are equivalent:

i) ψ(
√

t1t2) ≤ 1
2 (ψ(t1) + ψ(t2)), for t1, t2 > 0

ii) ψ′(t) + tψ′′(t) ≥ 0 for t > 0

iii) ψ(eξ) is a convex function.

Using the third part of Lemma 3.2, the kernel function proposed as (11) has the e-convexity property.
Now, let us define the norm based proximity measure δ(v) as follows:

δ(v) :=
1
2
‖ψ′(v)‖ =

1
2

√√
n∑

i=1

(ψ′(v))2. (18)

Thus, we have:

Ψ(v) = 0⇔ δ(v) = 0⇔ v = e.

Using (17) and the super convexity property of ψ, i.e. ψ′′(t) ≥ 1, for all t > 0, one can easily obtain the
following properties for the proximity function Ψ(v) that is induced from ψ.
The following lemma gives some other properties of the new proposed kernel function [25].

Lemma 3.4. Suppose that the kernel function ψ(t) is given by (11). Then, we have:

i) 1
2 (t − 1)2

≤ ψ(t) ≤ 1
2ψ
′(t)2, for all t > 0.

ii) Ψ(v) ≤ 2δ(v)2, for any v > 0.

iii) ‖v‖ ≤
√

n +
√

2Ψ(v), for any v > 0.

Corollary 3.5. If Ψ(v) ≥ 1, then we have:

δ(v) ≥

√
1
2
. (19)
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Proof. It is easily followed from the second item of Lemma 3.4.

In the sequel, we investigate the growth behavior of the new kernel function and its related real value
matrix function.

Lemma 3.6. Assume that β ≥ 1 and the function ψ(t) is given by (11). Then, we have

ψ(βt) ≤ ψ(t) +
1
2

(β2
− 1)t2

Proof. The proof is similar to the proof of Lemma 4.1 in [28]. Therefore, we omit it here.

As a consequence of Lemma 3.6, we have the following lemma.

Lemma 3.7. Let v > 0 and β ≥ 1. Then, one has:

Ψ(βv) ≤ Ψ(v) +
β2
− 1
2

(
2Ψ(v) + 2

√
2nΨ(v) + n

)
.

4. An estimation for the step size

In this section, we focus on providing a default value for the step size during an inner iteration of
Algorithm 1. To do so, we first note that, after an inner iteration, the new point is given by:

x+ = x + α∆x, y+ = y + α∆y, s+ = s + α∆s,

where, α is the so called the step size. Due to (4), the new iterate can be rewritten as:

x+ =
x
v

(v + αdx), y+ = y + α∆y, s+ =
s
v

(v + αds).

By defining vector v+ :=
√

x+s+

µ , we conclude that:

v2
+ =

x+s+

µ
= (v + αdx)(v + αds). (20)

As a consequence of e-convexity property, we have:

Ψ(v+) = Ψ(
√

(v + αdx)(v + αds) ≤
1
2

(Ψ(v + αdx) + Ψ(v + αds)) .

We denote the gap between the proximity function before and after one step below as a function with
respect α:

f (α) := Ψ(v+) −Ψ(v). (21)

Now, similar to [1], we define the default step size α as:

α̃ =
1

ψ′′(ρ(2δ))
, (22)

where ρ : [0,∞)→ (0, 1] is the inverse of the function − 1
2ψ
′(t) in the interval (0, 1].

According to [1], the eligibility of the kernel function implies the following lemma.

Lemma 4.1. (Lemma 4.5 in [1]) For any α satisfying α ≤ ᾱ, one has:

f (α) ≤ −αδ2 (23)
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Lemma 4.2. Assume that Ψ(v) ≥ 1, ρ is the inverse of the function − 1
2ψ
′(t) in the interval (0, 1] and α̃ is defined by

(22). Thus, we have

f (α̃) ≤ −
δ2

ψ′′(ρ(2δ))
≤ Θ

− δ

p
(
1 + ( 1

5p log(4δ + 1))2
)  . (24)

Proof. Using Lemma 4.1 and the fact that α̃ ≤ α, we have f (α̃) ≤ −α̃δ2. Now, we compute the inverse
function − 1

2ψ
′(t), for 0 < t ≤ 1. Using − 1

2ψ
′(t) = s, we obtain t as a function of s. For this purpose, we have:

−

(
t − e5p tan(h(t))

)
= 2s.

This implies that,
e5p tan(h(t))

≤ 2s + 1,

where the last inequality is obtained from the fact that t ∈ (0, 1]. Now, letting t = ρ(2δ), we have 4δ = −ψ′(t)
which implies that

e5p tan(h(t))
≤ 4δ + 1 (25)

e5p tan(h(t))
≤ 4δ + 1 (26)

5p tan(h(t)) ≤ log(4δ + 1) (27)

tan(h(t)) ≤
1

5p
log(4δ + 1). (28)

Now, using (25)–(28) and the fact that t ∈ (0, 1], we obtain the following relations:

α̃ =
1

ψ′′(t)
=

1

1 +
30pπ

(2+4t)2

(
1 + tan2(h(t))

)
e5p tan(h(t))

≥
1

1 +
30pπ

(2+4t)2

(
1 + ( 1

5p log(4δ + 1))2
)

(4δ + 1)

≥
1

1 +
15pδπ

2

(
1 + ( 1

5p log(4δ + 1))2
)

≥
1

2δ + 45pπδ
(
1 + ( 1

5p log(4δ + 1))2
)

= Θ

 1

δp
(
1 + ( 1

5p log(4δ + 1))2
)  ,

where the last inequality is obtained from the fact that Ψ(v) ≥ 1 and δ ≥
√

1
2 by Corollary 3.5. Thus, we

have:

f (α̃) ≤ −
δ2

ψ′′(ρ(2δ))
≤ Θ

− δ

p
(
1 + ( 1

5p log(4δ + 1))2
)  ,

which completes the proof of the lemma.

Corollary 4.3. From Lemma 4.2 and the second part of Lemma 3.4, one can easily see that:

f (α̃) ≤ Θ

 −δ

p
(
1 + ( 1

5p log(4δ + 1))2
) 

≤ Θ

 −Ψ
1
2 (v)

p
(
1 + ( log Ψ

5p )2
)  . (29)
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5. Iteration complexity

In this section, we focus on the iteration complexity of Algorithm 1 based on the proximity function
Ψ(v) induced by ψ, defined by (11). During an inner iteration, using α̃, defined by (22), as a default value
for the step size. Therefore, updating the parameter µ to (1 − θ)µ, for θ ∈ (0, 1), implies that v+ = 1

√
1−θ

v.

Thus, using Lemma 3.7 with β = 1
√

1−θ
, one can easily see that:

Ψ(v+) ≤ Ψ(v) +
θ

2(1 − θ)
(2Ψ(v) + 2

√
2nΨ(v) + n). (30)

right after updating the parameter µ to (1 − θ)µ, for some θ ∈ (0, 1). Note that at the start of each outer
iteration of the algorithm and just before updating of the parameter µ, we have Ψ(v) ≤ τ. From (30), one
can easily see that the proximity function Ψ(v) exceeds the threshold τ after updating of µ. So, we need
to compute the number of inner iterations required to return the iterations back to the situation where
Ψ(v) ≤ τ. First, we represent the value of proximity function Ψ(v) after µ-update by Ψ0, and the subsequent
values by Ψ j, for j = 1, . . . ,L − 1, where L is the total number of inner iterations in an outer iteration.
Therefore

Ψ0 ≤ τ +
θ

2(1 − θ)
(2τ + 2

√

2nτ + n) (31)

As we are working on the large neighborhood of the central path, we assume that τ = O(n) ≥ 1. This
fact together with (31) imply that Ψ0 = O(n). Moreover, in the all inner iterations, we have Ψ j > τ ≥ 1.
Therefore, from Corollary 4.3, the decrease of Ψ in any inner iteration is then given as:

Ψ j+1 ≤ Ψ j − κ∆Ψ j, j = 0, 1, . . . ,L − 1, (32)

where κ is some positive constant and ∆Ψ j is defined by

∆Ψ j =
Ψ

1
2
j

p
(
1 + ( log Ψ j

5p )2
) . (33)

To proceed, we need the following technical lemma.

Lemma 5.1. Given α ∈ [0, 1] and t ≥ −1, one has

(1 + t)α ≤ 1 + αt.

Using Lemma 5.1, we can provide the worst case iteration bound for the total number of inner iterations in
an outer iteration as follows:

Theorem 5.2. Let τ ≥ 1. Then, using (32), one has

L ≤ 1 +
2p

(
1 + ( log Ψ0

5p )2
)

κ
Ψ

1
2
0 . (34)
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Proof. Using (32), for all j = 0, 1, . . . ,L − 1, we have

0 ≤ Ψ
1
2
j+1 ≤

Ψ j −
κ

p
(
1 + ( log Ψ j

5p )2
)Ψ

1
2
j


1
2

= Ψ
1
2
j

1 −
κ

p
(
1 + ( log Ψ j

5p )2
)Ψ
−

1
2

j


1
2

≤ Ψ
1
2
j

1 −
κ

2p
(
1 + ( log Ψ j

5p )2
)Ψ
−

1
2

j


= Ψ

1
2
j −

κ

2p
(
1 + ( log Ψ j

5p )2
) , (35)

where the last inequality is obtained from Lemma 5.1. Therefore, we have:

Ψ
1
2
j+1 ≤ Ψ

1
2
0 −

jκ

2p
(
1 + ( log Ψ j

5p )2
) .

Now, letting j = L − 1, we obtain that:

0 ≤ Ψ
1
2
L ≤ Ψ

1
2
0 −

(L − 1)κ

2p
(
1 + ( log Ψ0

5p )2
) ,

which implies that:

L ≤ 1 +
2p

(
1 + ( log Ψ0

5p )2
)

κ
Ψ

1
2
0 .

This completes the proof of the theorem.

As our interest is to compute the worst case iteration complexity for the large-update IPMs in the large
neighborhood of the central path, we set τ = O(n) and θ = Θ(1). Again, we note that (31) implies that
Ψ0 = O(n). Therefore, using Lemma 5.2, the following upper bound is obtained for the total number of
inner iterations in an outer iteration:

L ≤

1 +
2p

(
1 + ( log Ψ0

5p )2
)

κ
Ψ

1
2
0

 =

⌊
O

(
√

np
(
1 + (

log n
5p

)2

))⌋
. (36)

As it has been stated in Lemma I.36 of [30], the total number of outer iterations in the large update methods
for reaching nµ ≤ ε is bounded above by O

(
1
θ log n

ε

)
. Therefore, the total number of iterations in Algorithm

1 is obtained by multiplying the total number of inner and outer iterations. Hence, the total number of
iterations to get an ε solution for the problems (P) and (D), i.e., a solution that satisfies xTs = nµ ≤ ε, is
obtained as follows:

O
(
√

np
(
1 + (

log n
5p

)2

)
log

n
ε

)
. (37)

Note that, for p = O(log n), the relation (37) is simplified as follows:

O
(
√

n log n log
n
ε

)
.

Now, due to [1], this bound yields the so far best known iteration bound for large update methods in terms
of trigonometric kernel functions.
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The net goal in this section is to compute the iteration complexity bound for small update method. To
this end, we set Ψ0 = O(1) and θ = Θ( 1

√
n

). Therefore, using Theorem 5.2, we have the following theorem:

Theorem 5.3. Let Ψ0 = O(1) and θ = Θ( 1
√

n
). Then, the complexity bound for small-update for IPM based on the

new kernel function is denoted by:

O
(
p
√

n log
n
ε

)
. (38)

Letting p = O(1) in (38). Then the worst case iteration complexity for small-update IPMs is denoted by
O

(√
n log n

ε

)
, which matches to the currently best known iteration bound for small-update methods.

6. Numerical results

In this section, we provide numerical results of performing Algorithm 1 on a test problem given in [5].
We have implemented Algorithm 1 with the kernel function given by (11) along with six existing kernel
functions in the literature. These kernel function are listed in Table 1. All the considered algorithms are
coded in MATLAB 8.2.0.701 (R2013b) and run on a PC with Intel Core i5–7200U CPU and 12GB of RAM
memory by double precision format.
Moreover, we have chosen the step size in the inner iterations of all approaches as an approximate value of
the default step size in the related references.
For the considered test problem [5], we have n = 2m, and for all 1 ≤ i ≤ m, the parameters of the problem
are:

A = [Im, Im], b = 2em c = [−em; 0m],

where Im denotes the identity matrix of size m × m, 0m and em are the zero vector and the all-one vector of
length m, respectively.
The strictly feasible initial point is given by:

x0 = [em; em], s0 = [em; 2em], y0 = −2em.

We set the parameters of Algorithm 1 as below:

µ0 = 1, ε = 10−8, τ = 3, θ ∈ {0.95, 0.99}.

Moreover, we select m ∈ {375, 750, 1500, 3000, 7500} and p ∈ {1, 2, 3, 4, 4.5} in the setting of the new proposed
kernel function. Note that the values of p are considered according to the fact that the algorithms obtain
the best iteration complexity when p = O(log n).
The total number of inner iterations of performing Algorithm 1 based on the kernel functions defined in
Table 1, are given in Tables 2 and 3. In these tables, “Iter”, “Time” and “gap” stand for the number of
iterations, CPU time (in second) and the value of cTx − bT y, respectively. Furthermore, ψ7,p stands for the
new proposed kernel function with different values p.

Based on the results in Tables 2 and 3, one can see that the new proposed kernel function outperforms
the other considered kernel functions.
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Table 1: Considered kernel functions.

i Kernel functions ψi References

1 t2
−1
2 −

∫ t

1 exp ( 1
t − 1)dx [1]

2 t2
−1
2 − log(t) [1]

3 t2
−1
2 −

∫ t

1 exp
(
3(tan( π

2+2x ) − 1)
)
dx [28]

4 t2
−1
2 + 4

π cot( πt
1+t ) [15]

5 t2
−1
2 + 6

π tan( 1−t
2+4tπ) [7]

6 t2
−1−log(t)

2 + t1−q
−1

2(q−1) , q = 2 [4]

7 t2
−1
2 −

∫ t

1 exp5p tan( 1−x
2+4xπ) dx, p ≥ 1 New kernel function

7. Conclusion

In this paper, we propose a new kernel function with trigonometric barrier term and analyze the worst
case iteration complexity of large-update primal-dual interior point method based on this kernel function
in the large neighborhood of the central path for linear optimization problems. Using some mild and easy
to check conditions, worst case iteration complexity analysis for the large update primal dual IPMs based
on the new kernel function is provided. As usual, the e-convexity property of the kernel function plays
an important role in deriving a default value for the step size. Our analysis shows that, with the specific
choice of the function’s parameter, the so far best known worst case iteration complexity of Algorithm 1,
i.e. O

(√
n log n log n

ε

)
, is achieved. Numerical results shows that the new proposed kernel function is well

promising and outperforms some existing kernel functions in the literature.
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Table 2: Iterations numbers of performing Algorithm 1 with θ = 0.95.

ψi m

375 750 1500 3000 7500

Iter 200 266 315 339 423
ψ1 Time 24.38 89.42 368.64 2168.76 14537.45

gap 8.42E-09 1.62E-08 3.12E-09 5.62E-09 2.91E-09

Iter 189 257 304 326 436
ψ2 Time 24.16 85.80 325.76 1984.98 14872.87

gap 8.25E-09 2.98E-08 3.09E-09 6.41E-09 7.81E-09

Iter 235 298 312 324 418
ψ3 Time 37.14 108.54 341.39 1973.87 13985.65

gap 8.19E-09 1.65E-08 1.67E-08 3.62E-09 8.48E-09

Iter 176 223 283 319 397
ψ4 Time 19.81 72.82 327.71 1832.61 13565.71

gap 8.34E-09 1.96E-08 1.02E-08 2.05E-09 5.12E-09

Iter 194 261 308 345 461
ψ5 Time 20.47 79.81 359.62 2171.01 14891.38

gap 8.37E-09 1.61E-08 2.67E-09 4.35E-09 8.19E-09

Iter 189 272 319 342 439
ψ6 Time 22.94 81.37 381.06 2153.87 14624.43

gap 2.15E-08 1.51E-08 2.74E-09 4.29E-09 8.01E-09

Iter 155 189 221 287 347
ψ7,1 Time 17.88 65.48 241.58 1589.37 10674.87

gap 8.32E-09 1.13E-08 3.12E-09 4.43E-09 7.61E-09

Iter 159 194 224 297 349
ψ7,2 Time 18.87 70.15 251.35 1638.54 10834.98

gap 8.47E-09 1.61E-08 3.13E-09 4.95E-09 8.34E-09

Iter 167 198 254 303 352
ψ7,3 Time 19.11 71.43 291.60 1668.32 10943.23

gap 1.34E-08 1.48E-08 3.21E-09 5.01E-09 6.11E-09

Iter 168 206 248 301 351
ψ7,4 Time 20.76 75.32 279.00 1645.29 11035.63

gap 1.12E-08 7.35E-09 2.12E-08 4.12E-09 5.97E-09

Iter 171 216 254 312 349
ψ7,4.5 Time 19.21 72.62 287.02 1673.07 10759.67

gap 1.43E-08 1.49E-08 1.67E-08 5.27E-09 6.43E-09
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Table 3: Iterations numbers of performing Algorithm 1 with θ = 0.99.

ψi m

375 750 1500 3000 7500

Iter 182 237 263 282 359
ψ1 Time 24.09 88.08 324.04 1763.23 11452.41

gap 1.64E-09 3.19E-09 6.19E-09 1.22E-08 2.17E-09

Iter 173 245 281 302 381
ψ2 Time 23.25 80.35 302.14 1691.41 11191.40

gap 1.51E-09 3.14E-09 6.01E-09 1.26E-08 2.43E-09

Iter 221 251 288 307 373
ψ3 Time 32.14 103.07 338.97 1837.98 12342.28

gap 1.45E-09 2.99E-09 6.71E-09 1.67E-08 2.01E-09

Iter 151 209 246 271 325
ψ4 Time 19.34 79.31 302.17 1692.68 11109.14

gap 1.44E-09 3.07E-09 6.43E-09 1.81E-08 2.71E-09

Iter 171 231 266 315 383
ψ5 Time 19.01 81.12 312.72 1701.01 11601.54

gap 1.39E-09 2.97E-09 6.22E-09 1.27E-08 4.91E-010

Iter 156 191 250 292 347
ψ6 Time 22.07 85.12 319.45 1757.16 11910.15

gap 1.44E-09 3.09E-09 6.43E-09 1.89E-08 4.32E-010

Iter 137 173 201 243 281
ψ7,1 Time 18.01 61.09 264.09 1431.01 8912.09

gap 1.41E-09 3.08E-09 6.52E-09 2.01E-08 1.49E-09

Iter 141 173 212 239 279
ψ7,2 Time 18.34 63.31 271.49 1451.98 9001.54

gap 1.32E-09 3.02E-09 7.03E-09 1.41E-08 1.79E-09

Iter 142 183 228 251 281
ψ7,3 Time 18.91 67.34 282.43 1482.00 8946.13

gap 1.34E-09 3.00E-09 6.41E-09 1.50E-08 3.01E-09

Iter 142 182 231 262 282
ψ7,4 Time 19.01 69.70 280.14 1401.08 9067.21

gap 8.31E-010 2.82E-09 6.53E-09 7.83E-09 6.98E-010

Iter 144 189 241 261 284
ψ7,4.5 Time 19.35 71.02 289.09 1410.43 9101.32

gap 7.78E-010 2.01E-09 3.05E-09 6.12E-09 8.01E-010
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