Filomat 34:6 (2020), 1771–1780 https://doi.org/10.2298/FIL2006771M

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Sum of K-Frames in Hilbert C*-Modules

Mohammad Mahmoudieh^{a,b}, Gholamreza Abbaspour Tabadkan^a, Aliakbar Arefijamaal^c

^a School of Mathematics and Computer Science, Damghan University, Damghan, Iran ^bDepartment of Basic Sciences, Faculty of Valiasr, Tehran Branch, Technical and Vocational University (TVU), Tehran, Iran. ^c Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.

Abstract. In this paper, we investigate some conditions under which the action of an operator on a *K*-frame, remain again a *K*-frame for Hilbert module E. We also give a generalization of Douglas theorem to prove that the sum of two *K*-frames under certain condition is again a *K*-frame. Finally, we characterize the *K*-frame generators in terms of operators.

1. Introduction

Frames were first introduced in 1952 by Duffin and Schaeffer [6]. Frames can be viewed as redundant bases which are generalization of orthonormal bases. Many generalizations of frames were introduced, e.g., frames of subspaces [4], Pseudo-frames [1], G-frames [17], and fusion frames [3]. Recently, L. Gavruta introduced the concept of *K*-frame for a given bounded operator K on Hilbert space in [10]. Hilbert C^* -modules arose as generalizations of the notion of Hilbert space. The basic idea was to consider modules over C^* -algebras instead of linear spaces and to allow the inner product to take values in the C^* -algebra of coefficients being C^* -(anti-)linear in its arguments [13]. In [8] authors generalized frame concept for operators in Hilbert C^* -modules. The paper is organized as follows. In Section 2, some notations and preliminary results of Hilbert Modules, their frames and *K*-frames are given. In Section 3, we study the action of operators on *K*-frames and under certain conditions, we shall show that it is again a *K*-frame. The next section is devoted to sum of *K*-frames. In fact, to show that the sum of two *K*-frames under certain conditions is again a *K*-frame we need to say a generalization of the Douglas Theorem [18], which may interest by its own. Finally, in the last section, we consider a unitary system of operators and characterize the *K*-frame generators in terms of operators. We also look forward to sum of two *K*-frame generators to be a *K*-frame generator.

2. Preliminaries

In this section we give some preliminaries about frames, *K*-frames in Hilbert spaces and Hilbert modules and related operators which we need in the following sections. A finite or countable sequence $\{f_k\}_{k \in J}$ is

²⁰¹⁰ Mathematics Subject Classification. Primary 42C15; Secondary 46C05, 47A05

Keywords. Hilbert C*-module, K-frame, Unitary system.

Received: 04 December 2018; Accepted: 05 June 2019

Communicated by Dragan S. Djordjević

Email addresses: mahmoudieh@du.ac.ir (Mohammad Mahmoudieh), abbaspour@du.ac.ir (Gholamreza Abbaspour Tabadkan), arefijamal@sttu.ac.ir (Aliakbar Arefijamaal)

called a frame for a separable Hilbert space H if there exist constants A, B > 0 such that

$$A||f||^2 \le \sum_{k \in \mathbb{J}} |\langle f, f_k \rangle|^2 \le B||f||^2, \quad \forall f \in H.$$

Frank and Larson [8] introduced the notion of frames in Hilbert C^* -modules as a generalization of frames in Hilbert spaces. A (left) Hilbert C^* -module over the C^* -algebra \mathcal{A} is a left \mathcal{A} -module E equipped with an \mathcal{A} -valued inner product satisfy the following conditions:

- 1. $\langle x, x \rangle \ge 0$ for every $x \in E$ and $\langle x, x \rangle = 0$ if and only if x = 0,
- 2. $\langle x, y \rangle = \langle y, x \rangle^*$ for every $x, y \in E$,
- 3. $\langle \cdot, \cdot \rangle$ is \mathcal{A} -linear in the first argument,
- 4. *E* is complete with respect to the norm $||x||^2 = ||\langle x, x \rangle||_{\mathcal{A}}$.

Given Hilbert *C*^{*}-modules *E* and *F*, we denote by $L_{\mathcal{A}}(E, F)$ or L(E, F) the set of all adjointable operators from *E* to *F* i.e. the set of all maps $T : E \to F$ such that there exists $T^* : F \to E$ with the property

$$\langle Tx, y \rangle = \langle x, T^*y \rangle,$$

for all $x \in E$, $y \in F$. It is well-known that each adjointable operator is necessarily bounded \mathcal{A} -linear in the sense T(ax) = aT(x), for all $a \in \mathcal{A}, x \in E$. We denote L(E) for L(E, E). In fact L(E) is a C^* -algebra.

Let \mathcal{A} be a C^* -algebra and consider

$$\ell^2(\mathcal{A}) := \{\{a_j\}_n \subseteq \mathcal{A} : \sum_j a_n a_j^* \text{ converges in norm in } \mathcal{A}\}.$$

It is easy to see that $\ell^2(\mathcal{A})$ with pointwise operations and the inner product

$$\langle \{a_j\}, \{b_j\} \rangle = \sum_j a_j b_j^*,$$

becomes a Hilbert C^{*}-module which is called the *standard Hilbert* C^{*}-module over \mathcal{A} . Throughout this paper, we suppose *E* is a Hilbert \mathcal{A} -module and \mathbb{J} a countable index set. Also, we denote the range of $T \in L(E)$ by R(T), and the kernel of *T* by N(T). A Hilbert \mathcal{A} -module *E* is called finitely generated (countably generated) if there exists a finite subset $\{x_1, ..., x_j\}$ (countable set $\{x_j\}_{j \in \mathbb{J}}$) of *E* such that *E* equals the closed \mathcal{A} -linear hull of this set. The basic theory of Hilbert C^{*}-modules can be found in [13].

The following lemma found the relation between the range of an operator and the kernel of its adjoint operator.

Lemma 2.1. ([19], Lemma 15.3.5; [13], Theorem 3.2) Let $T \in L(E, F)$. Then

- 1. $N(T) = N(|T|), N(T^*) = R(T)^{\perp}, N(T^*)^{\perp} = R(T)^{\perp \perp} \supseteq \overline{R(T)};$
- 2. R(T) is closed if and only if $R(T^*)$ is closed, and in this case R(T) and $R(T^*)$ are orthogonally complemented with $R(T) = N(T^*)^{\perp}$ and $R(T^*) = N(T)^{\perp}$.

The following theorem is extended Douglas theorem [7] for Hilbert modules.

Theorem 2.2. [18] Let $T' \in L(G, F)$ and $T \in L(E, F)$ with $\overline{R(T^*)}$ orthogonally complemented. The following statements are equivalent:

- 1. $T'T'^* \leq \lambda TT^*$ for some $\lambda > 0$;
- 2. There exists $\mu > 0$ such that $||T'^*z|| \le \mu ||T^*z||$ for all $z \in F$;
- 3. There exists $D \in L(G, E)$ such that T' = TD, i.e. the equation TX = T' has a solution;
- 4. $R(T') \subseteq R(T)$.

Here, we recall the concept of frame in Hilbert C^{*}-modules which is defined in [8]. Let *E* be a countably generated Hilbert module over a unital C^{*}-algebra \mathcal{A} . A sequence $\{x_j\}_{j\in J} \subset E$ is said to be a *frame* if there exist two constant C, D > 0 such that

$$C\langle x, x \rangle \le \sum_{j} \langle x, x_{j} \rangle \langle x_{j}, x \rangle \le D\langle x, x \rangle, \text{ for all } x \in E.$$
(1)

The optimal constants (i.e. maximal for *C* and minimal for *D*) are called *frame bounds*. If the sum in (1) converges in norm, the frame is called *standard frame*. In this paper all frames consider standard frames. The sequence $\{x_j\}_{j\in J}$ is called a *Bessel sequence* with bound *D* if the upper inequality in (1) holds for every $x \in E$.

Let $\{x_j\}_{j\in J}$ be a Bessel sequence for Hilbert module *E* over \mathcal{A} . The operator $T : E \to \ell^2(\mathcal{A})$ defined by $Tx = \{\langle x, x_j \rangle\}_{j\in J}$ is called the *analysis operator*. The adjoint operator $T^* : \ell^2(\mathcal{A}) \to E$ which is given by

$$T^*\{c_j\}_{j\in \mathbb{J}}=\sum_{j\in \mathbb{J}}c_jx_j,$$

is called the *pre-frame operator* or the *synthesis operator*. By composing *T* and *T*^{*}, we obtain the *frame operator* $S : E \to E$ given by

$$Sx = T^*Tx = \sum_{j \in \mathbb{J}} \langle x, x_j \rangle x_j, \ (x \in E).$$

By [8], if $\{x_j\}_{j \in \mathbb{J}}$ is a frame, the frame operator is positive and invertible. Also it is the unique operator in L(E) such that the reconstruction formula

$$x = \sum_{j \in \mathbb{J}} \langle x, S^{-1} x_j \rangle x_j = \sum_{j \in \mathbb{J}} \langle x, x_j \rangle S^{-1} x_j, \ x \in E,$$

holds. It is easy to see that the sequence $\{S^{-1}x_j\}_{j\in J}$, is a frame for *E*, and it is called the *canonical dual* frame of $\{x_i\}_{i\in J}$.

Theorem 2.3. [[14], Proposition 2.2] Let $\{x_j\}_{j\in\mathbb{J}}$ be a sequence in E such that $\sum_{j\in\mathbb{J}} c_j x_j$ converges for all $c = \{c_j\}_{j\in\mathbb{J}} \in \ell^2(\mathcal{A})$. Then $\{x_i\}_{i\in\mathbb{J}}$ is a Bessel sequence in E.

Theorem 2.4. [12] Let *E* be a finitely or countably generated Hilbert module over a unital C^{*}-algebra \mathcal{A} , and $\{x_j\}_{j \in \mathbb{J}}$ be a sequence in *E*. Then $\{x_i\}_{i \in \mathbb{J}}$ is a frame for *E* with bounds *C* and *D* if and only if

$$C||x||^{2} \leq ||\sum_{j\in \mathbb{J}} \langle x, x_{j} \rangle \langle x_{j}, x \rangle || \leq D||x||^{2}, (x \in E).$$

Najati in [14] extended the concept of atomic system and a K-frame to Hilbert modules.

Definition 2.5. A sequence $\{x_i\}_{i \in \mathbb{J}}$ of *E* is called an atomic system for $K \in L(E)$ if the following statement hold:

- 1. The series $\sum_{i \in \mathbb{J}} c_j x_j$ converges for all $c = \{c_i\}_{i \in \mathbb{J}} \in \ell^2(\mathcal{A})$;
- 2. There exists C > 0 such that for every $x \in E$ there exists $\{a_{j,x}\}_{j\in J} \in \ell^2(\mathcal{A})$ such that $\sum_{j\in J} a_{j,x}a^*_{j,x} \leq C\langle x, x \rangle$ and $Kx = \sum_{j\in J} a_{j,x}x_j$.

By Theorem 2.3, the condition (1) in the above definition, actually says that $\{x_i\}_{i \in \mathbb{J}}$ is a Bessel sequence.

Theorem 2.6. [14] If $K \in L(E)$, then there exists an atomic system for K.

Theorem 2.7. [14] Let $\{x_j\}_{j\in J}$ be a Bessel sequence for E and $K \in L(E)$. Suppose that $T \in L(E, \ell^2(\mathcal{A}))$ is given by $T(x) = \{\langle x, x_j \rangle\}_{j\in J}$ and $\overline{R(T)}$ is orthogonally complemented. Then the following statements are equivalent:

- 1. $\{x_i\}_{i \in \mathbb{J}}$ is an atomic system for K;
- 2. There exist constants C, B > 0 such that

$$B||K^*x||^2 \le ||\sum_j \langle x, x_j \rangle \langle x_j, x \rangle || \le C||x||^2;$$

3. There exists $D \in L(E, \ell^2(\mathcal{A}))$ such that $K = T^*D$.

Definition 2.8. Let *E* be a Hilbert \mathcal{A} -module, $\{x_j\}_{j \in \mathbb{J}} \subset E$ and $K \in L(E)$. The sequence $\{x_j\}_{j \in \mathbb{J}}$ is said to be a *K*-frame *if there exist constants C*, D > 0 such that

$$C\langle K^*x, K^*x\rangle \le \sum_{j\in\mathbb{J}} \langle x, x_j \rangle \langle x_j, x \rangle \le D\langle x, x \rangle, \ x \in E.$$
⁽²⁾

The following theorem gives a characterization of K-frames using linear adjiontable operators.

Theorem 2.9. [14] Let $K \in L(E)$ and $\{x_j\}_{j \in \mathbb{J}}$ be a Bessel sequence for E. Suppose that $T \in L(E, \ell^2(\mathcal{A}))$ is given by $T(x) = \{\langle x, x_j \rangle\}_{j \in \mathbb{J}}$ and $\overline{R(T)}$ is orthogonally complemented. Then $\{x_j\}_{j \in \mathbb{J}}$ is a K-frame for E if and only if there exists a linear bounded operator $L : \ell^2(\mathcal{A}) \to E$ such that $Le_j = x_j$ and $R(K) \subseteq R(L)$, where $\{e_j\}_{j \in \mathbb{J}}$ is the canonical orthonormal basis for $\ell^2(\mathcal{A})$.

3. Operators On K-frames

In this section we study the action of an operator on a *K*-frame. The following lemma shows that the action of an adjointable operator on a Bessel sequence is again a Bessel sequence.

Lemma 3.1. Let *E* be a Hilbert *A*-module and $\{x_j\}_{j\in J}$ be a Bessel sequence. Then $\{Mx_j\}_{j\in J}$ is a Bessel sequence for every $M \in L(E)$.

Proof. Since $\{x_i\}_{i \in \mathbb{J}}$ is a Bessel sequence there exists constant D such that

$$\sum_{j\in\mathbb{J}}\langle x,x_j\rangle\langle x_j,x\rangle\leq D\langle x,x\rangle,$$

for every $x \in E$. So

$$\sum_{j \in \mathbb{J}} \langle x, Mx_j \rangle \langle Mx_j, x \rangle = \sum_{j \in \mathbb{J}} \langle M^* x, x_j \rangle \langle x_j, M^* x \rangle$$
$$\leq D \langle M^* x, M^* x \rangle$$
$$= D \langle MM^* x, x \rangle$$
$$\leq D ||M||^2 \langle x, x \rangle,$$

for every $x \in E$. \Box

Theorem 3.2. Let *E* be a Hilbert *A*-module, $K \in L(E)$ and $\{x_j\}_{j \in J}$ be a *K*-frame for *E*. Let $M \in L(E)$ with $R(M) \subset R(K)$ and $\overline{R(K^*)}$ is orthogonally complemented. Then $\{x_j\}_{j \in J}$ is an *M*-frame for *E*.

Proof. Since $\{x_i\}_{i \in \mathbb{J}}$ is a K-frame then there exist positive numbers μ and λ such that

$$\lambda \langle K^* x, K^* x \rangle \leq \sum_{j \in \mathbb{J}} \langle x, x_n \rangle \langle x_j, x \rangle \leq \mu \langle x, x \rangle.$$
(3)

1774

Using Theorem 2.2, the fact that $R(M) \subset R(K)$ shows that $MM^* \leq \lambda' KK^*$ for some $\lambda' > 0$. So

$$\langle MM^*x, x \rangle \leq \lambda' \langle KK^*x, x \rangle$$

and hence,

$$\frac{\lambda}{\lambda'}\langle MM^*x,x\rangle \leq \lambda\langle K^*x,K^*x\rangle.$$

From (3), we have

$$\frac{\lambda}{\lambda'} \langle MM^*x, x \rangle \leq \sum_{j \in \mathbb{J}} \langle x, x_j \rangle \langle x_j, x \rangle \leq \mu \langle x, x \rangle.$$

Therefore, $\{x_j\}_{j \in J}$ *is an M-frame with the bounds* $\frac{\lambda}{\lambda'}$ *and* μ *for E.* \Box

In the following theorem, we obtain the result of the last theorem by different conditions.

Theorem 3.3. Let $\{x_j\}_{j\in \mathbb{J}}$ be a K-frame for Hilbert \mathcal{A} -module E. Suppose that $T \in L(E, l^2(A))$ with $T(x) = \{\langle x, x_j \rangle\}_{j\in \mathbb{J}}$ for every $x \in E$, $\overline{R(T)}$ is orthogonally complemented and $M \in L(E)$ such that $R(M) \subset R(K)$. Then $\{x_j\}_{j\in \mathbb{J}}$ is an *M*-frame for E.

Proof. By Theorem 2.9, there exists $L : \ell^2(\mathcal{A}) \to E$ such that $Le_j = f_j, j \in \mathbb{J}$ and $R(K) \subset R(L)$. So $R(M) \subset R(L)$. Now again by Theorem 2.9, we conclude that $\{x_i\}_{i \in \mathbb{J}}$ is an M-frame for E. \Box

Theorem 3.4. Let *E* be a Hilbert *A*-module and $K \in L(E)$ with the dense range. Let $\{x_j\}_{j \in J}$ be a *K*-frame for *E* and $T \in L(E)$ has closed range. If $\{Tx_j\}_{j \in J}$ is a *K*-frame for *E*, then *T* is surjective.

Proof. Suppose that $K^*x = 0$ for $x \in E$. Then for each $y \in E$, $\langle Ky, x \rangle = \langle y, K^*x \rangle = 0$ and So $\langle z, x \rangle = 0$ for each $z \in E$. Since R(K) is dense in E, hence x = 0 and so K^* is injective. Now, we show that T^* is injective too. Note that if $\{Tx_j\}_{j \in J}$ is a K-frame for E with bounds λ and μ , then

$$\lambda \|K^* x\|^2 \le \|\sum_{j \in \mathbb{J}} \langle x, T x_j \rangle \langle T x_j, x \rangle \| \le \mu \|x\|^2,$$

and therefore,

$$\lambda \|K^* x\|^2 \le \|\sum_{j\in \mathbb{J}} \langle T^* x, x_n \rangle \langle x_n, T^* x \rangle \| \le \mu \|x\|^2.$$

If $x \in N(T^*)$ then $T^*x = 0$. Hence $\langle T^*x, x_j \rangle = 0$ for each $j \in J$, and so $K^*x = 0$, by the last inequality. Since K^* is injective, it follows that x = 0, and so T^* is injective. Therefore

$$E = N(T^*) + \overline{R(T)} = \overline{R(T)} = R(T),$$

and this completes the proof. \Box

Theorem 3.5. Let $K \in L(E)$ and $\{x_j\}_{j \in J}$ be a K-frame for E. If $T \in L(E)$ has closed range, $R(K^*) \subset R(T)$, R(TK) is orthogonal complemented and KT = TK, then $\{Tx_j\}_{j \in J}$ is a K-frame for R(T).

Proof. It was proved in [20] that if T has closed range, then T has the Moore-Penrose inverse operator T^{\dagger} such that $TT^{\dagger}T = T$ and $T^{\dagger}TT^{\dagger} = T^{\dagger}$. So $TT^{\dagger}|_{R(T)} = I_{R(T)}$ and $(TT^{\dagger})^* = I^* = I = TT^{\dagger}$. For every $x \in R(T)$ we have

$$\begin{split} \langle K^*x, K^*x \rangle &= \langle (TT^\dagger)^*K^*x, (TT^\dagger)^*K^*x \rangle \\ &= \langle T^{\dagger^*}T^*K^*x, T^{\dagger^*}T^*K^*x \rangle \\ &\leq \| (T^\dagger)^* \|^2 \langle T^*K^*x, T^*K^*x \rangle, \end{split}$$

1775

and so

$$||(T^{\dagger})^{*}||^{-2}\langle K^{*}x, K^{*}x\rangle \leq \langle T^{*}K^{*}x, T^{*}K^{*}x\rangle.$$

Since $\{x_j\}_{j \in J}$ is a K-frame, with lower frame bound λ and $R(T^*K^*) \subset R(K^*T^*)$, then by Theorem 2.2, there exists some $\lambda' > 0$ such that

$$\sum_{j \in \mathbb{J}} \langle x, Tx_n \rangle \langle Tx_n, x \rangle = \sum_{j \in \mathbb{J}} \langle T^*x, x_n \rangle \langle x_n, T^*x \rangle$$
$$\geq \lambda \langle K^*T^*x, K^*T^*x \rangle$$
$$\geq \lambda' \lambda \langle T^*K^*x, T^*K^*x \rangle$$
$$\geq \lambda' \lambda ||(T^{\dagger})^*||^2 \langle K^*x, K^*x \rangle.$$

This implies that $\{Tx_j\}_{j\in J}$ satisfies in lower frame condition. On the other hand, by Lemma 3.1, $\{Tx_j\}_{j\in J}$ is a Bessel sequence and therefore $\{Tx_j\}_{j\in J}$ is a K-frame for Hilbert module R(T). \Box

Theorem 3.6. Let *E* be a Hilbert \mathcal{A} -module, $K \in L(E)$ and $\{x_j\}_{j \in \mathbb{J}}$ be a *K*-frame for *E*. Moreover, let $T \in L(E)$ be a co-isometry such that $R(T^*K^*) \subset R(K^*T^*)$ and $\overline{R(TK)}$ is orthogonal complemented. Then $\{Tx_j\}_{j \in \mathbb{J}}$ is a *K*-frame for *E*.

Proof. Using Lemma 3.1, $\{Tx_j\}_{j\in J}$ is a Bessel sequence. Also, by Theorem 2.2, there exists $\lambda' > 0$ such that $||T^*K^*x||^2 \le \lambda' ||K^*T^*x||^2$, for each $x \in E$. Suppose λ is a lower bound for the K-frame $\{x_j\}_{j\in J}$. Since T is a co-isometry, then

$$\begin{split} \frac{\lambda}{\lambda'} ||K^*x||^2 &= \frac{\lambda}{\lambda'} ||T^*K^*x||^2 \\ &\leq \lambda ||K^*T^*x||^2 \\ &\leq \sum_{j \in \mathbb{J}} \langle T^*x, x_n \rangle \langle x_n, T^*x \rangle \\ &= \sum_{j \in \mathbb{J}} \langle x, Tx_n \rangle \langle Tx_n, x \rangle, \end{split}$$

which implies that $\{Tx_i\}_{i \in \mathbb{I}}$ is a K-frame for E. \Box

Remark 3.7. Consider $K \in L(E)$ with dense range, $T \in L(E)$ with closed range such that TK = KT and $\{x_j\}_{j \in J}$ is a *K*-frame for *E*. Then $\{Tx_i\}_{i \in J}$ is a *K*-frame for *E* if and only if *T* is surjective.

Theorem 3.8. Let $K \in L(E)$ whose range is dense and $\{x_j\}_{j \in J}$ is a K-frame for E. Moreover, let $T \in L(E)$ has closed the range. If $\{Tx_j\}_{j \in J}$ and $\{T^*x_j\}_{j \in J}$ are K-frames for E, then T is invertible.

Proof. By Theorem 3.4, T is surjective. Since $\{T^*x_j\}_{j\in J}$ is a K-frame for E then there exist positive numbers μ and λ such that for every $x \in E$

$$\lambda ||K^*x||^2 \le ||\sum_{j\in \mathbb{J}} \langle x, T^*x_j \rangle \langle T^*x_j, x \rangle || \le \mu ||x||^2.$$

So for $x \in N(T)$ we have

$$\lambda ||K^*x||^2 \le \sum_{j \in \mathbb{J}} \langle x, T^*x_j \rangle \langle T^*x_j, x \rangle = 0.$$

Then $||K^*x||^2 = 0$ and so $x \in N(K^*)$. On the other hand, $K \in L(E)$ has dense range. Hence K^* is injective and so T is also injective. \Box

4. Sums of K-frames

In this section we show that the sum of two *K*-frames in a Hilbert *C*^{*}-module under certain conditions is again a *K*-frame, it was proved in Hilbert space case by Ramu and Johnson [15]. In the proof of Theorem 3.2 of [13], it was indicated that if *T* has closed range then $R(T^*T)$ is closed and $R(T) = R(T^*T)$. The following theorem says that this result still holds for adjointable operators between Hilbert *C*^{*}-modules (even though $\overline{R(T^*)}$ may not be complemented).

Theorem 4.1. [13] For T in L(E, F), the sub-spaces $R(T^*)$ and $R(T^*T)$ have the same closure.

In [16], Sharifi proved that the converse of above theorem is also true.

Theorem 4.2 (Lemma 1.1, [16]). Suppose $T \in L(E)$. Then the operator T has closed range if and only if $R(TT^*)$ has closed rang. In this case, $R(T) = R(TT^*)$.

Corollary 4.3. Suppose $T \in L(E)^+$. Then R(T) is closed if and only if $R(T^{1/2})$ is closed. In this case, $R(T) = R(T^{1/2})$.

Proof. The proof is immediately consequence of replacement T by $T^{1/2}$ in the above theorem. \Box

Theorem 4.4. Let *E* be a Hilbert module and $A, B \in L(E)$ such that R(A) + R(B) is closed. Then

$$R(A) + R(B) = R((AA^* + BB^*)^{\frac{1}{2}}).$$

Proof. Define $T \in L(E \oplus E)$ by $T := \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix}$. Then $T^* = \begin{bmatrix} A^* & 0 \\ B^* & 0 \end{bmatrix}$, and $TT^* = \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} \begin{bmatrix} A^* & 0 \\ B^* & 0 \end{bmatrix} = \begin{bmatrix} AA^* + BB^* & 0 \\ 0 & 0 \end{bmatrix}.$

So we have

$$(TT^*)^{1/2} = \begin{bmatrix} (AA^* + BB^*)^{1/2} & 0\\ 0 & 0 \end{bmatrix}.$$

On the other hand

$$T\begin{bmatrix} E\\ E\end{bmatrix} = \begin{bmatrix} A & B\\ 0 & 0\end{bmatrix}\begin{bmatrix} E\\ E\end{bmatrix},$$

thus

$$R(T) = R(A) + R(B) \oplus \{0\}.$$

Since R(T) = (R(A) + R(B)) is closed then by Theorem 4.2, $R(T) = R(TT^*)$. But by Corollary 4.3, $R(TT^*) = R((TT^*)^{1/2})$. So we have

$$R(A) + R(B) = R((AA^* + BB^*)^{1/2}).$$

The following theorem is a generalization of Douglas theorem [Theorem 1.1, [18]], for Hilbert modules.

Theorem 4.5. Let $A, B_1, B_2 \in L(E)$ and $R(B_1) + R(B_2)$ is closed. The following statements are equivalent.

- 1. $R(A) \subset R(B_1) + R(B_2);$
- 2. $AA^* \leq \lambda (B_1B_1^* + B_2B_2^*)$ for some $\lambda > 0$;
- 3. There exist $X, Y \in L(E)$ such that $A = B_1X + B_2Y$.

Proof. (1) \implies (2): Suppose $R(A) \subset R(B_1) + R(B_2)$. Then by Theorem 4.4, we have

 $R(A) \subset R(B_1) + R(B_2)$ = $R((B_1B_1^* + B_2B_2^*)^{1/2}),$

thus Theorem 2.2, implies $AA^* \leq \lambda(B_1B_1^* + B_2B_2^*)$ for some $\lambda > 0$. (2) \Longrightarrow (1): By Theorems 2.2, and 4.5, it is clear. (3) \Longrightarrow (1): It is obvious. (1) \Longrightarrow (3): Define $S, T \in L(E \oplus E)$ by

$$S = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}, \qquad T = \begin{bmatrix} B_1 & B_2 \\ 0 & 0 \end{bmatrix}.$$

Then $R(S) \subset R(T)$ *by Theorem 2.2. Suppose*

$$X = \begin{bmatrix} X_1 & X_3 \\ X_2 & X_4 \end{bmatrix},$$

is the solution of S = TX, so we have $A = B_1X_1 + B_2X_2$. This completes the proof. \Box

Following lemma shows that the sum of two Bessel sequences is a Bessel sequence too.

Lemma 4.6. Suppose that $\{x_j\}_{j\in J}$ and $\{y_j\}_{j\in J}$ are two Bessel sequences in Hilbert module *E*. Then, by the Minkowski's inequality, $\{x_i + y_j\}_{j\in J}$ is also a Bessel sequence for *E*.

Now we are going to show that under certain conditions the sum of two K-frame, is a K-frame.

Theorem 4.7. Let $\{x_j\}_{j\in J}$ and $\{y_j\}_{j\in J}$ be two K-frames for E and also let the corresponding operators in Theorem 2.9, be L_1 and L_2 respectively. If $L_1L_2^*$ and $L_2L_1^*$ are positive operators and $R(L_1) + R(L_2)$ is closed, then $\{x_j + y_j\}_{j\in J}$ is a K-frame for E.

Proof. By the hypothesis we have

$$L_1e_i = x_i, L_2e_i = y_i, R(K) \subset R(L_1), R(K) \subset R(L_2),$$

where $\{e_j\}_{j\in \mathbb{J}}$ is the canonical orthonormal basis of $\ell^2(\mathcal{A})$. So $R(K) \subset R(L_1) + R(L_2)$, by Theorem 4.5, and $KK^* \leq \lambda(L_1L_1^* + L_2L_2^*)$ for some $\lambda > 0$. On the other hand for each $x \in E$,

$$\sum_{j\in\mathbb{J}} \langle x, x_j + y_j \rangle \langle x_j + y_j, x \rangle = \sum_{j\in\mathbb{J}} \langle (L_1^* + L_2^*)x, e_j \rangle \langle e_j, L_1^* + L_2^*)x \rangle$$

$$= \sum_{j\in\mathbb{J}} \langle (L_1 + L_2)^*x, e_j \rangle \langle e_j, (L_1 + L_2)^*x \rangle$$

$$= ||(L_1 + L_2)^*x||_{l^2(\mathcal{R})}$$

$$= \langle (L_1 + L_2)^*x, (L_1 + L_2)^*x \rangle$$

$$= \langle L_1^*x, L_1^*x \rangle + \langle L_2^*x, L_2^*x \rangle$$

$$+ \langle L_2^*x, L_1^*x \rangle + \langle L_2^*x, L_2^*x \rangle$$

$$\geq \langle (L_1L_1^* + L_2L_2^*)x, x \rangle$$

$$\geq \frac{1}{\lambda} (\langle KK^*x, K^*x \rangle.$$

Thus $\{x_i + y_i\}_{i \in \mathbb{J}}$ is a K-frame. \Box

5. K-frame vectors for unitary systems

A unitary system is a set of unitary operators which contains the identity operator. A vector ψ in *E* is called a *complete K-frame* vector for a unitary system \mathcal{U} on *E* if $\mathcal{U}\psi = \{U\psi \mid U \in \mathcal{U}\}$ is a K-frame for *E*. If $\mathcal{U}\psi$ is an orthonormal basis for *E*, then ψ is called a *complete wandering* vector for \mathcal{U} . The set of all complete K-frame vectors and complete wandering vectors for \mathcal{U} is denoted by $\mathcal{F}_K(\mathcal{U})$ and $\omega(\mathcal{U})$, respectively. In this section we characterize $\mathcal{F}_K(\mathcal{U})$ in terms of operators and elements of $\omega(\mathcal{U})$.

Definition 5.1. For a unitary system \mathcal{U} on a Hilbert module E and $\psi \in E$, the local commutant $C_{\psi}(\mathcal{U})$ of \mathcal{U} at ψ is defined by

$$C_{\psi}(\mathcal{U}) = \{ T \in L(E) \mid TU\psi = UT\psi, \quad U \in \mathcal{U} \}$$

Also, let $\ell^2_{\mathcal{A}}(\mathcal{A})$ be the Hilbert \mathcal{A} -module defined by

$$\ell^{2}_{\mathcal{U}}(\mathcal{A}) = \{\{a_{U}\} \subset \mathcal{A} \quad : \sum a_{U}a_{U}^{*} \quad converges \ in \quad \|.\|\}.$$

The following theorem characterizes complete *K*-frame vectors in terms of operators on complete wandering vectors.

Theorem 5.2. Suppose \mathcal{U} is a unitary system of $E, K \in L(E), \psi \in \omega(\mathcal{U})$ and $\eta \in E$. Moreover, suppose that $\psi_{\eta} \in L(E, \ell^{2}_{\mathcal{U}}(\mathcal{A}))$ is given by $T_{\eta}(x) = \{\langle x, U_{\eta} \rangle\}_{U \in \mathcal{U}}$ and $\overline{R(T_{\eta}^{*})}$ is orthogonal complemented. Then $\eta \in \mathcal{F}_{K}(\mathcal{U})$ if and only if there exists an operator $A \in C_{\psi}(\mathcal{U})$ with $R(K) \subset R(A)$ such that $\eta = A\psi$.

Proof. (\Longrightarrow) Suppose $\{e_{\mathcal{U}}\}_{\mathcal{U}\in\mathcal{U}}$ denote the standard orthonormal basis of $\ell^2_{\mathcal{U}}(\mathcal{A})$, where $e_{\mathcal{U}}$ takes value $1_{\mathcal{A}}$ at \mathcal{U} and $o_{\mathcal{A}}$ at every where else. Now suppose $\eta \in \mathcal{F}_{K}(\mathcal{U})$. Define operator T_{ψ} from E to $\ell^2_{\mathcal{U}}(\mathcal{A})$ by $T_{\psi}x = \sum_{\mathcal{U}\in\mathcal{U}}\langle x, \mathcal{U}_{\psi}\rangle e_{\mathcal{U}}$. It is easy to check that T_{ψ} is well defined, adjointable and invertible. Let $A = T_{\eta}^*T_{\psi}$. Then for any $x \in E$, we have $Ax = \sum_{\mathcal{U}\in\mathcal{U}}\langle x, \mathcal{U}_{\psi}\rangle \mathcal{U}_{\eta}$ and $A^*x = \sum_{\mathcal{U}\in\mathcal{U}}\langle x, \mathcal{U}_{\eta}\rangle \mathcal{U}_{\psi}$, also

$$\langle A^*x, A^*x \rangle = \langle \sum_{U \in \mathcal{U}} \langle x, U\eta \rangle U\psi, \sum_{U \in \mathcal{U}} \langle x, U\eta \rangle U\psi \rangle$$

=
$$\sum_{U \in \mathcal{U}} \langle x, U\eta \rangle \langle U\eta, x \rangle$$

$$\geq c \langle K^*x, K^*x \rangle,$$
 (4)

where c > 0 is the lower bound for K-frame { $U\eta \mid U \in \mathcal{U}$ }. On the other hand $R(A) = R(T_{\eta}^*)$ and so by Theorem 2.2, we have $R(K) \subset R(A)$. To complete the proof, it remains to prove that $\eta = A\psi$ and $A \in C_{\psi}(\mathcal{U})$. For any U and V in \mathcal{U}

$$\langle V\eta, AU\psi \rangle = \langle V\eta, \sum_{U \in \mathcal{U}} \langle U\psi, W\psi \rangle W\eta \rangle$$

$$= \sum_{U \in \mathcal{U}} \langle V\eta, W\eta \rangle \langle W\psi, U\psi \rangle$$

$$= \langle V\psi, U\psi \rangle.$$
(5)

This implies that $AU\psi = U\eta$, so $A\psi = \eta$. Also $AU\psi = U\eta = UA\psi$, hence $A \in C_{\psi}(\mathcal{U})$ and this completes the proof of this part.

(\Leftarrow): Suppose that there exists an operator $A \in C_{\psi}(\mathcal{U})$ with $R(K) \subset R(A)$ such that $\eta = A\psi$. Then for any $x \in E$, we have

$$\sum_{U \in \mathcal{U}} \langle x, U\eta \rangle \langle U\eta, x \rangle = \sum_{U \in \mathcal{U}} \langle x, UA\psi \rangle \langle UA\psi, x \rangle$$

$$= \sum_{U \in \mathcal{U}} \langle A^*x, U\psi \rangle \langle U\psi, A^*x \rangle$$

$$= \langle A^*x, A^*x \rangle$$

$$\leq ||A^*||^2 ||x||^2.$$
 (6)

So $\{U\eta \mid U \in \mathcal{U}\}$ is a Bessel sequence for E. Now let T_η and T_ψ be the operators as we defined in the first part of the proof, since $\eta = A\psi$ so we have $T_\eta = T_\psi A^*$. Since $\psi \in w(\mathcal{U})$, it is easy to see that T^*_ψ is invertible and hence $R(T^*_\eta) = R(A)$. So $R(K) \subset R(T^*_\eta)$. Therefore, by using Theorem 3.2 of [8] it is concluded that $\eta \in \mathcal{U}_K(\mathcal{U})$. \Box

References

- J. J. Benedetto and S. Li, The theory of multi resolution analysis frames and applications to filter banks, Applied and Computational Harmonic Analysis 5 (1998) 389-427.
- [2] P. G. Casazza, O. Christensen and D. T. Stoeva, Frame expansions in separable Banach spaces, Journal of mathematical analysis and applications 307 (2005) 710-723.
- [3] P. G. Casazza, G. Kutyniok and S. Li, Fusion frames and distributed processing, Applied and computational harmonic analysis 25 (2008) 114-132.
- [4] P. G. Casazza and G. Kutyniok, Frames of subspaces Contemporary Mathematics 345 (2004) 87-114.
- [5] O. Christensen, An introduction to frames and Riesz bases, Boston. Birkhäuser, 2003.
- [6] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series Transactions of the American Mathematical Society 72 (1952) 341-366.
- [7] R. G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space Proceedings of the American Mathematical Society 17 (1966) 413-415.
- [8] M. Frank, and DR. Larson, A module frame concept for Hilbert, The Functional and Harmonic Analysis of Wavelets and Frames, AMS Special Session on the Functional and Harmonic Analysis of Wavelets, San Antonio, Texas, (1999), 207-247.
- [9] K. Gröchenig, Describing functions: atomic decompositions versus frames, Monatshefte für Mathematik 112 (1999) 1-42.
- [10] L. Găvruta, Frames for operators Applied and Computational Harmonic Analysis 32 (2012) 139-144.
- [11] M. Jalalian, F. Sultanzadeh and M. Hassani, On operator ranges in Hilbert C*-module, The 4-th Seminar on Functional Analysis and its Applications. Ferdowsi University of Mashhad, Iran. (2016).
- [12] W. Jing, Frames in Hilbert C*-modules, Ph.D. Thesis, University of Central Frorida, 2006.
- [13] E. C. Lance, Hilbert C*-modules, A Toolkit for Operator Algebraists, University of Leeds, Cambridge University Press, 1995.
- [14] A. Najati, M. M. Saem and P. Găvruta, Frames and operators in Hilbert C*-modules, arXiv preprint arXiv. 1403.0205, (2014).
- [15] G. Ramu and P. S. Johnson, Frame operators of K-frames, SeMA Journal 73 (2016) 171-181.
- [16] K. Sharifi, The product of Operators with closed range in Hilbert C*-modules, Linear Algebra and its Applications 435 (2011) 1122-1130.
- [17] W. Sun, G-frames and G-Riesz bases, Journal of Mathematical Analysis and Applications 322 (2006) 437-452.
- [18] X. Fang, J. Yu and H. Yao, Solutions to operator equations on Hilbert C*-modules, Linear Algebra and its Applications 431 (2009) 2142-2153.
- [19] N.E. Wegge-Olsen, K-Theory and C*-Algebras, A Friendly Approach, Oxford University Press, Oxford, 1993.
- [20] Q. Xu and L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C*-modules, Linear Algebra and its Applications 428 (2008) 992-1000.