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A Decomposition of Signed Graphs With Two Eigenvalues

Zoran Stanić

Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11 000 Belgrade, Serbia

Abstract. In this study we consider connected signed graphs with 2 eigenvalues that admit a vertex set
partition such that the induced signed graphs also have 2 eigenvalues, each. We derive some spectral
characterizations, along with examples supported by additional theoretical results. We also prove an
inequality that is a fundamental ingredient for the resolution of the Sensitivity Conjecture.

1. Introduction

Given a graph G = (V(G),E(G)), let σ : E(G) −→ {−1, 1}. Then Ġ = (G, σ) is a signed graph derived from
its underlying graph G. In other words, each edge e of G is accompanied by the sign σ(e) ∈ {−1, 1}. The
(multiplicative) group {−1, 1} can also be written as {−,+}. We also denote |V(Ġ)| by n. The set of edges of a
signed graph is composed of the subset of positive edges and the subset of negative edges. Every graph is
interpreted as a signed graph with all the edges being positive.

The n×n adjacency matrix AĠ of Ġ is obtained from the standard (0, 1)-adjacency matrix of G by reversing
the sign of all 1s which correspond to negative edges. The eigenvalues of AĠ are real and, together with
their multiplicity, form the spectrum of Ġ.

A characterization of signed graphs with few (here and following, distinct) eigenvalues is listed as an
open problem in [1]. In particular, signed graphs with 2 eigenvalues are considered before in [5, 11, 16]. For
a similar study on graphs for which some universal matrix – a generalization of several matrices associated
with graphs – has just 2 eigenvalues, we refer the reader to [9].

In this paper our focus is on connected signed graphs Ġ with 2 eigenvalues that admit a vertex set
partition such that the corresponding subgraphs – induced by the partition and denoted by Ḣ1 and Ḣ2
– have 2 eigenvalues, each. We briefly say that Ġ is decomposed into Ḣ1 and Ḣ2. A study concerning
decompositions of strongly regular unsigned graphs can be found in [8]. We give some spectral relations
between Ġ, Ḣ1 and Ḣ2 from which one can conclude that, in general, spectra of two smaller signed graphs
are not fully determined by the spectrum of Ġ. We proceed with selected (in our opinion, very illustrative)
examples giving a general insight into the nature of signed graphs. There, we prove an inequality which
yields the resolution of a conjecture posed in 1992 known as the Sensitivity Conjecture.
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It occurs that our decompositions are closely related to star complements of signed graphs. The concept
of star complements is transferred from the domain of graphs, along with some modifications. For the sake
of completeness and to introduce necessary terminology and notation, we briefly describe the concept of
star complements of signed graphs. All the basic results and some inconsistencies with the same concept
in particular case of graphs are collected.

In Section 2 we list certain terminology and notation. Section 3 is devoted to star complements of signed
graphs. Our main contribution, including the mentioned spectral relations and examples, is presented in
Sections 4 and 5.

2. Preliminaries

We use the standard terminology and notation transferred from the domain of graphs – see [4]; for
example, we say that a signed graph is connected or regular if the same holds for its underlying graph. If
the vertices i and j are adjacent, we write i ∼ j; in particular, the existence of a positive (resp. negative) edge
between these vertices is designated by i +

∼ j (resp. i −

∼ j).
For S subset of V(Ġ), let ĠS be the signed graph obtained from Ġ by reversing the sign of each edge

between a vertex in S and a vertex in V(Ġ) \ S. The signed graph ĠS is said to be switching equivalent to Ġ.
Switching equivalent graphs share the same spectrum. We say that signed graphs Ġ and Ḣ are switching
isomorphic if one of them is isomorphic to the signed graph that is switching equivalent to the other; in that
case, we write Ġ u Ḣ. In the spectral context, one can frequently meet an approach which does not make
any distinction between switching isomorphic signed graphs.

A cycle in a signed graph is said to be positive if the number of negative edges contained is not odd.
Orherwise, it is said to be negative.

The negation−Ġ of a signed graph Ġ is obtained by reversing the sign of every edge of Ġ. The eigenvalues
of −Ġ are obtained by reversing the sign of the eigenvalues of Ġ. A signed doubled graph G̈ is obtained by
doubling every edge of a graph G (i.e., a signed graph with all the edges being positive) with a negative
edge; in fact, it is a signed multigraph.

We use mĠ(λ) to denote the multiplicity of the eigenvalue λ in the spectrum of Ġ. (Ġ is written in the
subscript because, in what follows, we deal with different signed graphs sharing the same eigenvalue(s).)
If Ġ has exactly 2 eigenvalues, λ and µ, it follows that

mĠ(λ) =
µn
µ − λ

and mĠ(µ) =
λn
λ − µ

. (1)

In this paper we use the concept of signed line graphs that can be found in [2, 16, 17] and some other
references. Introduce the vertex-edge orientation η : V(Ġ) × E(Ġ) −→ {−1, 0, 1} formed by obeying the
following rules: (1) η(i, jk) = 0 if i < { j, k}, (2) η(i, i j) = 1 or η(i, i j) = −1 and (3) η(i, i j)η( j, i j) = −σ(i j).
The vertex-edge incidence matrix Bη is the matrix whose rows and columns are indexed by V(Ġ) and E(Ġ)
respectively, such that its (i, e)-entry is equal to η(i, e). Then, even if multiple edges exist in Ġ, we have

BᵀηBη = 2I + AL(Ġ), (2)

where L(Ġ) is taken to be a signed line graph of Ġ. A signed line graph defined in this way depends on
orientation, but it is easy to show that all of them are switching equivalent. Since the matrix on the left-hand
side of (2) is positive semidefinite, the least eigenvalue of a signed line graph is greater than or equal to −2.
This definition of a signed line graph is tailored for the spectral theory and differs in sign from the one
introduced by Zaslavsky [17]. To avoid possible confusion, we suggest that in a wider context L(Ġ) (defined
above) could be called a spectral line graph.

3. Star complements in signed graphs

Given a signed graph Ġ with n vertices, letλ be its eigenvalue and P a matrix representing the orthogonal
projection of Rn onto the eigenspace E(λ) with respect to the canonical basis {e1, e2, . . . , en}. There is a set
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S ⊆ V(Ġ) = {1, 2, . . . ,n}, such that the vectors Pei (i ∈ S) make a basis of E(λ). Such a set S is called a star
set for λ, while the signed graph induced by the set S = V(Ġ) \ S is called a star complement for λ. It follows
that λ is not an eigenvalue of the star complement and |S| = mĠ(λ). We denote k = n −mĠ(λ).

Since the adjacency matrix AĠ and the matrix P commute, we have

λPei = PAĠei =
∑
j∼i

σ(i j)Pej. (3)

The three forthcoming results are, with slight modifications, transferred from the filed of graphs. The
proofs are almost unchanged; to demonstrate this, we include the proof of the first statement.

Theorem 3.1. (cf. [4, Proposition 5.1.4]) Let S be a star set for λ in Ġ.

(i) If λ , 0, then every vertex of S is adjacent to at least one vertex of S.

(ii) If λ < {−1, 0, 1}, then each two vertices of S have distinct neighbourhoods in S.

Proof. (i): From (3) we have that, for λ , 0 and u ∈ S, the vectors Peu,Pej ( j ∼ u) are linearly dependent.
Since the vectors Pei (i ∈ S) are linearly independent (see definition of S), it follows that u is adjacent to a
vertex in S.

(ii): If u, v ∈ S are the vertices sharing the same neighbourhood in S, then by (3) we have

λ(Peu − Pev) −
∑

i∈S, i∼u

σ(ui)Pei +
∑

i∈S, i∼v

σ(vi)Pei = 0.

Linear independence of the vectors on the left hand side yields
λ = 0 and u / v,
λ = −1 and u +

∼ v or
λ = 1 and u −

∼ v,

completing (ii).

Continue with the following theorem.

Theorem 3.2. [4, Theorem 5.1.7] Given a signed graph Ġ with the adjacency matrix(
AS Bᵀ

B AḢ

)
,

where AS is the mĠ(λ) ×mĠ(λ) adjacency matrix of the subgraph induced by a vertex set S, while Ḣ is the subgraph
induced by V(Ġ) \ S. Then S is a star set for λ if and only if λ is not an eigenvalue of Ḣ and

λI − AS = Bᵀ(λI − AḢ)−1B.

This result is called the Reconstruction Theorem. The proof can be derived by following the correspond-
ing reference.

If Ḣ is a star complement for an eigenvalue λ and x,y ∈ Rk, then we define the following bilinear form

〈x,y〉 = xᵀ(λI − AḢ)−1y.

Here is a direct consequence.

Corollary 3.3. (cf. [4, Corollary 5.1.9]) If λ is not an eigenvalue of a signed graph Ḣ (with k vertices), then there is
a signed graph Ġ with Ḣ as a star complement for λ if and only if

〈bi,bi〉 = λ and 〈bi,bj〉 ∈ {−1, 0, 1},

for all distinct i, j ∈ S = V(Ġ) \ V(Ḣ), where bi and bj determine neighbourhoods of i and j in Ḣ, respectively.
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Clearly, the vectors bi (1 ≤ i ≤ n − k) form the submatrix B of the reconstruction theorem. Also, if
〈bi,bj〉 = 0 (resp. 〈bi,bj〉 = −1, 〈bi,bj〉 = 1), then i / j (resp. i +

∼ j, i −

∼ j).
The matrix (λI −AḢ)−1 can be computed by [4, Proposition 5.1.11]; the method remains valid for signed

graphs.

Remark 3.4. It is worth mentioning that the quadratic upper bound for n expressed in terms of |S|, that can be found
in [4, Proposition 5.1.10], does not hold for signed graphs. Certain counterexamples are given in Subsection 5.3. In
fact, there is a sharp cubic upper bound proved in [13].

Finally, an observation related to signed graphs.

Corollary 3.5. A signed graph Ġ contains a star complement Ḣ forλ if and only if−Ġ contains a star complement−Ḣ
for −λ.

Proof. The equivalence follows since mĠ(λ) = m
−Ġ(−λ).

4. Spectral relations

By considering the minimal polynomial of the adjacency matrix, we easily conclude that a signed graph
with 2 eigenvalues, say λ and µ, is regular with vertex degree −λµ. We proceed with the following result.

Theorem 4.1. Let a signed graph Ġ with 2 eigenvalues, λ and µ, be decomposed into signed graphs Ḣ1 and Ḣ2. If ν
is an eigenvalue of Ḣ1 and ν < {λ, µ}, then λ + µ − ν is an eigenvalue of Ḣ2. In addition, mḢ1

(ν) = mḢ2
(λ + µ − ν).

Proof. Expressing AĠ in the form

AĠ =

(
AḢ1

Bᵀ

B AḢ2

)
, (4)

and using A2
Ġ

= (λ + µ)AĠ − λµI, we get AḢ2
B = −BAḢ1

+ (λ + µ)B. Now, if ν is an eigenvalue of Ḣ1 and x is
an associated eigenvector, then

AḢ2
Bx = −BAḢ1

x + (λ + µ)Bx
= −νBx + (λ + µ)Bx (5)
= (λ + µ − ν)Bx,

which means that λ + µ − ν is an eigenvalue of AḢ2
, unless Bx = 0. In the last case, the identity

AĠ

(
x
0

)
=

(
AḢ1

x
0

)
= ν

(
x
0

)
,

gives ν ∈ {λ, µ}.
Finally, if the eigenspaceEḢ1

(ν) of ν < {λ, µ} is spanned by x1, x2, . . . , xk, then, since the kernel of B trivially
intersects the space EḢ1

(ν), the vectors Bx1,Bx2, . . . ,Bxk are linearly independent, and so dim(EḢ1
(ν)) ≤

dim(EḢ2
(λ+µ− ν)). By interchanging Ḣ1 and Ḣ2, we arrive at the opposite inequality, which concludes the

proof.

We proceed by a simple consequence.

Corollary 4.2. Let a signed graph Ġ with 2 eigenvalues be decomposed into signed graphs Ḣ1 and Ḣ2. There is an
equal number of eigenvalues of Ḣ1 and Ḣ2 which do not appear in the spectrum of Ġ.

Proof. The result follows by Theorem 4.1, since the existence of an eigenvalue of Ḣ1, but not of Ġ, implies
the existence of an eigenvalue of Ḣ2, but not of Ġ, and vice versa.



Z. Stanić / Filomat 34:6 (2020), 1949–1957 1953

Let further Ḣ1 and Ḣ2 also have 2 eigenvalues, each. Relations between theirs and the spectrum of Ġ
are given in our next result. Clearly, the case when Ġ is connected is of particular interest.

Theorem 4.3. Assume that a connected signed graph Ġ with n vertices and eigenvalues λ and µ is decomposed into
signed graphs Ḣ1 (with n1 vertices and eigenvalues λ1 and µ1) and Ḣ2 (with n2 vertices and eigenvalues λ2 and µ2).

(i) The case λ1, µ1 ∈ {λ, µ} cannot occur.

(ii) If λ1, µ1 < {λ, µ}, then the spectrum of Ġ is symmetric, Ḣ2 u −Ḣ1, and for i, j ∈ V(Ḣ1) the columns of B
(from (4)) satisfy

bi
ᵀbj =


0 if i / j,

−λ1 − µ1 if i +
∼ j,

λ1 + µ1 if i −

∼ j.

(iii) If λ1 = λ and µ2 = µ, then n1λ1 = −n2µ, µ1 + λ2 = λ+ µ, mḢ1
(µ1) = mḢ2

(λ2), mĠ(λ) = n1 and mĠ(µ) = n2.

(iv) If λ1 = λ and λ2 = λ, then n1(λ − µ2) = n2(λ − µ1), µ1 + µ2 = λ + µ, and mḢ1
(µ1),mḢ2

(µ2) and mĠ(µ) are
equal.

Proof. (i): Otherwise, Ḣ1 and Ġ would have the same vertex degree, which – since Ġ is connected – means
that Ḣ2 is totally disconnected, so has exactly one eigenvalue.

(ii): By virtue of Corollary 4.2, Ġ has 2n1 vertices. If its spectrum is non-symmetric, then the multiplicity
of an eigenvalue would be greater than n1, which is impossible since Ġ contains an induced signed subgraph
having n1 vertices and avoiding that eigenvalue in the spectrum.

Since the spectrum of Ġ is symmetric, from (4), we get

AḢ2
B = −BAḢ1

. (6)

According to the assumption that Ḣ2 does not share any eigenvalue with Ġ, there are n1 independent
eigenvectors of the form Bx (see (5)) associated with its eigenvalues. As these eigenvectors lie in the image
of B, it follows that B is invertible. Then, by (6), we get AḢ2

= −BAḢ1
B−1, giving Ḣ2 u −Ḣ1.

Observe that Ḣ2 is a star complement in Ġ, for both λ and µ = −λ. By Corollary 3.3, for i, j ∈ V(Ḣ1),
the columns bi and bj of B satisfy 〈bi,bj〉 ∈ {−1, 0, 1}, where the bilinear form is formed by AḢ2

and each
of λ,−λ. This gives

bi
ᵀ(AḢ2

+ (±λ − λ2 − µ2)I)bj = pφḢ2
(±λ),

where φḢ2
stands for the minimal polynomial of Ḣ2, while p is 0, −1 or 1 depending on whether i / j, i +

∼ j or
i −

∼ j. This yields λbi
ᵀbj = pλ(λ2 + µ2), and since λ , 0 and the eigenvalues of Ḣ1 are obtained by reversing

the sign of those of Ḣ2, (ii) is completed.
(iii), (iv): By Theorem 4.1, the eigenvalues of Ḣ1 and Ḣ2 which do not appear in the spectrum of Ġ have

the same multiplicity, and their sum is equal to λ + µ.
Counting the number of edges between Ḣ1 and Ḣ2, we get n1(−λµ + λ1µ1) = n2(−λµ + λ2µ2), which

gives n1λ1 = −n2µ for (iii), and n1(λ − µ2) = n2(λ − µ1) for (iv).
To conclude (iii), it remains to compute the multiplicities of λ and µ in Ġ. First, by the eigenvalue

interlacing, the multiplicity of each of them is not less than the multiplicity of the same eigenvalue in Ḣ1

and Ḣ2, respectively. Hence, we may write mĠ(λ) =
µ1n1

µ1−λ
+ a and mĠ(µ) = λ2n2

λ2−µ
+ b, for a, b ≥ 0; if necessary,

compare (1). Using the identities tr(AĠ) = 0 and tr(A2
Ġ

) = −λµ(n1 + n2), we arrive at a = b = λn1
λ−µ1

, giving
mĠ(λ) = n1, and so mĠ(µ) = n2.

For (iv), by setting mĠ(λ) =
µ1n1

µ1−λ
+

µ2n2

µ2−λ
+ a and using tr(AĠ) = 0, we get a =

λ(n1+n2)
λ−µ . Using the equalities

of (iv) we already proved, we get mĠ(λ) = n1 + n2 −
λn1
λ−µ1

, giving mĠ(µ) = λn1
λ−µ1

, i.e., mĠ(µ) is equal to the
multiplicity of µ1 in Ḣ1. This completes (iv) and the entire proof.

By Corollary 4.2, the previous theorem covers all the possibilities for the eigenvalues of Ḣ1 and Ḣ2.
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5. Examples

At this point, the next natural step could be creating a list of parameter sets for a limited number of
vertices. In fact, they can easily be obtained on the basis of the results of the previous section. Here we skip
their presentation and restrict ourselves to the certain examples supported by additional theoretical results.

5.1. For Theorem 4.3(ii)
Lemma 5.1. Assume that Ḣ is a signed graph with 2 eigenvalues and that Ġ is determined by

AĠ =

(
AḢ B
B −AḢ

)
,

where B commutes with AḢ and satisfies the condition of Theorem 4.3(ii), while |B| has a constant row sum. Then Ġ
has exactly 2 (symmetric) eigenvalues of the form ±

√
a + b, where a and b denote the row sums of |AḢ | and |B|,

respectively.

Proof. Since the blocks of xI − AĠ commute, we have∣∣∣xI − AĠ

∣∣∣ =
∣∣∣(xI − AḢ

) (
xI + AḢ

)
− B2

∣∣∣ =
∣∣∣∣x2I −

(
A2

Ḣ + B2
)∣∣∣∣ .

Due to the remaining assumptions (on B), the last determinant is equal to |(x2
− (a + b))I|, where a and b

denote the row sums of |AḢ | and |B|, respectively. (Recall that, since Ḣ has 2 eigenvalues, it is regular, and
so |AḢ | has a constant row sum). Therefore, Ġ has 2 eigenvalues (of the form ±

√
a + b).

The following example arises naturally.

Example 5.2. If Ḣ is a signed graph with 2 symmetric eigenvalues and vertex degree r, by taking B = ±AḢ

or B = ±I in Lemma 5.1, we obtain a signed graph Ġ with 2 eigenvalues: ±
√

2r in the first case and ±
√

r + 1
in the second. Indeed, B obviously satisfies all the assumptions of the corresponding lemma, while the
eigenvalues are computed as in the same result.

In this way we obtain infinite families of decompositions (Ġi, Ḣi,−Ḣi), i ≥ 0. Namely, it is sufficient
to take Ḣ0 to be any signed graph with 2 symmetric eigenvalues, obtain Ġ0 by choosing B as above and
set Ḣi+1 = Ġi.

Recall that the r-dimensional cube Qr is the r-regular graph of order 2r with the vertex set {0, 1}r

(all possible binary r-tuples) in which two vertices are adjacent if they differ in exactly one coordinate.
Accordingly, an r-dimensional signed cube is a signed graph whose underlying graph is Qr. In [5], the
authors studied these signed graphs and proved that, for 2 ≤ r ≤ 4, the r-dimensional signed cube with
negative quadrangles has 2 eigenvalues. We generalize this result.

Theorem 5.3. For every r ≥ 2, up to the switching isomorphism, there exists a unique r-dimensional signed cube Q̇r
with negative quadrangles. Its eigenvalues are ±

√
r.

Proof. Obviously, Q̇2 is isomorphic to a negative quadrangle, all negative quadrangles are switching iso-
morphic and their common eigenvalues are

√
2 and −

√
2.

Assume that our statement holds for Q̇r−1. If its colour classes are denoted by U1 and U2, then it is a
matter of routine to verify that Q̇r is obtained by taking the two copies of Q̇r−1 and inserting a positive
(resp. negative) edge between the corresponding copies of a vertex u if u ∈ U1 (resp. u ∈ U2). Its uniqueness
– up to the switching isomorphism – follows by the way of construction.

It remains to consider the eigenvalues. The adjacency matrix of Q̇r is the first matrix from below, where
the 2 × 2 top-left block and its diagonal counterpart both stand for the adjacency matrix of Q̇r−1.

O Nᵀ I O
N O O −I
I O O Nᵀ

O −I N O



O Nᵀ I O
N O O I
I O O −Nᵀ

O I −N O
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The second matrix is obtained by applying the switching with respect to the vertices of one colour class of
the second copy of Q̇r−1. The result follows by Lemma 5.1 applied to this matrix.

Here is a simple, but significant, corollary.

Corollary 5.4. If H is a subgraph of Qr induced by any set of 2r−1 + 1 vertices, then the maximum vertex degree of H,
∆(H), satisfies ∆(H) ≥

√
r.

Proof. If Q̇r is the r-dimensional signed cube with negative quadrangles and Ḣ is its subgraph sharing the
vertex set with H, then by Theorem 5.3 and the interlacing argument, the largest eigenvalue of Ḣ is ≥

√
r,

which means that the largest eigenvalue of its underlying graph H is also ≥
√

r (as the largest eigenvalue
of a signed graph never exceeds the largest eigenvalue of its underlying graph [14]), and consequently we
get ∆(H) ≥

√
r.

Remark 5.5. The inequality of Corollary 5.4 is a fundamental ingredient for the resolution of the Sensitivity Conjecture
posed by Nisan and Szegedy in 1992 [12]. The resolution can be found in Huang [10].

There are examples even if the spectrum of Ḣ is non-symmetric. By computer search, we found that
a signed graph with 20 vertices and eigenvalues ±

√
10 can be decomposed into L(K5) (with eigenvalues 3

and −2) and its negation.

5.2. For Theorem 4.3(iii)
Here is just one example. (In the exponential notation, the exponent denotes the multiplicity of the

corresponding eigenvalue.)

Example 5.6. For n ≥ 3, the signed line graph L(Kn+1) (with spectrum [(n− 1)n, (−2)(
n
2)]) can be decomposed

into L(Kn) (with spectrum [(n − 2)n−1, (−2)(
n−1

2 )]) and Kn (with spectrum [n − 1, (−1)n−1]).
Indeed, the edges incident with a fixed vertex of Kn+1 induce Kn in L(Kn+1), while the remaining edges

induce L(Kn) in the same signed line graph. Both Kn and L(Kn) are star complements in L(Kn+1) (for distinct
eigenvalues).

5.3. For Theorem 4.3(iv)
In [16], we proved that a connected signed graph L(G̈) has exactly 2 eigenvalues, whenever G is an

r-regular graph with n (n ≥ 3) vertices. Moreover, we have BηB
ᵀ
η = 2rI (Bη being defined in Section 2), which

together with (2) gives the characteristic polynomial

ΦL(G̈) = (x + 2)n(r−1) (x − 2(r − 1))n . (7)

Using this, we arrive at a very rich family of decompositions.

Example 5.7. Take any regular graph G which contains 2 connected regular spanning subgraphs H1 and H2,
both with vertex degree at least 2 and such that every edge of G belongs to exactly one of them – there are
plenty of possibilities. Then, L(G̈) is decomposed into L(Ḧ1) and L(Ḧ2), and each of them has 2 eigenvalues
which can be computed by (7).

If we allow H2 to be induced by a perfect matching of G, then we arrive at a decomposition into L(Ḧ1)
(with 2 eigenvalues, unless G is an even cycle) and a totally disconnected signed graph L(Ḧ2) (with just one
eigenvalue).

Remark 5.8. Observing that the formula (7) depends only on n and r, we obtain an easy way to construct switching
non-isomorphic signed graphs that share the same spectrum. Only what we need is to select a pair of non-isomorphic
regular graphs with equal number of vertices and equal vertex degree. If these graphs are denoted by G and H,
then L(G̈) and L(Ḧ) are the desired signed graphs. They are non-isomorphic because their underlying graphs are
non-isomorphic.
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We continue with decompositions including connected signed graphs which are not signed line graphs,
but their eigenvalues are not less than −2 (they are, so-called, exceptional signed graphs). It is known, say
from [3], that every exceptional signed graph has a representation in the root system E8; we believe that the
reader is familiar with this and similar systems.

Any set of (the 120) positive roots of E8 represents a signed graph, say Ṁ8, with spectrum [288, (−2)112].
(In other words, we have AṀ8

= NᵀN − 2I, where N is obtained by arranging all the positive roots as
its columns.) In addition, signed graphs obtained for different choices of positive roots are switching
isomorphic. Similarly, any set of (the 63) positive roots of E7 represents a signed graph, Ṁ7, with spectrum
[168, (−2)56].

Example 5.9. Signed graphs with eigenvalues ±2 are fully determined in [16] (the main part of this result
has been reported earlier in [5]; for a more general approach, the reader can consult [11]). There is an infinite
family of such signed graphs, and it occurs that exactly 2 of them are exceptional: the first has 14 vertices
and spectrum [27, (−2)7], and the second (the 4-dimensional cube with negative quadrangles) has 16 vertices
and spectrum [28, (−2)8].

In what follows, we refer to the list of positive roots of E8 expressed on the basis of fundamental roots;
for example, given in [6].

The exceptional signed graph with 16 vertices is represented by the roots 1, 2, 3, 4, 6, 15, 18, 21, 44, 48, 49, 86,
87, 97, 119 and 120 of [6, Appendix B]. By taking the remaining positive roots, we arrive at the signed graph
with spectrum [248, (−2)96]. Clearly, this pair of signed graphs decomposes Ṁ8 (in the sense of Theo-
rem 4.3(iv)).

Similarly, the exceptional signed graph with 14 vertices is represented by the roots 1, 2, 3, 4, 6, 7, 18, 21, 44,
48, 49, 80, 82 and 97 of [6, Appendix B], and all these roots belong to some E7. By taking the remaining
positive roots of that E7, we get the signed graph with spectrum [127, (−2)42] and complete a decomposition
of Ṁ7.

The exceptional signed graph with 16 vertices is the 8-vertex extension of the exceptional star comple-
ment enumerated by 641 in [7, Table 3]. The other exceptional signed graph is the 7-vertex extension of
each of the exceptional star complements enumerated by 1, 111, 112 and 113 in [7, Table 2].

Example 5.10. By (7), L(C̈8) shares the spectrum with the exceptional signed graph with 16 vertices men-
tioned in the previous example. To reveal its representation in E8, it is convenient to express the roots
as linear combinations of the canonical basis of R8; if necessary, see [4, 7, 15]. Then we easily conclude
that L(C̈8) is represented by the roots ei ± ei+1, where 1 ≤ i ≤ 8 and the vector index larger than 8 is taken
to be mod 8. Again, by taking the remaining positive roots, we get another decomposition of Ṁ8. The two
larger signed graphs – obtained in this and the previous example, both with 104 vertices – share the same
spectrum, but they are switching non-isomorphic.
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