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Abstract. Using control functions introduced by Sintunavarat et al. (2011), we present and improve some
recent fixed point results in the class of controlled metric type spaces. We also illustrate the presented
results by some nontrivial examples.

1. Introduction

One of the main applications of fixed point theory is to solve integral and differential equations by
successive approximation methods, for example see [2, 3, 13, 24, 25, 28, 30, 34]. The Banach contraction
principle was generalized many times to extend its application, see [4, 5, 31, 33, 36, 37]. As an example of
these generalizations, the concept of b−metric spaces was introduced in [18, 20], which is a generalization
of the regular metric space, see [6–8, 12, 14–16, 22, 32, 38, 39]. A strong b-metric has been introduced by
Kirk and Shahzad [26]. Recently, the authors in [21] introduced a type of extended b−metric spaces by
replacing the constant s by a function θ(x, y) depending on the parameters of the left hand-side of the
triangle inequality (see also [1, 9–11, 17, 23]).

Definition 1.1. [21] Let X be a nonempty set and θ : X × X→ [1,∞) be a given function. An extended b-metric is
a function d : X × X→ [0,∞) such that for all η, ξ,u ∈ X,

1. d(η, ξ) = 0⇐⇒ η = ξ;
2. d(η, ξ) = d(ξ, η);
3. d(η, ξ) ≤ θ(η, ξ)[d(η,u) + d(u, ξ)].

One of generalizations of b−metric spaces has been provided by Mlaiki et al. [29] who introduced the
concept of controlled metric type spaces by employing a control function function δ : X ×X→ [1,∞) to act
separately on each term in the right-hand side of the triangle inequality.
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Definition 1.2. [29] Given a nonempty set X and δ : X ×X→ [1,∞). The function ω : X ×X→ [0,∞) is called a
controlled metric type if
(d1) ω(η, ξ) = 0 if and only if η = ξ;
(d2) ω(η, ξ) = ω(ξ, η);
(d3) ω(η, ξ) ≤ δ(η,u)ω(η,u) + δ(u, ξ)ω(u, ξ),
for all η, ξ,u ∈ X. The pair (X, ω) is called a controlled metric type space.

Remark 1.3. Note that every b−metric space is a controlled metric type space, which is not in general an extended
b-metric space when taking the same function, that is, in the case θ = δ.

Example 1.4. [29] Choose X = {1, 2, · · · }. Take ω : X × X→ [0,∞) as

ω(η, ξ) =


0, ⇐⇒ η = ξ
1
η , if η is even and ξ is odd
1
ξ , if η is odd and ξ is even
1, otherwise.

Consider δ : X × X→ [1,∞) as

δ(η, ξ) =


η, if η is even and ξ is odd
ξ, if η is odd and ξ is even
1, otherwise.

ω is a controlled metric type. On the other hand, for an integer p ≥ 2,

ω(2p + 1, 4p + 1) = 1 >
1
p

= δ(2p + 1, 4p + 1)[ω(2p + 1, 2p) + ω(2p, 4p + 1)],

that is, ω is not an extended b-metric when considering the same function δ = θ.

The topological concepts as Cauchyness, convergence, completeness, continuity on controlled metric
type spaces are given as follows:

Definition 1.5. Let (X, ω) be a controlled metric type space and {ξn}n≥0 be a sequence in X.
(1) We say that {ξn} is convergent to some ξ in X, if for every ε > 0, there exists N = N(ε) ∈N such that d(ξn, ξ) < ε
for each n ≥ N. This is written as limn→∞ ξn = ξ.
(2) We say that the sequence {ξn} is Cauchy, if for every ε > 0, there is some N = N(ε) ∈ N so that ω(ξm, ξn) < ε
for all m,n ≥ N.
(3) (X, ω) is said complete if every Cauchy sequence is convergent.

Definition 1.6. Let (X, ω) be a controlled metric type space. Let η ∈ X and α > 0.
(i) The open ball B(η, α) is

B(η, α) = {ξ ∈ X, ω(η, ξ) < α}.

(ii) The self-mapping T on X is called continuous at η ∈ X if for each r > 0, there exists β > 0 such that
T(B(η, β)) ⊆ B(Tη, r).

Clearly, if T is continuous at ξ, then ξn → ξ implies that Tξn → Tξ at the limit n→∞.
Now, let (X, ω) be a controlled metric type space and f : X → X be a given mapping. Throughout this

paper, unless otherwise specified, we will use the following notations:

A =
{
λ : X→ (0, 1), λ( fη) ≤ λ(η) for each η ∈ X

}
.
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and

B =
{
λ : X→ (0, 1/2), λ( fη) ≤ λ(η) for each η ∈ X

}
.

The above classes of control functions have been initiated by Sintunavarat et al. [35] (with a little bit
modification, that is, the ranges do not contain 0). See also the recent paper of Kumrod and Sintunavarat
[27]. In this paper, we provide some fixed point results for nonlinear Banach, Kannan and Chatterjea type
contractive mappings by utilizing the above control functions. We also present a fixed point result involving
cyclical orbital contractions. Moreover, we present some examples.

2. Main results

Throughout the paper, (X, ω) is a complete controlled metric type space by the function δ : X×X→ [1,∞).
Our first main result corresponds to a nonlinear Banach type result on controlled metric type spaces.

Theorem 2.1. Let T : X→ X be a mapping such that

ω(Tx,Ty) ≤ λ(x)ω(x, y), (1)

for all x, y ∈ X, where λ ∈ A. For ξ0 ∈ X, take ξn = Tnξ0. Suppose that

sup
m≥1

lim
i→∞

δ(ξi+1, ξi+2)
δ(ξi, ξi+1)

δ(ξi+1, ξm) <
1

λ(ξ0)
. (2)

Also, assume that for every ξ ∈ X, we have

lim
n→∞

δ(ξn, ξ) and lim
n→∞

δ(ξ, ξn) exist and are finite. (3)

Then T has a unique fixed point.

Proof. Consider the sequence {ξn = Tnξ0}. By using (1), we get

ω(ξn, ξn+1) ≤ λ(ξn−1)ω(ξn−1, ξn) for all n ≥ 1.

Since λ ∈ A, we have
ω(ξn, ξn+1) ≤ λ(ξ0)ω(ξn−1, ξn) for all n ≥ 1.

By induction,

ω(ξn, ξn+1) ≤ [λ(ξ0)]n ω(ξ0, ξ1) for all n ≥ 0. (4)

Choose k =: λ(ξ0) ∈ (0, 1). For all natural numbers n < m, as in [29], we have

ω(ξn, ξm) ≤ δ(ξn, ξn+1)ω(ξn, ξn+1) + δ(ξn+1, ξm)ω(ξn+1, ξm)

≤ δ(ξn, ξn+1)knω(ξ0, ξ1) +

m−1∑
i=n+1

 i∏
j=n+1

δ(ξ j, ξm)

 δ(ξi, ξi+1)kiω(ξ0, ξ1)

≤ δ(ξn, ξn+1)knω(ξ0, ξ1) +

m−1∑
i=n+1

 i∏
j=0

δ(ξ j, ξm)

 δ(ξi, ξi+1)kiω(ξ0, ξ1).

Let

Sp =

p∑
i=0

 i∏
j=0

δ(ξ j, ξm)

 δ(ξi, ξi+1)ki.
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Hence, we have

ω(ξn, ξm) ≤ ω(ξ0, ξ1) [knδ(ξn, ξn+1) + (Sm−1 − Sn)] . (5)

Condition (2), by using the ration test, guarantees that limn→∞ Sn exists and hence the real sequence {Sn} is
Cauchy. Finally, if we take the limit in the inequality (5) as n,m→∞, we deduce that

lim
n,m→∞

ω(ξn, ξm) = 0, (6)

that is, {ξn} is a Cauchy sequence in the complete controlled metric type space (X, ω), so {ξn} converges to
some u ∈ X. We shall show that u is a fixed point of T. The triangle inequality yields that

ω(u, ξn+1) ≤ δ(u, ξn)ω(u, ξn) + δ(ξn, ξn+1)ω(ξn, ξn+1).

Using (2), (3) and (6), we deduce that

lim
n→∞

ω(u, ξn+1) = 0. (7)

Using again the triangle inequality and (1),

ω(u,Tu) ≤ δ(u, ξn+1)ω(u, ξn+1) + δ(ξn+1,Tu)ω(ξn+1,Tu)
≤ δ(u, ξn+1)ω(u, ξn+1) + λ(ξn)δ(ξn+1,Tu)ω(ξn,u)
≤ δ(u, ξn+1)ω(u, ξn+1) + λ(ξ0)δ(ξn+1,Tu)ω(ξn,u).

Taking the limit as n → ∞ and taking (3) and (7) into view, we deduce that ω(u,Tu) = 0, that is, Tu = u.
Finally, assume that T has two fixed points, say u and v. Thus,

ω(u, v) = ω(Tu,Tv) ≤ λ(u)ω(u, v),

which holds unless ω(u, v) = 0, so u = v. Hence T has a unique fixed point.

We illustrate Theorem 2.1 by the following example.

Example 2.2. Let X = [0, 1]. Consider the controlled metric type d defined as

ω(x, y) = |x − y|2,

where δ(x, y) = x + y + 1 for x, y ∈ X. Take Tx = x2

4 . Choose λ : X→ [0, 1) as λ(x) = x+1
4 . Then λ ∈ A. Take ξ0 = 0,

so (2) is satisfied. Let x, y ∈ X, then

ω(Tx,Ty) =
(x2
− y2)2

16
=

1
16
|x − y|2(x + y)2

≤
1
4
|x − y|2

≤
x + 1

4
|x − y|2

= λ(x)ω(x, y),

that is, (1) holds. All hypotheses of Theorem 2.1 hold, and so the mapping T has a unique fixed point, which is u = 0.

In the following theorem, we propose a fixed point result using the nonlinear Kannan type contraction
via the auxiliary function λ ∈ B. It is an answer to an open question in [29].
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Theorem 2.3. Let T : X→ X be such that

ω(Tx,Ty) ≤ λ(x)[ω(x,Tx) + ω(y,Ty)], (8)

for all x, y ∈ X, where λ ∈ B. For ξ0 ∈ X, take ξn = Tnξ0. Suppose that

sup
m≥1

lim
i→∞

δ(ξi+1, ξi+2)
δ(ξi, ξi+1)

δ(ξi+1, ξm) <
1 − λ(ξ0)
λ(ξ0)

. (9)

Also, assume that for every ξ ∈ X, we have

lim
n→∞

δ(ξ, ξn) exists, is finite and lim
n→∞

δ(ξn, ξ) <
1

λ(ξ0)
. (10)

Then T has a unique fixed point.

Proof. Consider the sequence {ξn = Tξn−1} in X satisfying the hypotheses (9) and (10). From (8), we obtain

ω(ξn, ξn+1) = ω(Tξn−1,Tξn)
≤ λ(ξn−1)[ω(ξn−1,Tξn−1) + ω(ξn,Tξn)]
≤ λ(ξ0)[ω(ξn−1, ξn) + ω(ξn, ξn+1)].

Consider a = λ(ξ0). Then ω(ξn, ξn+1) ≤
a

1 − a
ω(ξn−1, ξn). By induction, we get

ω(ξn, ξn+1) ≤ (
a

1 − a
)nω(ξ1, ξ0), ∀n ≥ 0. (11)

Now, let us prove that {ξn} is a Cauchy sequence. Using the triangle inequality, for all n,m ∈Nwe obtain

ω(ξn, ξm) ≤ δ(ξn, ξn+1)ω(ξn, ξn+1) + δ(ξn+1, ξm)ω(ξn+1, ξm).

Similar to the proof of Theorem 2.1, we get

ω(ξn, ξm) ≤ δ(ξn, ξn+1)ω(ξn, ξn+1) +

m−2∑
i=n+1

 i∏
j=n+1

δ(ξ j, ξm)

 δ(ξi, ξi+1)ω(ξi, ξi+1)

+

m−1∏
k=n+1

δ(ξk, ξm)ω(ξm−1, ξm)

≤ δ(ξn, ξn+1)(
a

1 − a
)nω(ξ0, ξ1) +

m−2∑
i=n+1

 i∏
j=n+1

δ(ξ j, ξm)

 δ(ξi, ξi+1)(
a

1 − a
)iω(ξ0, ξ1)

+

m−1∏
i=n+1

δ(ξi, ξm)(
a

1 − a
)m−1ω(ξ0, ξ1).

Since 0 ≤ a <
1
2

, we have
a

1 − a
∈ (0, 1). As in the proof of Theorem 2.1, we deduce that {ξn} is a Cauchy

sequence in the complete controlled metric space (X, ω). So there exists u ∈ X as limit of {ξn} in (X, ω).
Assume that Tu , u. We have

0 < ω(u,Tu) ≤ δ(u, ξn+1)ω(u, ξn+1) + δ(ξn+1,Tu)ω(ξn+1,Tu)
≤ δ(u, ξn+1)ω(u, ξn+1) + δ(ξn+1,Tu)λ(ξn)[ω(ξn, ξn+1) + ω(u,Tu)] (12)
≤ δ(u, ξn+1)ω(u, ξn+1) + δ(ξn+1,Tu)λ(ξ0)[ω(ξn, ξn+1) + ω(u,Tu)].
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Passing to the limit in the both sides of (12) and making use of the condition (10), we deduce that 0 <
ω(u,Tu) < ω(u,Tu), which is a contradiction. Hence Tu = u. To prove the uniqueness of the fixed point u,
suppose that T has another fixed point v. Then

ω(u, v) = ω(Tu,Tv) ≤ λ(u)[ω(u,Tu) + ω(v,Tv)]
= λ(u)[ω(u,u) + ω(v, v)] = 0.

Therefore, u = v and so T has a unique fixed point.

Theorem 2.3 is illustrated by the following example.

Example 2.4. Consider X = {0, 1, 2}. Take the controlled metric type d defined as

ω(0, 1) =
1
2
, ω(0, 2) =

11
20
, ω(1, 2) =

3
20
.

Take δ : X × X→ [1,∞) to be symmetric and be defined by

δ(0, 0) = δ(1, 1) = δ(2, 2) = δ(1, 2) = 1, δ(0, 2) = 2, δ(0, 1) =
3
2
.

Given T : X→ X as

T0 = 2 and T1 = T2 = 1.

Consider λ : X→ [0, 1
2 ) as λ(0) = 99

200 and λ(1) = 3
10 and λ(2) = 49

100 . Then λ ∈ B. Take ξ0 = 0, so (9) is satisfied.
On the other hand, it is easy that (8) holds. All hypotheses of Theorem 2.3 hold, and so the mapping T has a unique

fixed point, which is u = 1.

Now, we again give a response to an open question in [29], which is the study of a nonlinear Chatterjea
type contraction via an auxiliary function λ ∈ B.

Theorem 2.5. Let T : X→ X be such that

ω(Tx,Ty) ≤ λ(x)[ω(x,Ty) + ω(y,Tx)], (13)

for all x, y ∈ X, where λ ∈ B. For ξ0 ∈ X, take ξn = Tnξ0. Suppose that

sup
i≥1

δ(ξi−1, ξi) = β exists and is finite, (14)

0 < λ(ξ0) <
1

2β
, (15)

and

sup
m≥1

lim
i→∞

δ(ξi+1, ξi+2)
δ(ξi, ξi+1)

δ(ξi+1, ξm) <
βλ(ξ0)

1 − βλ(ξ0)
. (16)

Also, assume that d is continuous with respect to its first variable, and for every ξ ∈ X, we have

lim
n→∞

δ(ξ, ξn) exists, is finite and lim
n→∞

δ(ξn, ξ) <
1

λ(ξ0)
. (17)

Then T has a unique fixed point.
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Proof. Consider the sequence {ξn = Tξn−1} in X satisfying the hypotheses (14), (15), (16) and (17). From (13)
and (14), we obtain

ω(ξn, ξn+1) = ω(Tξn−1,Tξn)
≤ λ(ξn−1)[ω(ξn−1,Tξn) + ω(ξn,Tξn−1)]
= λ(ξn−1)ω(ξn−1, ξn+1)
≤ λ(ξ0)[δ(ξn−1, ξn)ω(ξn−1, ξn) + δ(ξn, ξn+1)ω(ξn, ξn+1)]
≤ βλ(ξ0)[ω(ξn−1, ξn) + ω(ξn, ξn+1)].

Consider b =
βλ(ξ0

1−βλ(ξ0) . By (15), we have b ∈ (0, 1). Then ω(ξn, ξn+1) ≤ bω(ξn−1, ξn). By induction, we get

ω(ξn, ξn+1) ≤ bnω(ξ0, ξ1), ∀n ≥ 0. (18)

Now, let us prove that {ξn} is a Cauchy sequence. Using the triangle inequality, for all n,m ∈Nwe obtain

ω(ξn, ξm) ≤ δ(ξn, ξn+1)ω(ξn, ξn+1) + δ(ξn+1, ξm)ω(ξn+1, ξm).

Similar to the proof of Theorem 2.1, we get

ω(ξn, ξm) ≤ δ(ξn, ξn+1)ω(ξn, ξn+1) +

m−2∑
i=n+1

 i∏
j=n+1

δ(ξ j, ξm)

 δ(ξi, ξi+1)ω(ξi, ξi+1)

+

m−1∏
k=n+1

δ(ξk, ξm)ω(ξm−1, ξm)

≤ δ(ξn, ξn+1)(bnω(ξ0, ξ1) +

m−2∑
i=n+1

 i∏
j=n+1

δ(ξ j, ξm)

 δ(ξi, ξi+1)biω(ξ0, ξ1)

+

m−1∏
i=n+1

δ(ξi, ξm)bm−1ω(ξ0, ξ1).

As in the proof of Theorem 2.1, we deduce that {ξn} is a Cauchy sequence in the complete controlled metric
space (X, ω). So there exists u ∈ X as limit of {ξn} in (X, ω). Assume that Tu , u. We have

0 < ω(u,Tu) ≤ δ(u, ξn+1)ω(u, ξn+1) + δ(ξn+1,Tu)ω(ξn+1,Tu)
≤ δ(u, ξn+1)ω(u, ξn+1) + δ(ξn+1,Tu)λ(ξn)[ω(ξn,Tu) + ω(u, ξn+1)] (19)
≤ δ(u, ξn+1)ω(u, ξn+1) + δ(ξn+1,Tu)λ(ξ0)[ω(ξn,Tu) + ω(u, ξn+1)].

Passing to the limit in the both sides of (19) and making use of the condition (17) and the continuity of d
with respect to its first variable, we deduce that 0 < ω(u,Tu) < ω(u,Tu), which is a contradiction. Hence
Tu = u.

To prove the uniqueness of the fixed point u, suppose that T has another fixed point v. Then

ω(u, v) = ω(Tu,Tv) ≤ λ(u)[ω(u,Tv) + ω(v,Tu)]
= λ(u)[ω(u,u) + ω(v, v)] = 0.

Therefore, u = v and T has a unique fixed point.

Now, we introduce cyclical orbital contractions in the class of controlled metric type spaces.
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Definition 2.6. Let U and v be two non-empty subsets of a controlled metric type space (X, ω). Let T : U∪V → U∪V
be a cyclic mapping (that is, T(U) ⊆ V and TV ⊆ U) such that for some x ∈ U, there exists kx ∈ (0, 1) such that

ω(T2nx,Ty) ≤ kxω(T2n−1x, y), (20)

where n = 1, 2, · · · and y ∈ U. Then T is called a controlled cyclic orbital contraction mapping.

In closing, we prove the following result.

Theorem 2.7. Let U and V be two non-empty closed subsets of a complete controlled metric type space (X, ω). Let
T : X→ X be a controlled cyclic orbital contraction mapping For ξ0 ∈ U, take ξn = Tnξ0. Suppose that

sup
m≥1

lim
i→∞

δ(ξi+1, ξi+2)
δ(ξi, ξi+1)

δ(ξi+1, ξm) <
1

kξ0

. (21)

Also, assume that for every ξ ∈ X, we have

lim
n→∞

δ(ξn, ξ) and lim
n→∞

δ(ξ, ξn) exist and are finite. (22)

Then U ∩ V is non-empty and T has a unique fixed point in U ∩ V.

Proof. Suppose there exists x (say ξ0) in U satisfying (20). Define the iterative sequence {ξn = Tnξ0}. Since
ξ0 ∈ U and T is cyclic, we have

ξ2n ∈ U and ξ2n+1 ∈ V, for all n ≥ 0. (23)

By using (20), we get

ω(T2x,Tx) ≤ kxω(Tx, x).

Again

ω(T3x,T2x) = ω(T2x,T(T2x)) ≤ kxω(Tx,T2x) ≤ (kx)2ω(Tx, x).

By induction, we obtain that

ω(ξn, ξn+1) ≤ [kx]n ω(ξ0, ξ1) for all n ≥ 0. (24)

Similarly to the proof of Theorem 2.1, we can easily deduce that

lim
n,m→∞

ω(ξn, ξm) = 0, (25)

that is, {ξn} is a Cauchy sequence in the complete controlled metric type space (X, ω), so {ξn} converges to
some u ∈ X. Since {T2nx} is in U and U is closed, the limit u is in S1. Similarly, {T2n−1x} is in the closed subset
V, so u ∈ V. That is, u ∈ U ∩V, hence U ∩V is not empty. Let us prove that u is a fixed point of T. We have

ω(u, ξn+1) ≤ δ(u, ξn)ω(u, ξn) + δ(ξn, ξn+1)ω(ξn, ξn+1).

Using (21), (22) and (25), we get that

lim
n→∞

ω(u, ξn+1) = 0. (26)

Using the triangle inequality and (20),

ω(u,Tu) ≤ δ(u,T2nx)ω(u,T2nx) + δ(T2nx,Tu)ω(T2nx,Tu)

≤ δ(u,T2nx)ω(u,T2nx) + kxδ(T2nx,Tu)ω(T2n−1x,u)
= δ(u, ξn+1)ω(u, ξn+1) + kxδ(ξn+1,Tu)ω(ξ2n−1,u).

Taking the limit as n→ ∞ and by using (22) and (26), we deduce that ω(u,Tu) = 0, that is, Tu = u. Finally,
assume that T has two fixed points, say u and v (they are in U). Thus,

ω(u, v) = ω(Tu,Tv) = ω(T2nu,Tv) ≤ kuω(T2n−1u, v) = kuω(u, v),

which holds unless ω(u, v) = 0, so u = v. Hence T has a unique fixed point.



N. Mlaiki et al. / Filomat 34:6 (2020), 1853–1862 1861

The following example illustrates Theorem 2.7.

Example 2.8. Let X = U ∪ V where U = [ 1
4 ,

1
2 ] and V = [ 1

2 , 1]. Consider the controlled metric type d defined as

ω(x, y) = |x − y|2,

where δ(x, y) = x + y + 1 for x, y ∈ X. Take Tx = 1
2 if x ∈ U and Tx = x

2 if x ∈ V \ { 12 }. For x ∈ U, take kx = x+1
2 .

Note that for all x, y ∈ U and n ≥ 1, we have

Ty =
1
2
, T2n−1x =

1
2

and T2nx =
1
2
.

We deduce that (20) holds. It is not difficult to see that T satisfies all the hypotheses of Theorem 2.7. Therefore, T has
a unique fixed point, which is u = 1

2 ∈ U ∩ V.

Perspectives

It is an open question to treat the cases of Hardy-Rogers contraction, Ćirić contraction and Suzuki
contraction.
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