On the Fourth and Fifth Coefficients in the Carathéodory Class

Nak Eun Choa, Bogumiła Kowalczykb, Adam Leckob, Barbara Śmiarowskab

aDepartment of Applied Mathematics, Pukyong National University, Busan 48513, Korea
bDepartment of Complex Analysis, Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 54, 10-710 Olsztyn, Poland

Abstract. In the paper, we give general parametric formulas for the fourth and fifth coefficients of functions in the Carathéodory class.

1. Introduction

One of the classical research topics in the class \(\mathcal{A}\) of analytic functions \(f\) of the form

\[f(z) = \sum_{n=1}^{\infty} a_n z^n, \quad a_1 := 1, \ z \in \mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}, \]

is the study of coefficient functionals. These studies include both the whole class \(\mathcal{A}\), as well as subfamilies, in particular the class \(\mathcal{S}\) of univalent functions and its subclasses. Although normalized differently, an important class of analytic functions in \(\mathbb{D}\) is the class \(\mathcal{P}\) consisting of functions \(p\) of the form

\[p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n, \quad z \in \mathbb{D}, \] (1)

having positive real part in \(\mathbb{D}\), generally known as the Carathéodory class.

For a great many subclasses of \(\mathcal{A}\), it is possible express coefficient functionals in terms of the coefficients of functions in \(\mathcal{P}\). Thus knowledge about the coefficients in \(\mathcal{P}\) can form the basis of computational techniques when considering coefficient problems in these classes. In recent years, attention has focused on the study of e.g. inverse and logarithmic coefficients, the Fekete-Szegő functional, Hankel determinants, the Zalcman functional, and a number of other related functionals, (see e.g., [5], [2], [11] and [6] for further references). Parametric formulas for the initial coefficients of functions \(\mathcal{P}\) are usually used to study these problems, and formulas for the first and second coefficients \(c_1\) and \(c_2\) derived by Carathéodory ([1], [10, p. 166]), and a formula for the third coefficient \(c_3\) found by Libera and Złotkiewicz [8], [9] with the additional assumption

2010 Mathematics Subject Classification. Primary 30C45

Keywords. Univalent functions, Carathéodory class, fourth coefficient, fifth coefficient, Hankel determinant, Zalcman functional, Fekete-Szegő problem

Received: 04 May 2019; Revised: 03 August 2020; Accepted: 14 August 2020

Communicated by Miodrag Mateljević

Email addresses: necho@pknu.ac.kr (Nak Eun Cho), alecko@matman.uwm.edu.pl (Adam Lecko), b.smiarowska@matman.uwm.edu.pl (Barbara Śmiarowska)
that \(c_1 \geq 0 \), have been used extensively. This latter condition on \(c_1 \) restricts its use to rotationally invariant classes and functionals. In [7] a parametric formula for fourth coefficients \(c_4 \) was derived using a determinant method, but also with the restriction \(c_1 \geq 0 \). Due to computational difficulties, the determinant method does not seem to be effective in finding further coefficient formula for \(c_n \), when \(n \geq 5 \).

As a result, in [3] an algorithmic method based on the Schwarz lemma was developed for deriving parametric formulas for all the coefficients \(c_n \). In particular Lemma 2.4 in [3] gives a general formula for the third coefficient \(c_3 \), which was able to be used to study certain non-rotationally invariant functionals in \(\mathcal{A} \).

In this paper we give general formulas for \(c_4 \) and \(c_5 \), together with extreme functions, without the restriction \(c_1 \geq 0 \), thus providing tools for further study into more difficult problems concerning functionals in \(\mathcal{A} \).

We remark that the general method used will give formulas for \(c_n \) when \(n \geq 6 \), but the computations soon become too complicated to yield useful results.

2. Parametric formulas for coefficients of Carathéodory functions

Denote by \(\mathcal{B}_0 \), the class of all self-maps of \(\mathbb{D} \) of the form

\[
\omega(z) = \sum_{n=0}^{\infty} b_n z^n, \quad z \in \mathbb{D},
\]

(2)

Such functions are normally referred to as Schwarz functions.

Given \(\alpha \in \mathbb{D} \), let

\[
\psi_\alpha(z) := \frac{z - \alpha}{1 - \overline{\alpha}z}, \quad z \in \overline{\mathbb{D}} := \{z \in \mathbb{C} : |z| \leq 1\}.
\]

It is well known that \(\psi_\alpha \) in a conformal automorphism of \(\mathbb{D} \), \(\psi_\alpha(\mathbb{D}) = \mathbb{D} \), \(\psi_\alpha(T) = T \), and \(\psi_\alpha^{-1} = \psi_{-\alpha} \), where \(T := \{z \in \mathbb{C} : |z| = 1\} \). Moreover for \(n \in \mathbb{N} \),

\[
\psi_\alpha^{(n)}(\alpha) = \frac{n!|z^n|^{n-1}}{(1 - |\alpha|^2)^n}.
\]

(3)

Let

\[
L(z) := \frac{1 + z}{1 - z}, \quad z \in \mathbb{D}.
\]

Now we prove the main result of this paper, noting that (4) is due to Carathéodory [1], (5) can be found in [10, p. 166], and (6) in [3]. We state our results as lemmas rather than theorems, since they provide tools for use in considering functions in \(\mathcal{A} \).

Lemma 2.1. If \(p \in \mathcal{P} \) and is of the form (1), then

\[
c_1 = 2\zeta_1,
\]

(4)

\[
c_2 = 2\zeta_1^2 + 2(1 - |\zeta_1|^2)\zeta_2,
\]

(5)

\[
c_3 = 2\zeta_1^3 + 2(1 - |\zeta_1|^2)\left(2\zeta_1 - \overline{\zeta_1}\zeta_2\right)\zeta_3 + 2(1 - |\zeta_1|^2)(1 - |\zeta_2|^2)\zeta_3
\]

(6)

\[
c_4 = 2\zeta_1^4 + 2(1 - |\zeta_1|^2)\left(3\zeta_1^2 + \overline{\zeta_1}^2\zeta_2^2 - 3|\zeta_1|^2\zeta_2 + \zeta_2\right)\zeta_2
\]

\[
+ 2(1 - |\zeta_1|^2)(1 - |\zeta_2|^2)\left(2\zeta_1 - 2\overline{\zeta_1}\zeta_2 - \overline{\zeta_2}\zeta_3\right)\zeta_3
\]

\[
+ 2(1 - |\zeta_1|^2)(1 - |\zeta_2|^2)(1 - |\zeta_3|^2)\zeta_4,
\]

(7)
and
\[c_5 = 2c_1^2 + 2(1 - |c_1|^2)(4c_1^2 + 3c_1c_2 - 2c_1c_2 - c_1^2c_2^2 - 6c_1|c_1|^2c_2) \]
\[+ 4c_1^2|c_1|^2c_2c_2 + 2(1 - |c_1|^2)(1 - |c_2|^2)(3c_1^2 - 2c_1c_2c_3 + 3c_1^2c_2^2) \]
\[+ 3c_1c_2c_3 - 6c_1^2c_2 + 2c_2 + c_2^2c_3^2 \]
\[+ 2(1 - |c_1|^2)(1 - |c_2|^2)(1 - |c_2|^2)(2c_1 - 2c_2c_2 - c_2c_4)(c_4) \]
\[+ 2(1 - |c_1|^2)(1 - |c_3|^2)(1 - |c_4|^2)c_5 \]
for some \(\zeta_i \in \overline{D} \), \(i \in \{1, \ldots, 5\} \).

For \(\zeta_1 \in T \), there is a unique function \(p \in \mathcal{P} \) with \(c_1 \) as in (4), namely,
\[p(z) = \frac{1 + c_1z}{1 - c_1z}, \quad z \in D. \]
(9)

For \(\zeta_1 \in D \) and \(\zeta_2 \in T \), there is a unique function \(p = L \circ \omega \in \mathcal{P} \) with \(c_1 \) and \(c_2 \) as in (4) and (5), where
\[\omega(z) = z\psi_{-\zeta_1}(\zeta_2z), \quad z \in D, \]
(10)
i.e.,
\[p(z) = \frac{Q_2(z)}{R_2(z)}, \quad z \in D, \]
(11)
where for \(z \in D \),
\[Q_2(z) := 1 + (\overline{c_1}c_2 + \zeta_1)z + \zeta_2z^2, \]
\[R_2(z) := 1 + (\overline{c_1}c_2 - \zeta_1)z - \zeta_2z^2. \]

For \(\zeta_1, \zeta_2 \in D \) and \(\zeta_3 \in T \), there is a unique function \(p = L \circ \omega \in \mathcal{P} \) with \(c_1, c_2 \) and \(c_3 \) as in (4) to (6), where
\[\omega(z) = z\psi_{-\zeta_1}(z\psi_{-\zeta_2}(\zeta_3z)), \quad z \in D, \]
(12)
i.e.,
\[p(z) = \frac{Q_3(z)}{R_3(z)}, \quad z \in D, \]
(13)
where for \(z \in D \),
\[Q_3(z) := 1 + (\overline{c_2}c_3 + \overline{c_1}c_2 + \zeta_1)z + (\overline{c_1}c_3 + \overline{c_1}c_2c_3 + c_2)z^2 + \zeta_3z^3, \]
\[R_3(z) := 1 + (\overline{c_2}c_3 + \overline{c_1}c_2 - \zeta_1)z + (\overline{c_1}c_3 - \zeta_1c_2c_3 - c_2)z^2 - c_3z^3. \]

For \(\zeta_1, \zeta_2, \zeta_3 \in D \) and \(\zeta_4 \in T \), there is a unique function \(p = L \circ \omega \in \mathcal{P} \) with \(c_1, c_2, c_3 \) and \(c_4 \) as in (4) to (7), where
\[\omega(z) = z\psi_{-\zeta_1}(z\psi_{-\zeta_2}(z\psi_{-\zeta_3}(\zeta_4z))), \quad z \in D, \]
(14)
i.e.,
\[p(z) = \frac{Q_4(z)}{R_4(z)}, \quad z \in D, \]
(15)
where for $z \in \mathbb{D}$,

$$Q_4(z) := 1 + \left(\overline{c_1}c_2 + \overline{c_2}c_3 + \overline{c_3}c_4 + c_1 \right) z$$
$$+ \left(\overline{c_1}c_3 + \overline{c_2}c_4 + \overline{c_1}c_2c_3c_4 + c_1c_2c_3c_4 + c_1c_3c_4 + c_2 \right) z^2$$
$$+ \left(\overline{c_1}c_4 + c_1c_2c_3c_4 + c_2c_3c_4 + c_3 \right) z^3 + c_4 z^4,$$

$$R_4(z) := 1 + \left(\overline{c_1}c_2 + \overline{c_2}c_3 + \overline{c_3}c_4 - c_1 \right) z$$
$$+ \left(\overline{c_1}c_3 + \overline{c_2}c_4 + \overline{c_1}c_2c_3c_4 - c_1c_2c_3 + c_1c_3c_4 - c_2 \right) z^2$$
$$+ \left(\overline{c_1}c_4 - c_1c_2c_3c_4 - c_2c_3c_4 + c_3 \right) z^3 - c_4 z^4.$$

For $z_i \in \mathbb{D}$, $i = 1, \ldots, 4$, and $z_5 \in \mathbb{T}$, there is a unique function $p = L \circ \omega \in \mathcal{P}$ with c_i, $i = 1, \ldots, 5$, as in (4) to (8), where

$$
\omega(z) := z \psi_{z_i} \left(z \psi_{z_i} \left(z \psi_{z_i} \left(z \psi_{z_i} (z_5 z) \right) \right) \right), \quad z \in \mathbb{D},
$$

i.e.,

$$
p(z) = \frac{Q_5(z)}{R_5(z)}, \quad z \in \mathbb{D},
$$

where for $z \in \mathbb{D}$,

$$Q_5(z) := 1 + \left(\overline{c_1}c_2 + \overline{c_2}c_3 + \overline{c_3}c_4 + \overline{c_4}c_5 + c_1 \right) z$$
$$+ \left(\overline{c_1}c_3 + \overline{c_2}c_4 + \overline{c_1}c_2c_3c_4 + \overline{c_1}c_2c_3c_4 + \overline{c_1}c_3c_4 + \overline{c_2}c_3c_4 + \overline{c_1}c_4c_5 + c_2 \right) z^2$$
$$+ \left(\overline{c_1}c_4 + \overline{c_2}c_5 + \overline{c_1}c_2c_3c_4 + \overline{c_1}c_2c_3c_4 + \overline{c_1}c_3c_4 + \overline{c_2}c_3c_4 + \overline{c_1}c_4c_5 + c_3 \right) z^3$$
$$+ \left(\overline{c_1}c_5 + c_1c_2c_3 + c_2c_3c_4 + c_3c_4c_5 + c_4 \right) z^4 + c_5 z^5,$$

$$R_5(z) := 1 + \left(\overline{c_1}c_2 + \overline{c_2}c_3 + \overline{c_3}c_4 + \overline{c_4}c_5 - c_1 \right) z$$
$$+ \left(\overline{c_1}c_3 + \overline{c_2}c_4 + \overline{c_1}c_2c_3c_4 + \overline{c_1}c_2c_3c_4 + \overline{c_1}c_3c_4 + \overline{c_2}c_3c_4 + \overline{c_1}c_4c_5 - c_2 \right) z^2$$
$$+ \left(\overline{c_1}c_4 + \overline{c_2}c_5 + \overline{c_1}c_2c_3c_4 + \overline{c_1}c_2c_3c_4 + \overline{c_1}c_3c_4 + \overline{c_2}c_3c_4 + \overline{c_1}c_4c_5 - c_3 \right) z^3$$
$$+ \left(\overline{c_1}c_5 - c_1c_2c_3 - c_2c_3c_4 - c_3c_4c_5 - c_4 \right) z^4 + c_5 z^5.$$

Proof. Let $p \in \mathcal{P}$ and be of the form (1). Then there exists $\omega \in \mathcal{B}_0$ of the form (2) such that

$$
(1 - \omega(z))p(z) = 1 + \omega(z), \quad z \in \mathbb{D}.
$$

Substituting (1) and (2) into (18), and equating coefficients, we obtain for $n \in \mathbb{N}$

$$c_n = c_{n-1}b_1 + c_{n-2}b_2 + \cdots + c_1 b_{n-1} + 2b_n.$$
Thus
\[c_1 = 2b_1, \]
\[c_2 = 2b_1^2 + 2b_2, \]
\[c_3 = 2b_1^3 + 4b_1b_2 + 2b_3, \]
\[c_4 = 2b_1^4 + 6b_1^2b_2 + 4b_1b_3 + 2b_2^2 + 2b_4, \]
\[c_5 = 2b_1^5 + 8b_1^3b_2 + 6b_1^2b_3 + 6b_1b_4 + 4b_3b_4 + 2b_5. \]

(19)

1. By the Schwarz lemma (see e.g., [4, Vol. I, pp. 84-85]),
\[|b_1| = |\omega'(0)| \leq 1, \]
(20)
i.e.,
\[b_1 = \zeta_1, \]
(21)
for some \(\zeta_1 \in \text{D} \), and so from (19) we obtain (4).

Moreover equality is attained in (20), i.e., the case \(\zeta_1 \in \mathbb{T} \) in (21) if, and only if,
\[\omega(z) = \zeta_1z, \quad z \in \text{D}, \]
(e.g., [4, Vol. I, p. 85]). Thus from (18) it follows that \(p \) can be only as (9).

2. By Part 1 we can assume that \(b_1 \in \text{D} \), and so from (2) we have
\[\omega(z) = z\varphi_1(z), \quad z \in \text{D}, \]
(22)
where
\[\varphi_1(z) := b_1 + b_2z + b_3z^2 + b_4z^3 + \ldots, \quad z \in \text{D}. \]
(23)
From (22) and the maximum principle for analytic functions it follows that \(\varphi_1 \) is a self-map of \(\text{D} \). Thus
\[\omega_1(z) := \psi_{b_1}(\varphi_1(z)) = b_1^{(1)}z + b_2^{(1)}z^2 + b_3^{(1)}z^3 + b_4^{(1)}z^4 + \ldots, \quad z \in \text{D}, \]
(24)
is a Schwarz function. By the Schwarz lemma we have
\[|b_1^{(1)}| = |\omega_1'(0)| \leq 1, \]
(25)
i.e.,
\[b_1^{(1)} = \zeta_2, \]
(26)
for some \(\zeta_2 \in \text{D} \). Using (24), (3) and (23) we obtain
\[b_1^{(1)} = \omega_1'(0) = \psi_{b_1}'(\varphi_1(0))\varphi_1'(0) = \frac{b_2}{1 - |b_1|^2}, \]
which, using (26) and (21), gives
\[b_2 = (1 - |\zeta_1|^2)\zeta_2. \]
(27)
Substituting (21) and (27) into (19) gives (5).
Noting (26), equality in (25) holds in the case \(\zeta_2 \in T \) if, and only if, \(\omega_1(z) = \zeta_2 z, \ z \in \mathbb{D} \). Thus by (22), (24) and (21) we have
\[
\omega(z) = z\varphi_1(z) = z\psi_{\zeta_2}(\omega_1(z)) = z\psi_{\zeta_2}(\zeta_2 z), \quad z \in \mathbb{D},
\]
i.e., \(\omega \) is as in (10). Hence and from (18) it follows that \(p \) can be only as in (11).

3. By Parts 1 and 2 we can assume that \(b_1, b_1^{(1)} \in \mathbb{D} \). By (24) we have
\[
\omega_1(z) = z\varphi_2(z), \quad z \in \mathbb{D},
\]
where
\[
\varphi_2(z) := b_1^{(1)} + b_2^{(1)} z + b_3^{(1)} z^2 + b_4^{(1)} z^3 + \ldots, \quad z \in \mathbb{D}.
\]
From (28) and again by the maximum principle for analytic functions, it follows that \(\varphi_2 \) is a self-map of \(\mathbb{D} \). Thus
\[
\omega_2(z) := \psi_{b_1^{(1)}}(\varphi_2(z)) = b_1^{(2)} z + b_2^{(2)} z^2 + b_3^{(2)} z^3 + \ldots, \quad z \in \mathbb{D},
\]
is a Schwarz function. By the Schwarz lemma we have
\[
|b_1^{(2)}| = |\omega_2'(0)| \leq 1,
\]
i.e.,
\[
b_1^{(2)} = \zeta_3,
\]
for some \(\zeta_3 \in \overline{\mathbb{D}} \). Using (30), (3) and (29) we obtain
\[
b_2^{(2)} = \omega_2'(0) = \psi_{b_1^{(1)}}'(\varphi_2(0))\varphi_2'(0) = \frac{b_1^{(1)}}{1 - |b_1^{(1)}|^2},
\]
which, taking into account (32) and (26), yields
\[
b_2^{(1)} = (1 - |\zeta_2 z|^2)\zeta_3.
\]

On the other hand, from (24) and (23), (3), (21) and (27) we get
\[
b_2^{(1)} = \frac{1}{2} \psi_{b_1^{(1)}}''(0) = \frac{1}{2} \left(\psi_{b_1^{(1)}}''(\varphi_1(0))(\varphi_1'(0))^2 + \psi_{b_1^{(1)}}'(\varphi_1(0))\varphi_1''(0) \right)
\]
\[
= \frac{1}{2} \psi_{b_1^{(1)}}'(b_1) b_2^2 + \psi_{b_1^{(1)}}'(b_1) b_3 = \frac{b_1^2 b_2^2}{1 - |b_1^2|^2} + \frac{b_3}{1 - |b_1|^2}
\]
\[
= \zeta_1 c_2^2 + \frac{b_3}{1 - |b_1|^2}.
\]
This, together with (33), gives
\[
b_3 = -(1 - |\zeta_1|^2)\zeta_1 c_2^2 + (1 - |\zeta_1|^2)(1 - |\zeta_2|^2)\zeta_3.
\]
Substituting (21), (27) and (34) into (19) gives (6).

Moreover equality in (31), i.e., the case \(\zeta_3 \in T \) in (32) holds if, and only if, \(\omega_2(z) = \zeta_2 z, \ z \in \mathbb{D} \). Thus by (28), (30) and (26) we have
\[
\omega_1(z) = z\varphi_2(z) = z\psi_{-\zeta_1}(\omega_2(z)) = z\psi_{-\zeta_1}(\zeta_2 z), \quad z \in \mathbb{D}.
\]
Now (22) and (24) with (21) yields

\[\omega(z) = z \varphi_1(z) = z \psi_{-\zeta_1}(\omega_1(z)) = z \psi_{-\zeta_1}(z \psi_{-\zeta_2}(\zeta_3 z)), \quad z \in \mathbb{D}, \]

i.e., \(\omega \) is as in (12). Hence from (18) it follows that \(p \) can be only as (13).

4. Arguing as before, by Parts 1 to 3 we can assume that \(b_1, b_1^{(1)}, b_1^{(2)} \in \mathbb{D} \), and so by (30) we have

\[\omega_2(z) = z \varphi_3(z), \quad z \in \mathbb{D}, \quad (35) \]

where

\[\varphi_3(z) := b_1^{(2)} + b_2^{(2)} z + b_3^{(2)} z^2 + \ldots, \quad z \in \mathbb{D}. \quad (36) \]

From (35) and by the maximum principle for analytic functions it follows that \(\varphi_3 \) is a self-map of \(\mathbb{D} \). Thus

\[\omega_3(z) := \psi_{\varphi_3}(\varphi_3(z)) = b_1^{(2)} z + b_2^{(2)} z^2 + \ldots, \quad z \in \mathbb{D}, \quad (37) \]

is a Schwarz function. By the Schwarz lemma we have

\[|b_1^{(3)}| = |\omega_3'(0)| \leq 1, \quad (38) \]

i.e.,

\[b_1^{(3)} = \zeta_4, \quad (39) \]

for some \(\zeta_4 \in \overline{\mathbb{D}} \). Using (37), (3) and (36) we obtain

\[b_1^{(3)} = a_3'(0) = \psi_{\varphi_3}(\varphi_3(0)) \varphi_3'(0) = \frac{b_1^{(2)}}{1 - |b_1^{(2)}|^2}, \]

which, taking into account (32) and (39), yields

\[b_2^{(2)} = (1 - |\zeta_3|^2) \zeta_4. \quad (40) \]

On the other hand from (30), applying (29), (3), (26) and (33) we obtain

\[b_2^{(2)} = \frac{1}{2} \omega_2''(0) = \frac{1}{2} \left(\psi_{\varphi_3}'(\varphi_3(0)) (\varphi_3''(0))^2 + \psi_{\varphi_3}'(\varphi_3(0)) \varphi_3''(0) \right) \]

\[= \frac{1}{2} \psi_{\varphi_3}'(b_1^{(1)}) (b_1^{(2)})^2 + \psi_{\varphi_3}'(b_1^{(1)}) b_3^{(1)} = \frac{b_1^{(3)}}{1 - |b_1^{(3)}|^2} + \frac{b_3^{(1)}}{1 - |b_1^{(3)}|^2} \]

\[= \bar{c}_2 \zeta_3^2 + \frac{b_3^{(1)}}{1 - |c_2|^2}. \]

This, together with (40), yields

\[b_3^{(1)} = -(1 - |\zeta_2|^2) \bar{c}_2 \zeta_3^2 + (1 - |\zeta_2|^2)(1 - |\zeta_3|^2) \zeta_4. \quad (41) \]
From (24), (23), (3), (21), (27) and (34) we have

\[
B_3^{(1)} = \frac{1}{6} \omega_1^{(2)}(0) \\
= \frac{1}{6} \left(\psi^{(3)}_k(q_1(0))(\varphi_1(0))^3 + 3\psi_1^{(3)}(q_1(0))\varphi_1(0) + \psi_1'(q_1(0))\varphi_1(0)^3 \right) \\
= \frac{1}{6} \left(\psi^{(3)}_k(b_1) b_2^3 + 6\psi_1''(b_1) b_2 b_3 + 6\psi_1'(b_1)b_4 \right) \\
= \frac{b_1^2 b_2^3}{(1 - |b_1|^2)^3} + \frac{2b_1 b_2 b_3}{1 - |b_1|^2} - \frac{b_4}{1 - |b_1|^2}.
\]

Comparing (41) and (42) we obtain

\[
b_4 = (1 - |c_1|^2)\bar{c}_1^2 \bar{c}_2 - (1 - |c_1|^2)(1 - |c_2|^2)(\bar{c}_2 c_3^2 + 2\bar{c}_3 c_2 c_3) \\
+ (1 - |c_1|^2)(1 - |c_2|^2)(1 - |c_3|^2)\bar{c}_4,
\]

and substituting (21), (27), (34) and (43) into (19) we obtain

\[
c_4 = 2b_1^2 + 6b_1 b_2 + 4b_1 b_3 + 2b_1^3 + 2b_4 \\
= 2c_1^2 + 6(1 - |c_1|^2)c_1^2 c_2 + 4c_1 \left[-(1 - |c_1|^2)\bar{c}_1^2 c_2^2 + (1 - |c_1|^2)(1 - |c_2|^2)c_3 \right] \\
+ 2(1 - |c_1|^2)\bar{c}_2 c_3^2 + 2(1 - |c_1|^2)\bar{c}_1 c_2^2 - 2(1 - |c_1|^2)(1 - |c_2|^2)\bar{c}_3 c_2 c_3 \\
+ 2(1 - |c_1|^2)(1 - |c_2|^2)(1 - |c_3|^2)\bar{c}_4,
\]

which gives (7).

For equality in (38), i.e., the case \(c_4 \in \mathbb{T} \) in (39), we argue as before, so that equality and holds if, and only if,

\[
\omega_3(z) = \zeta_4 z, \quad z \in \mathbb{D}.
\]

By (22) and (24) with (21) we have

\[
\omega(z) = z\varphi_1(z) = z\psi_{-\bar{\zeta}_4}(\omega_1(z)) = z\psi_{-\bar{\zeta}_4}(\omega_1(z)), \quad z \in \mathbb{D}.
\]

Also by (28), (30) and (26) we have

\[
\omega_1(z) = z\varphi_2(z) = z\psi_{-\bar{\zeta}_4}(\omega_2(z)) = z\psi_{-\bar{\zeta}_4}(\omega_2(z)), \quad z \in \mathbb{D}.
\]

Next by (35) and (37) with (32), and using (44), we have

\[
\omega_2(z) = z\varphi_3(z) = z\psi_{-\bar{\zeta}_4}(\omega_3(z)) = z\psi_{-\bar{\zeta}_4}(\omega_3(z)), \quad z \in \mathbb{D}.
\]

Thus taking into account (45) and (46), it follows that \(\omega \) is as in (14), hence from (18) it follows that \(p \) can be only as (15).

5. We proceed as before so that by Parts 1 to 4 we can assume that \(b_1, b_1^{(1)}, b_1^{(2)}, b_1^{(3)} \in \mathbb{D} \), and so

\[
\omega_3(z) = z\varphi_4(z), \quad z \in \mathbb{D},
\]
which, taking into account (39) and (51) yields

\[\phi(z) := (z - b(z))^2, \quad z \in \mathbb{D}. \]

From (47) and by the maximum principle for analytic functions it follows that \(\phi \) is a self-map of \(\mathbb{D} \). Thus

\[\omega_4(z) := \psi_{b(z)}(\phi(z)) = b(z)^2 + z^2 + \ldots, \quad z \in \mathbb{D}, \]

is a Schwarz function. By the Schwarz lemma we have

\[|b_{14}^4| = |\omega_4'(0)| \leq 1, \]

i.e.,

\[b_{14}^4 = \zeta_5, \]

for some \(\zeta_5 \in \mathbb{D} \). Using (49), (3) and (48) we obtain

\[b_{14}^4 = \omega_4'(0) = \psi_{b(z)}'(\phi(z)) \psi_4'(0) = \frac{b_2^{(3)}}{1 - |b_1^{(3)}|^2}, \]

which, taking into account (39) and (51) yields

\[b_2^{(3)} = (1 - |z_4|^2)\zeta_5. \]

On the other hand, from (37), (36), (3), (32) and (40) we get

\[b_2^{(3)} = \frac{1}{2} \omega_3'(0) = \frac{1}{2} \left(\psi_{b(z)}'(\phi(z)) \phi_3'(0) + \psi_{b(z)}'(\phi(z)) \phi_3'(0) \right), \]

\[= \frac{1}{2} \psi_{b(z)}'(b_2^{(2)}) (b_2^{(2)})^3 + \psi_{b(z)}'(b_2^{(2)}) b_3^{(2)} = \frac{b_2^{(2)}}{1 - |b_1^{(2)}|^2} \]

\[= \zeta_3 \zeta_4^2 + \frac{b_2^{(2)}}{1 - |b_3^{(2)}|^2}, \]

which, together with (53), yields

\[b_3^{(2)} = - (1 - |z_3|^2) \zeta_3 \zeta_4^2 + (1 - |z_3|^2) (1 - |z_4|^2) \zeta_5. \]

From (30), (29), (3), (26), (33) and (41) we have

\[b_3^{(2)} = \frac{1}{6} \psi_2^{(3)}(0), \]

\[= \frac{1}{6} \left(\psi_{b(z)}^{(3)}(\phi(z)) (\varphi_2(0))^3 + 3 \psi_{b(z)}^{(3)}(\phi(z)) \varphi_2'(0)^2 \varphi_2''(0) + \psi_{b(z)}^{(3)}(\phi(z)) \varphi_2''(0) \right), \]

\[= \frac{1}{6} \left(\psi_{b(z)}^{(3)}(b_2^{(1)}) (b_2^{(1)})^3 + 3 \psi_{b(z)}^{(3)}(b_2^{(1)}) b_2^{(1)} b_3^{(1)} + 6 \psi_{b(z)}^{(3)}(b_2^{(1)}) b_4^{(1)} \right), \]

\[= \frac{(b_2^{(1)})^2}{(1 - |b_1^{(1)}|^2)^3} \frac{b_2^{(1)}}{1 - |b_1^{(1)}|^2} + \frac{b_4^{(1)}}{1 - |b_1^{(1)}|^2}, \]

\[= \zeta_2 \zeta_3^3 + 2 (1 - |z_3|^2) \zeta_3 \zeta_4 + \frac{b_4^{(1)}}{1 - |b_2^{(1)}|^2}. \]
and so comparing (54) and (55) we obtain

\[
b_4^{(1)} = (1 - |\zeta_2|^2) \zeta_2 \zeta_4^3 - (1 - |\zeta_2|^2)(1 - |\zeta_1|^2) \left(\zeta_2 \zeta_4^2 + 2\zeta_2 \zeta_3 \zeta_4 \right) \\
+ (1 - |\zeta_2|^2)(1 - |\zeta_3|^2)(1 - |\zeta_4|^2) \zeta_5.
\]

(56)

From (24), (23), (3), (21), (27), (34) and (43) we have

\[
b_4^{(1)} = \frac{1}{24} \psi_1^{(4)}(0)
\]

\[
\begin{align*}
&= \frac{1}{24} \left(\psi_{b_1}^{(4)}(\varphi_1(0)) \psi_{b_1}^{(4)}(0) \right)^4 + 6 \psi_{b_1}^{(3)}(\varphi_1(0)) \left(\psi_{b_1}^{(4)}(0) \right)^2 \psi_{b_1}^{(4)}(0) \\
&\quad + 4 \psi_{b_1}^{(4)}(\varphi_1(0)) \psi_{b_1}^{(3)}(0) \left(\psi_{b_1}^{(3)}(0) \right)^2 + \psi_{b_1}^{(4)}(\varphi_1(0)) \psi_{b_1}^{(4)}(0) \\
&\quad + 12 \psi_{b_1}^{(3)}(\varphi_1(0)) \psi_{b_1}^{(3)}(b_1^2 b_3^3 + 24 \psi_{b_1}^{(3)}(b_1^2 b_2 b_4) \\
&\quad + 12 \psi_{b_1}^{(3)}(b_1^2 b_3^3 + 24 \psi_{b_1}^{(3)}(b_1^2 b_5) \\
&\quad = \frac{b_1 b_2}{(1 - |b_1|^2)^4} + 3 \frac{b_1 b_2 b_3}{(1 - |b_1|^2)^3} + 2 \frac{b_1 b_2 b_3}{(1 - |b_1|^2)^2} + \frac{b_1 b_2}{1 - |b_1|^2} \\
&\quad = \zeta_1 \zeta_2^3 + 3 \zeta_1 \zeta_2^2 \left[-\zeta_1 \zeta_2^2 + (1 - |\zeta_2|^2) \zeta_3 \right] \\
&\quad + 2 \zeta_1 \zeta_2 \left[\zeta_2^2 - (1 - |\zeta_2|^2) \left(\zeta_2 \zeta_3^2 + 2 \zeta_2 \zeta_3 \right) + (1 - |\zeta_2|^2)(1 - |\zeta_3|^2) \zeta_4 \right] \\
&\quad + \zeta_2^2 \left[-\zeta_1 \zeta_2^2 + (1 - |\zeta_2|^2) \zeta_3 \right]^2 + \frac{b_5}{1 - |\zeta_1|^2}.
\end{align*}
\]

(57)

Finally comparing (56) and (57) we obtain

\[
b_5 = - (1 - |\zeta_1|^2) \zeta_1 \zeta_2^4 \\
- (1 - |\zeta_1|^2)(1 - |\zeta_2|^2) \left(\zeta_1 \zeta_2^3 - \zeta_2 \zeta_3^2 \right) - 3 \zeta_1 \zeta_2^2 \zeta_3 - 3 \zeta_1 |\zeta_2|^2 \zeta_3^2 \\
- (1 - |\zeta_1|^2)(1 - |\zeta_2|^2)(1 - |\zeta_3|^2) \left(\zeta_2 \zeta_4^2 + 2 \zeta_2 \zeta_3 \zeta_4 \\
+ (1 - |\zeta_1|^2)(1 - |\zeta_2|^2)(1 - |\zeta_3|^2) \zeta_5.
\]

(58)

Substituting (21), (27), (34), (43) and (58) into (19) gives

\[
c_3 = 2 \zeta_1^3 + 8 \zeta_1^3 \zeta_2(1 - |\zeta_1|^2) + 6 \zeta_1^3 \left[-(1 - |\zeta_1|^2) \zeta_1 \zeta_2^4 + (1 - |\zeta_1|^2)(1 - |\zeta_2|^2) \zeta_3 \right] \\
+ 6 \zeta_1 \zeta_2^2(1 - |\zeta_1|^2)^2 \\
+ 4 \z_1 \left[(1 - |\zeta_1|^2) \z_2^2 \z_3 - (1 - |\zeta_1|^2)(1 - |\zeta_2|^2) \left(\z_2 \z_3^2 + 2 \z_2 \z_3 \right) \\
+ (1 - |\zeta_1|^2)(1 - |\zeta_2|^2)(1 - |\zeta_3|^2) \z_4 \right] \\
+ 4 \z_2(1 - |\zeta_1|^2) \left[-(1 - |\zeta_1|^2) \z_2 \z_3^2 + (1 - |\zeta_1|^2)(1 - |\zeta_2|^2) \z_3 \right] \\
+ 2 \left[-(1 - |\zeta_1|^2) \z_1 \z_3 \z_4 \right] \\
- (1 - |\zeta_1|^2)(1 - |\zeta_2|^2) \left(\z_1 \z_2^2 - \z_2 \z_3^2 - 3 \z_2 \z_3 \z_3 - 3 \z_1 |\z_2|^2 \z_3^2 \\
- (1 - |\zeta_1|^2)(1 - |\zeta_2|^2)(1 - |\zeta_3|^2) \left(\z_3 \z_3^2 + 2 \z_1 \z_3 \z_4 + 2 \z_2 \z_3 \right) \\
+ (1 - |\zeta_1|^2)(1 - |\zeta_2|^2)(1 - |\zeta_3|^2)(1 - |\zeta_4|^2) \z_5.
\]
which yields (8).

Moreover, equality in (50), i.e., the case $\zeta_4 \in T$ in (51) holds if, and only if,

$$\omega_4(z) = \zeta_5 z, \quad z \in \mathbb{D}. \quad (59)$$

Note that ω and ω_1 are given by (45) and (46) respectively. From (35) and (37) with (32) it follows that

$$\omega_2(z) = z\varphi_3(z) = z\psi_{-\omega_1}(\omega_3(z)) = z\psi_{-\omega_1}(\zeta_5 z), \quad z \in \mathbb{D}.$$ \quad (60)

By (47), (49), (39) and (59) we have

$$\omega_3(z) = z\varphi_4(z) = z\psi_{-\omega_1}(\omega_4(z)) = z\psi_{-\omega_1}(\zeta_5 z), \quad z \in \mathbb{D}.$$ \quad (60)

Hence taking into account (45), (46) and (60) we see that ω is as in (16), and so from (18) it follows that p can be only as (17). \qed

Remark 2.2. When $c_1 \geq 0$, (6) was found in [8] and [9], and (7) in [7].

Directly from the proof of Lemma 2.1, using (21), (27), (34), (43) and (58) we can formulate the following.

Lemma 2.3. If $\omega \in B_0$ and is of the form (2), then

$$b_1 = \zeta_1, \quad (61)$$

$$b_2 = (1 - |\zeta_1|^2)\zeta_2, \quad (62)$$

$$b_3 = -(1 - |\zeta_1|^2)\overline{\zeta_1}\zeta_2^2 + (1 - |\zeta_1|^2)(1 - |\zeta_2|^2)\zeta_3, \quad (63)$$

$$b_4 = (1 - |\zeta_1|^2)\zeta_1 \overline{\zeta_1} \zeta_2^2 - (1 - |\zeta_1|^2)(1 - |\zeta_2|^2)(\overline{\zeta_2}\zeta_3^2 + 2\overline{\zeta_1}\zeta_2\zeta_3) + (1 - |\zeta_1|^2)(1 - |\zeta_2|^2)(1 - |\zeta_3|^2)\zeta_4 \quad (64)$$

and

$$b_5 = - (1 - |\zeta_1|^2)\overline{\zeta_1} \zeta_2^3 \zeta_4^3 - (1 - |\zeta_1|^2)(1 - |\zeta_2|^2)(\overline{\zeta_1}\zeta_2^2 - \overline{\zeta_1}^2 \zeta_2^3 - 3\overline{\zeta_1}\zeta_2^2 \zeta_3 - 3\overline{\zeta_1}\zeta_2 \zeta_3^2 \zeta_3^2 + 3\overline{\zeta_1}\zeta_2 \zeta_3^2 \zeta_3^2 \zeta_3^2) \quad (65)$$

$$- (1 - |\zeta_1|^2)(1 - |\zeta_2|^2)(1 - |\zeta_3|^2)(\overline{\zeta_1}\zeta_2^2 + 2\overline{\zeta_1}\zeta_2\zeta_4 + 2\overline{\zeta_2}\zeta_3\zeta_4) + (1 - |\zeta_1|^2)(1 - |\zeta_2|^2)(1 - |\zeta_3|^2)(1 - |\zeta_4|^2)\zeta_5,$$

for some $\zeta_i \in \mathbb{D}, \quad i \in \{1, \ldots, 5\}$.

Acknowledgement

The authors would like to express their thanks to the referee for his constructive advices and comments that helped to improve this paper. The first-named author was supported by the Basic Science Research Program through the National Research Foundation of the Republic of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2019R1H1A3A01050861).
References

