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Abstract. In this paper, we investigate some conditions under which the action of an operator on a K-
frame, remain again a K-frame for Hilbert module E. We also give a generalization of Douglas theorem to
prove that the sum of two K-frames under certain condition is again a K-frame. Finally, we characterize the
K-frame generators in terms of operators.

1. Introduction

Frames were first introduced in 1952 by Duffin and Schaeffer [6]. Frames can be viewed as redundant
bases which are generalization of orthonormal bases. Many generalizations of frames were introduced,
e.g., frames of subspaces [4], Pseudo-frames [1], G-frames [17], and fusion frames [3]. Recently, L. Gavruta
introduced the concept of K-frame for a given bounded operator K on Hilbert space in [10]. Hilbert C∗-
modules arose as generalizations of the notion of Hilbert space. The basic idea was to consider modules
over C∗-algebras instead of linear spaces and to allow the inner product to take values in the C∗-algebra
of coefficients being C∗-(anti-)linear in its arguments [13]. In [8] authors generalized frame concept for
operators in Hilbert C∗-modules. The paper is organized as follows. In Section 2, some notations and
preliminary results of Hilbert Modules, their frames and K-frames are given. In Section 3, we study the
action of operators on K-frames and under certain conditions, we shall show that it is again a K-frame. The
next section is devoted to sum of K-frames. In fact, to show that the sum of two K-frames under certain
conditions is again a K-frame we need to say a generalization of the Douglas Theorem [18], which may
interest by its own. Finally, in the last section, we consider a unitary system of operators and characterize
the K-frame generators in terms of operators. We also look forward to sum of two K-frame generators to
be a K-frame generator.

2. Preliminaries

In this section we give some preliminaries about frames, K-frames in Hilbert spaces and Hilbert modules
and related operators which we need in the following sections. A finite or countable sequence { fk}k∈J is
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called a frame for a separable Hilbert space H if there exist constants A,B > 0 such that

A‖ f ‖2 ≤
∑
k∈J

|〈 f , fk〉|2 ≤ B‖ f ‖2, ∀ f ∈ H.

Frank and Larson [8] introduced the notion of frames in Hilbert C∗-modules as a generalization of frames
in Hilbert spaces. A (left) Hilbert C∗-module over the C∗-algebraA is a leftA-module E equipped with an
A-valued inner product satisfy the following conditions:

1. 〈x, x〉 ≥ 0 for every x ∈ E and 〈x, x〉 = 0 if and only if x = 0,
2. 〈x, y〉 = 〈y, x〉∗ for every x, y ∈ E,
3. 〈·, ·〉 isA-linear in the first argument,
4. E is complete with respect to the norm ‖x‖2 = ‖〈x, x〉‖A.

Given Hilbert C∗-modules E and F, we denote by LA(E,F) or L(E,F) the set of all adjointable operators from
E to F i.e. the set of all maps T : E→ F such that there exists T∗ : F→ E with the property

〈Tx, y〉 = 〈x,T∗y〉,

for all x ∈ E, y ∈ F. It is well-known that each adjointable operator is necessarily bounded A-linear in the
sense T(ax) = aT(x), for all a ∈ A, x ∈ E. We denote L(E) for L(E,E). In fact L(E) is a C∗-algebra.

LetA be a C∗-algebra and consider

`2(A) := {{a j}n ⊆ A :
∑

j

ana∗j converges in norm inA}.

It is easy to see that `2(A) with pointwise operations and the inner product

〈{a j}, {b j}〉 =
∑

j

a jb j
∗,

becomes a Hilbert C∗-module which is called the standard Hilbert C∗-module overA. Throughout this paper,
we suppose E is a HilbertA-module and J a countable index set. Also, we denote the range of T ∈ L(E) by
R(T), and the kernel of T by N(T). A HilbertA-module E is called finitely generated (countably generated)
if there exists a finite subset {x1, ..., x j} (countable set {x j} j∈J) of E such that E equals the closedA-linear hull
of this set. The basic theory of Hilbert C∗-modules can be found in [13].

The following lemma found the relation between the range of an operator and the kernel of its adjoint
operator.

Lemma 2.1. ([19], Lemma 15.3.5; [13], Theorem 3.2 ) Let T ∈ L(E,F). Then

1. N(T) = N(|T|), N(T∗) = R(T)⊥, N(T∗)⊥ = R(T)⊥⊥ ⊇ R(T);
2. R(T) is closed if and only if R(T∗) is closed, and in this case R(T) and R(T∗)are orthogonally complemented with

R(T) = N(T∗)⊥ and R(T∗) = N(T)⊥.

The following theorem is extended Douglas theorem [7] for Hilbert modules.

Theorem 2.2. [18] Let T′ ∈ L(G,F) and T ∈ L(E,F) with R(T∗) orthogonally complemented. The following
statements are equivalent:

1. T′T′∗ ≤ λTT∗ for some λ > 0;
2. There exists µ > 0 such that ‖T′∗z‖ ≤ µ‖T∗z‖ for all z ∈ F;
3. There exists D ∈ L(G,E)such that T′ = TD, i.e. the equation TX = T′ has a solution;
4. R(T′) ⊆ R(T).
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Here, we recall the concept of frame in Hilbert C∗-modules which is defined in [8]. Let E be a countably
generated Hilbert module over a unital C∗-algebra A. A sequence {x j} j∈J ⊂ E is said to be a frame if there
exist two constant C,D > 0 such that

C〈x, x〉 ≤
∑

j

〈x, x j〉〈x j, x〉 ≤ D〈x, x〉, for all x ∈ E. (1)

The optimal constants (i.e. maximal for C and minimal for D) are called frame bounds. If the sum in (1)
converges in norm, the frame is called standard frame. In this paper all frames consider standard frames.
The sequence {x j} j∈J is called a Bessel sequence with bound D if the upper inequality in (1) holds for every
x ∈ E.
Let {x j} j∈J be a Bessel sequence for Hilbert module E over A. The operator T : E→ `2(A) defined by
Tx = {〈x, x j〉} j∈J is called the analysis operator. The adjoint operator T∗ : `2(A)→ E which is given by

T∗{c j} j∈J =
∑
j∈J

c jx j,

is called the pre-frame operator or the synthesis operator. By composing T and T∗, we obtain the frame operator
S : E→ E given by

Sx = T∗Tx =
∑
j∈J

〈x, x j〉x j, (x ∈ E).

By [8], if {x j} j∈J is a frame, the frame operator is positive and invertible. Also it is the unique operator in
L(E) such that the reconstruction formula

x =
∑
j∈J

〈x,S−1x j〉x j =
∑
j∈J

〈x, x j〉S−1x j, x ∈ E,

holds. It is easy to see that the sequence {S−1x j} j∈J , is a frame for E, and it is called the canonical dual frame
of {x j} j∈J.

Theorem 2.3. [[14], Proposition 2.2] Let {x j} j∈J be a sequence in E such that
∑

j∈J c jx j converges for all c = {c j} j∈J ∈

`2(A). Then {x j} j∈J is a Bessel sequence in E.

Theorem 2.4. [12] Let E be a finitely or countably generated Hilbert module over a unital C∗-algebraA, and {x j} j∈J
be a sequence in E. Then {x j} j∈J is a frame for E with bounds C and D if and only if

C‖x‖2 ≤ ‖
∑
j∈J

〈x, x j〉〈x j, x〉‖ ≤ D‖x‖2, (x ∈ E).

Najati in [14] extended the concept of atomic system and a K-frame to Hilbert modules.

Definition 2.5. A sequence {x j} j∈J of E is called an atomic system for K ∈ L(E) if the following statement hold:

1. The series
∑

j∈J c jx j converges for all c = {c j} j∈J ∈ `2(A);
2. There exists C > 0 such that for every x ∈ E there exists {a j,x} j∈J ∈ `

2(A) such that
∑

j∈J a j,xa∗ j,x ≤ C〈x, x〉 and
Kx =

∑
j∈J a j,xx j.

By Theorem 2.3, the condition (1) in the above definition, actually says that {x j} j∈J is a Bessel sequence.

Theorem 2.6. [14] If K ∈ L(E), then there exists an atomic system for K.

Theorem 2.7. [14] Let {x j} j∈J be a Bessel sequence for E and K ∈ L(E). Suppose that T ∈ L(E, `2(A)) is given by
T(x) = {〈x, x j〉} j∈J and R(T) is orthogonally complemented. Then the following statements are equivalent:
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1. {x j} j∈J is an atomic system for K;
2. There exist constants C,B > 0 such that

B‖K∗x‖2 ≤ ‖
∑

j

〈x, x j〉〈x j, x〉‖ ≤ C‖x‖2;

3. There exists D ∈ L(E, `2(A)) such that K = T∗D.

Definition 2.8. Let E be a HilbertA-module, {x j} j∈J ⊂ E and K ∈ L(E). The sequence {x j} j∈J is said to be a K-frame
if there exist constants C,D > 0 such that

C〈K∗x,K∗x〉 ≤
∑
j∈J

〈x, x j〉〈x j, x〉 ≤ D〈x, x〉, x ∈ E. (2)

The following theorem gives a characterization of K-frames using linear adjiontable operators.

Theorem 2.9. [14] Let K ∈ L(E) and {x j} j∈J be a Bessel sequence for E. Suppose that T ∈ L(E, `2(A)) is given by
T(x) = {〈x, x j〉} j∈J and R(T) is orthogonally complemented. Then {x j} j∈J is a K-frame for E if and only if there exists a
linear bounded operator L : `2(A)→ E such that Le j = x j and R(K) ⊆ R(L), where {e j} j∈J is the canonical orthonormal
basis for `2(A).

3. Operators On K-frames

In this section we study the action of an operator on a K-frame. The following lemma shows that the
action of an adjointable operator on a Bessel sequence is again a Bessel sequence.

Lemma 3.1. Let E be a Hilbert A-module and {x j} j∈J be a Bessel sequence. Then {Mx j} j∈J is a Bessel sequence for
every M ∈ L(E).

Proof. Since {x j} j∈J is a Bessel sequence there exists constant D such that∑
j∈J

〈x, x j〉〈x j, x〉 ≤ D〈x, x〉,

for every x ∈ E. So∑
j∈J

〈x,Mx j〉〈Mx j, x〉 =
∑
j∈J

〈M∗x, x j〉〈x j,M∗x〉

≤ D〈M∗x,M∗x〉
= D〈MM∗x, x〉

≤ D‖M‖2〈x, x〉,

for every x ∈ E.

Theorem 3.2. Let E be a HilbertA-module, K ∈ L(E) and {x j} j∈J be a K-frame for E. Let M ∈ L(E) with R(M) ⊂ R(K)
and R(K∗) is orthogonally complemented. Then {x j} j∈J is an M-frame for E.

Proof. Since {x j} j∈J is a K-frame then there exist positive numbers µ and λ such that

λ〈K∗x,K∗x〉 ≤
∑
j∈J

〈x, xn〉〈x j, x〉 ≤ µ〈x, x〉. (3)
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Using Theorem 2.2, the fact that R(M) ⊂ R(K) shows that MM∗ ≤ λ′KK∗ for some λ′ > 0. So

〈MM∗x, x〉 ≤ λ
′

〈KK∗x, x〉,

and hence,
λ
λ′
〈MM∗x, x〉 ≤ λ〈K∗x,K∗x〉.

From (3), we have
λ
λ′
〈MM∗x, x〉 ≤

∑
j∈J

〈x, x j〉〈x j, x〉 ≤ µ〈x, x〉.

Therefore, {x j} j∈J is an M-frame with the bounds
λ
λ′

and µ for E.

In the following theorem, we obtain the result of the last theorem by different conditions.

Theorem 3.3. Let {x j} j∈J be a K-frame for HilbertA-module E. Suppose that T ∈ L(E, l2(A)) with T(x) = {〈x, x j〉} j∈J

for every x ∈ E , R(T) is orthogonally complemented and M ∈ L(E) such that R(M) ⊂ R(K). Then {x j} j∈J is an
M-frame for E.

Proof. By Theorem 2.9, there exists L : `2(A) → E such that Le j = f j, j ∈ J and R(K) ⊂ R(L). So R(M) ⊂ R(L).
Now again by Theorem 2.9, we conclude that {x j} j∈J is an M-frame for E.

Theorem 3.4. Let E be a Hilbert A-module and K ∈ L(E) with the dense range. Let {x j} j∈J be a K-frame for E and
T ∈ L(E) has closed range. If {Tx j} j∈J is a K-frame for E, then T is surjective.

Proof. Suppose that K∗x = 0 for x ∈ E. Then for each y ∈ E, 〈Ky, x〉 = 〈y,K∗x〉 = 0 and So 〈z, x〉 = 0 for each z ∈ E.
Since R(K) is dense in E, hence x = 0 and so K∗ is injective. Now, we show that T∗ is injective too. Note that if
{Tx j} j∈J is a K-frame for E with bounds λ and µ, then

λ‖K∗x‖2 ≤ ‖
∑
j∈J

〈x,Tx j〉〈Tx j, x〉‖ ≤ µ‖x‖2,

and therefore,
λ‖K∗x‖2 ≤ ‖

∑
j∈J

〈T∗x, xn〉〈xn,T∗x〉‖ ≤ µ‖x‖2.

If x ∈ N(T∗) then T∗x = 0. Hence 〈T∗x, x j〉 = 0 for each j ∈ J, and so K∗x = 0, by the last inequality. Since K∗ is
injective, it follows that x = 0, and so T∗ is injective. Therefore

E = N(T∗) + R(T) = R(T) = R(T),

and this completes the proof.

Theorem 3.5. Let K ∈ L(E) and {x j} j∈J be a K-frame for E. If T ∈ L(E) has closed range, R(K∗) ⊂ R(T), R(TK) is
orthogonal complemented and KT = TK, then {Tx j} j∈J is a K-frame for R(T).

Proof. It was proved in [20] that if T has closed range, then T has the Moore-Penrose inverse operator T† such that
TT†T = T and T†TT† = T†. So TT†|R(T) = IR(T) and (TT†)∗ = I∗ = I = TT†. For every x ∈ R(T) we have

〈K∗x,K∗x〉 = 〈(TT†)∗K∗x, (TT†)∗K∗x〉

= 〈T†
∗
T∗K∗x,T†

∗
T∗K∗x〉

≤ ‖(T†)
∗
‖

2
〈T∗K∗x,T∗K∗x〉,
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and so
‖(T†)∗‖−2

〈K∗x,K∗x〉 ≤ 〈T∗K∗x,T∗K∗x〉.

Since {x j} j∈J is a K-frame, with lower frame bound λ and R(T∗K∗) ⊂ R(K∗T∗), then by Theorem 2.2, there exists some
λ
′

> 0 such that∑
j∈J

〈x,Txn〉〈Txn, x〉 =
∑
j∈J

〈T∗x, xn〉〈xn,T∗x〉

> λ〈K∗T∗x,K∗T∗x〉

> λ
′

λ〈T∗K∗x,T∗K∗x〉

> λ
′

λ‖(T†)∗‖2〈K∗x,K∗x〉.

This implies that {Tx j} j∈J satisfies in lower frame condition. On the other hand, by Lemma 3.1, {Tx j} j∈J is a Bessel
sequence and therefore {Tx j} j∈J is a K-frame for Hilbert module R(T).

Theorem 3.6. Let E be a Hilbert A-module, K ∈ L(E) and {x j} j∈J be a K-frame for E. Moreover, let T ∈ L(E) be a
co-isometry such that R(T∗K∗) ⊂ R(K∗T∗) and R(TK) is orthogonal complemented. Then {Tx j} j∈J is a K-frame for E.

Proof. Using Lemma 3.1, {Tx j} j∈J is a Bessel sequence. Also, by Theorem 2.2, there exists λ′ > 0 such that
‖T∗K∗x‖2 ≤ λ′‖K∗T∗x‖2, for each x ∈ E. Suppose λ is a lower bound for the K-frame {x j} j∈J. Since T is a co-isometry,
then

λ
λ′
‖K∗x‖2 =

λ
λ′
‖T∗K∗x‖2

≤ λ‖K∗T∗x‖2

≤

∑
j∈J

〈T∗x, xn〉〈xn,T∗x〉

=
∑
j∈J

〈x,Txn〉〈Txn, x〉,

which implies that {Tx j} j∈J is a K-frame for E.

Remark 3.7. Consider K ∈ L(E) with dense range, T ∈ L(E) with closed range such that TK = KT and {x j} j∈J is a
K-frame for E. Then {Tx j} j∈J is a K-frame for E if and only if T is surjective.

Theorem 3.8. Let K ∈ L(E) whose range is dense and {x j} j∈J is a K-frame for E. Moreover, let T ∈ L(E) has closed
the range. If {Tx j} j∈J and {T∗x j} j∈J are K-frames for E, then T is invertible.

Proof. By Theorem 3.4, T is surjective. Since {T∗x j} j∈J is a K-frame for E then there exist positive numbers µ and λ
such that for every x ∈ E

λ‖K∗x‖2 ≤ ‖
∑
j∈J

〈x,T∗x j〉〈T∗x j, x〉‖ ≤ µ‖x‖2.

So for x ∈ N(T) we have

λ‖K∗x‖2 ≤
∑
j∈J

〈x,T∗x j〉〈T∗x j, x〉 = 0.

Then ‖K∗x‖2 = 0 and so x ∈ N(K∗). On the other hand, K ∈ L(E) has dense range. Hence K∗ is injective and so T is
also injective.
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4. Sums of K-frames

In this section we show that the sum of two K-frames in a Hilbert C∗-module under certain conditions is
again a K-frame, it was proved in Hilbert space case by Ramu and Johnson [15]. In the proof of Theorem 3.2
of [13], it was indicated that if T has closed range then R(T∗T) is closed and R(T) = R(T∗T). The following
theorem says that this result still holds for adjointable operators between Hilbert C∗-modules (even though
R(T∗) may not be complemented).

Theorem 4.1. [13] For T in L(E,F), the sub-spaces R(T∗) and R(T∗T) have the same closure.

In [16], Sharifi proved that the converse of above theorem is also true.

Theorem 4.2 (Lemma 1.1, [16]). Suppose T ∈ L(E). Then the operator T has closed range if and only if R(TT∗) has
closed rang. In this case, R(T) = R(TT∗).

Corollary 4.3. Suppose T ∈ L(E)+. Then R(T) is closed if and only if R(T1/2) is closed. In this case, R(T) = R(T1/2).

Proof. The proof is immediately consequence of replacement T by T1/2 in the above theorem.

Theorem 4.4. Let E be a Hilbert module and A,B ∈ L(E) such that R(A) + R(B) is closed. Then

R(A) + R(B) = R((AA∗ + BB∗)
1
2 ).

Proof. Define T ∈ L(E ⊕ E) by T :=
[
A B
0 0

]
. Then T∗ =

[
A∗ 0
B∗ 0

]
, and

TT∗ =

[
A B
0 0

] [
A∗ 0
B∗ 0

]
=

[
AA∗ + BB∗ 0

0 0

]
.

So we have

(TT∗)1/2 =

[
(AA∗ + BB∗)1/2 0

0 0

]
.

On the other hand

T
[
E
E

]
=

[
A B
0 0

] [
E
E

]
,

thus
R(T) = R(A) + R(B) ⊕ {0}.

Since R(T) = (R(A) + R(B)) is closed then by Theorem 4.2, R(T) = R(TT∗). But by Corollary 4.3, R(TT∗) =
R((TT∗)1/2). So we have

R(A) + R(B) = R((AA∗ + BB∗)1/2).

The following theorem is a generalization of Douglas theorem [Theorem 1.1, [18] ], for Hilbert modules.

Theorem 4.5. Let A,B1,B2 ∈ L(E) and R(B1) + R(B2) is closed. The following statements are equivalent.

1. R(A) ⊂ R(B1) + R(B2);
2. AA∗ ≤ λ(B1B1

∗ + B2B2
∗) for some λ > 0;

3. There exist X,Y ∈ L(E) such that A = B1X + B2Y.
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Proof. (1) =⇒ (2): Suppose R(A) ⊂ R(B1) + R(B2). Then by Theorem 4.4, we have

R(A) ⊂ R(B1) + R(B2)

= R((B1B1
∗ + B2B2

∗)1/2),

thus Theorem 2.2, implies AA∗ ≤ λ(B1B1
∗ + B2B2

∗) for some λ > 0.
(2) =⇒ (1): By Theorems 2.2, and 4.5, it is clear.
(3) =⇒ (1): It is obvious.
(1) =⇒ (3): Define S,T ∈ L(E ⊕ E) by

S =

[
A 0
0 0

]
, T =

[
B1 B2
0 0

]
.

Then R(S) ⊂ R(T) by Theorem 2.2. Suppose

X =

[
X1 X3
X2 X4

]
,

is the solution of S = TX, so we have A = B1X1 + B2X2. This completes the proof.

Following lemma shows that the sum of two Bessel sequences is a Bessel sequence too.

Lemma 4.6. Suppose that {x j} j∈J and {y j} j∈J are two Bessel sequences in Hilbert module E. Then, by the Minkowski’s
inequality, {x j + y j} j∈J is also a Bessel sequence for E.

Now we are going to show that under certain conditions the sum of two K-frame, is a K-frame.

Theorem 4.7. Let {x j} j∈J and {y j} j∈J be two K-frames for E and also let the corresponding operators in Theorem 2.9,
be L1 and L2 respectively. If L1L2

∗ and L2L1
∗ are positive operators and R(L1) + R(L2) is closed, then {x j + y j} j∈J is a

K-frame for E.

Proof. By the hypothesis we have

L1e j = x j,L2e j = y j,R(K) ⊂ R(L1),R(K) ⊂ R(L2),

where {e j} j∈J is the canonical orthonormal basis of `2(A). So R(K) ⊂ R(L1) + R(L2), by Theorem 4.5, and KK∗ ≤
λ(L1L1

∗ + L2L2
∗) for some λ > 0. On the other hand for each x ∈ E,∑

j∈J

〈x, x j + y j〉〈x j + y j, x〉 =
∑
j∈J

〈(L1
∗ + L2

∗)x, e j〉〈e j,L1
∗ + L2

∗)x〉

=
∑
j∈J

〈(L1 + L2)∗x, e j〉〈e j, (L1 + L2)∗x〉

= ‖(L1 + L2)∗x‖l2(A)

= 〈(L1 + L2)∗x, (L1 + L2)∗x〉
= 〈L1

∗x,L1
∗x〉 + 〈L1

∗x,L2
∗x〉

+ 〈L2
∗x,L1

∗x〉 + 〈L2
∗x,L2

∗x〉
> 〈(L1L1

∗ + L2L2
∗)x, x〉

>
1
λ

(〈KK∗x, x〉

>
1
λ

(〈K∗x,K∗x〉.

Thus {x j + y j} j∈J is a K−frame.
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5. K-frame vectors for unitary systems

A unitary system is a set of unitary operators which contains the identity operator. A vector ψ in E is
called a complete K-frame vector for a unitary systemU on E ifUψ = {Uψ | U ∈ U} is a K-frame for E. If
Uψ is an orthonormal basis for E, then ψ is called a complete wandering vector forU. The set of all complete
K-frame vectors and complete wandering vectors for U is denoted by FK(U) and ω(U), respectively. In
this section we characterize FK(U) in terms of operators and elements of ω(U).

Definition 5.1. For a unitary systemU on a Hilbert module E and ψ ∈ E, the local commutant Cψ(U) ofU at ψ is
defined by

Cψ(U) = {T ∈ L(E) | TUψ = UTψ, U ∈ U}.
Also, let `2

U
(A) be the HilbertA-module defined by

`2
U

(A) = {{aU} ⊂ A :
∑

aUa∗U converges in ‖.‖}.

The following theorem characterizes complete K-frame vectors in terms of operators on complete wandering
vectors.

Theorem 5.2. Suppose U is a unitary system of E, K ∈ L(E), ψ ∈ ω(U) and η ∈ E. Moreover, suppose that
ψη ∈ L(E, `2

U
(A)) is given by Tη(x) = {〈x,Uη〉}U∈U and R(Tη∗) is orthogonal complemented. Then η ∈ FK(U) if and

only if there exists an operator A ∈ Cψ(U) with R(K) ⊂ R(A) such that η = Aψ.

Proof. (=⇒) Suppose {eU}U∈U denote the standard orthonormal basis of `2
U

(A), where eU takes value 1A at U and
oA at every where else. Now suppose η ∈ FK(U). Define operator Tψ from E to `2

U
(A) by Tψx =

∑
U∈U〈x,Uψ〉eU.

It is easy to check that Tψ is well defined, adjointable and invertible. Let A = Tη∗Tψ. Then for any x ∈ E, we have
Ax =

∑
U∈U〈x,Uψ〉Uη and A∗x =

∑
U∈U〈x,Uη〉Uψ, also

〈A∗x,A∗x〉 = 〈
∑
U∈U

〈x,Uη〉Uψ,
∑
U∈U

〈x,Uη〉Uψ〉

=
∑
U∈U

〈x,Uη〉〈Uη, x〉

≥ c〈K∗x,K∗x〉,

(4)

where c > 0 is the lower bound for K-frame {Uη | U ∈ U}. On the other hand R(A) = R(Tη∗) and so by Theorem 2.2,
we have R(K) ⊂ R(A). To complete the proof, it remains to prove that η = Aψ and A ∈ Cψ(U). For any U and V in
U

〈Vη,AUψ〉 = 〈Vη,
∑
U∈U

〈Uψ,Wψ〉Wη〉

=
∑
U∈U

〈Vη,Wη〉〈Wψ,Uψ〉

= 〈Vψ,Uψ〉.

(5)

This implies that AUψ = Uη, so Aψ = η. Also AUψ = Uη = UAψ, hence A ∈ Cψ(U) and this completes the proof
of this part.
(⇐=): Suppose that there exists an operator A ∈ Cψ(U) with R(K) ⊂ R(A) such that η = Aψ. Then for any x ∈ E,
we have∑

U∈U

〈x,Uη〉〈Uη, x〉 =
∑
U∈U

〈x,UAψ〉〈UAψ, x〉

=
∑
U∈U

〈A∗x,Uψ〉〈Uψ,A∗x〉

= 〈A∗x,A∗x〉

≤ ‖A∗‖2‖x‖2.

(6)
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So {Uη | U ∈ U} is a Bessel sequence for E. Now let Tη and Tψ be the operators as we defined in the first part of
the proof, since η = Aψ so we have Tη = TψA∗. Since ψ ∈ w(U), it is easy to see that T∗ψ is invertible and hence
R(T∗η) = R(A). So R(K) ⊂ R(T∗η). Therefore , by using Theorem 3.2 of [8] it is concluded that η ∈ UK(U).
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