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Abstract. We study the asymptotic behavior of solutions to a first-order evolution equation governed by
a locally Lipschitz quasi-nonexpansive mapping. We show that such solutions converge to a fixed point of
the quasi-nonexpansive mapping as time goes to infinity. Time discretization of this system provides an
iterative method to approximate a fixed point of quasi-nonexpansive mappings on Hadamard manifolds.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉, induced norm ‖ · ‖ and identity operator I. A
set-valued operator A : H → 2H with the domain D(A), containing all x ∈ H such that Ax , ∅, is called
monotone if for any two points x, y ∈ D(A):

〈x − y, x∗ − y∗〉 ≥ 0, ∀x∗ ∈ Ax, y∗ ∈ Ay.

A monotone operator A is maximal if the graph of A is not contained in the graph of any other monotone
operator. The zero set of A, i.e. {x ∈ D(A) : 0 ∈ Ax}, is denoted by A−1(0).

T : H→ H is called nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ H.

The function ϕ : H→ (−∞,+∞] is called convex if

ϕ(λx + (1 − λ)y) ≤ λϕ(x) + (1 − λ)ϕ(y), ∀x, y ∈ H, ∀λ ∈ (0, 1).

We say ϕ is proper if there is x ∈ H with ϕ(x) < +∞. The function ϕ is lower semicontinuous at x
if lim infy→x ϕ(y) ≥ ϕ(x). The subdifferential of ϕ at x is defined by ∂ϕ(x) := {w ∈ H : ϕ(y) − ϕ(x) ≥
〈w, y− x〉, ∀y ∈ H}. The subdifferential of a proper, convex and lower semicontinuous function and (I −T),
where T is a nonexpansive mapping, are two important examples of maximal monotone operators. The
zero sets of these operators are respectively the set of all minimizers of the convex function and the set of
all fixed points of the mapping T.
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First-order evolution equations of the form−u̇(t) ∈ Au(t),
u(0) = x ∈ D(A),

(1)

where A is a maximal monotone operator, were studied extensively in Hilbert and Banach spaces settings.
These abstract equations model several concrete partial differential equations in mathematical physics and
other disciplines in applied mathematics. If the maximal monotone operator has a zero, then the solutions
of these equations (at least their averages) converge to a zero of the maximal monotone operator [5] (see
also [14]). When the maximal monotone operator is in the form of (I − T), where T is a nonexpansive
mapping with a nonempty set of fixed points, or it is the subdifferential of a proper, convex and lower
semicontinuous function with a minimizer, then solutions to (1) converge weakly toward a fixed point of
T or a minimizer of the convex function, respectively. This fact was proved by Bruck [6]. The reader can
consult [14] for more information about evolution equations of monotone type and the asymptotic behavior
of their solutions.

The study of the asymptotic behavior of solutions to (1) was also extended to the cases that A is not a
maximal monotone operator. In [10], the authors considered (1) when A is replaced with the nonmonotone
operator (I − T), where T is a Lipschitz quasi-nonexpansive mapping (see Definition 2.4), and they proved
the weak and strong convergence of solutions to (1) toward a fixed point of the mapping T. For more results
on the asymptotic behavior of solutions to (1) when A is not monotone see [7, 9].

In [1, 2, 15], the authors studied the asymptotic behavior of solutions to monotone type equations in
Hadamard manifolds, which extends some classical results from Hilbert spaces to Hadamard manifolds.
In this paper, we extend the main results of [10] to Hadamard manifolds. In the next section, some basic
definitions and results of Riemannian geometry are presented which shall be needed in the sequel. In
Section 3, we consider a counterpart of (1) in the setting of Hadamard manifolds, where A = (I − T) and T
is a locally Lipschitz quasi-nonexpansive mapping. We first establish the existence of the solutions to this
system and then study the convergence of these solutions to a fixed point of the mapping T. Finally, in
Section 4, a discrete version of the system is studied that provides an algorithm for approximating a fixed
point of the quasi-nonexpansive mapping.

2. Some preliminaries on Hadamard manifolds

In this section, we recall some backgrounds on Riemannian manifolds from [8, 16].
Let M be a connected n-dimensional Riemannian manifold, with a Riemannian metric 〈·, ·〉 and the

corresponding norm ‖ · ‖. For p ∈M the tangent space at p is denoted by TpM and the tangent bundle of M
is denoted by TM =

⋃
p∈M TpM. A vector field A is a mapping from M to TM which maps each point p ∈M

to a vector A(p) ∈ TpM. Let p and q be two points in M and γ : [a, b] → M be a piecewise smooth curve
joining p to q. The length of γ is defined by

L(γ) =

∫ b

a
‖γ̇(t)‖dt,

and the Riemannian distance d(p, q) is defined by

d(p, q) = inf L(γ),

where the infimum is taken over all piecewise smooth curves γ : [a, b] → M with γ(a) = p and γ(b) = q.
Notice that this distance induces the original topology on M.

Let ∇ be the Levi-Civita connection on M associated with the Riemannian metric 〈·, ·〉, and γ be a smooth
curve in M. A vector field A is said to be parallel along γ if ∇γ̇A = 0. A smooth curve γ is a geodesic if γ̇
itself is parallel along γ. If γ is a geodesic, then ‖γ̇‖ is constant. When ‖γ̇‖ = 1, γ is said to be normalized.
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A geodesic joining p to q in M is called minimal if its length is equal to d(p, q). We use Pγ,.,. to denote the
parallel transport on the tangent bundle TM along γ with respect to ∇, which is defined by

Pγ,γ(b),γ(a)(v) = V(γ(b)) ∀a, b ∈ R, ∀v ∈ Tγ(a)M,

where V is the unique vector field satisfying ∇γ̇(t)V = 0 for all t and V(γ(a)) = v. For any a, b ∈ R, the parallel
transport Pγ,γ(b),γ(a) is an isometry from Tγ(a)M to Tγ(b)M. Note that for any a, b, b1, b2 ∈ R, we have

Pγ,γ(b2),γ(b1) ◦ Pγ,γ(b1),γ(a) = Pγ,γ(b2),γ(a), and P−1
γ,γ(b),γ(a) = Pγ,γ(a),γ(b).

A Riemannian manifold M is complete if for each p ∈ M all geodesics emanating from p are defined on
the whole of R. If M is complete, then by the Hopf-Rinow theorem, any pair of points in M can be joined
by a minimal geodesic.

Let M be a connected and complete Riemannian manifold. The exponential map expp : TpM → M at
p is defined by expp(v) = γv(1) for each v ∈ TpM, where γv(.) is the geodesic with γv(0) = p and γ̇v(0) = v.
Then expp(tv) = γv(t) for each real number t.

Throughout the paper, we assume that M is a complete, simply connected Riemannian manifold of
non-positive sectional curvature of dimension n, which is called a Hadamard manifold of dimension n.

Proposition 2.1. ([16, p.221]) Let p ∈ M. Then expp : TpM → M is a diffeomorphism, and for any two points
p, q ∈M there exists a unique normalized geodesic joining p to q, which is in fact a minimal geodesic.

An immediate consequence of Proposition 2.1 is that d(p, q) = ‖ exp−1
p q‖, for any two points p, q ∈M.

By the definition, a geodesic triangle ∆(p1p2p3) of a Riemannian manifold is a set consisting of three
points p1, p2 and p3, and three minimal geodesics joining these points.

Proposition 2.2. ([16, p.223])(Comparison theorem for triangles) Let ∆(p1p2p3) be a geodesic triangle. Denote by
γi : [0, li]→M the geodesic joining pi to pi+1, and set li := L(γi), αi := ∠(γ̇i(0),−γ̇i−1(li−1)), where i = 1, 2, 3 (mod 3).
Then

α1 + α2 + α3 6 π,

l2i + l2i+1 − 2lili+1 cosαi+1 6 l2i−1. (2)

Since
〈exp−1

pi+1
pi, exp−1

pi+1
pi+2〉 = d(pi, pi+1)d(pi+1, pi+2) cosαi+1,

hence the inequality (2) may be rewritten as follows

d2(pi, pi+1) + d2(pi+1, pi+2) − 2〈exp−1
pi+1

pi, exp−1
pi+1

pi+2〉 6 d2(pi+2, pi), (3)

equivalently, we have

‖ exp−1
pi+1

pi − exp−1
pi+1

pi+2‖ ≤ d(pi, pi+2). (4)

We now collect some definitions which extend some notions of the monotonicity, from the corresponding
notions in Hilbert spaces (see [11, 13]), to (possibly multi-valued) vector fields on Hadamard manifolds. Let
M be an n-dimensional Hadamard manifold and X(M) denote the set of all (possibly multi-valued) vector
fields A : M −→ 2TM such that A(x) ⊆ TxM for each x ∈M. The domain of a vector field A which is a closed
and convex subset of M is denoted by D(A) and defined as follows

D(A) = {x ∈M : A(x) , ∅}.

Definition 2.3 ([11]). Let A ∈ X(M). Then A is said to be monotone if the following condition holds for any two
points x, y ∈ D(A):

〈u, exp−1
x y〉 6 〈v,− exp−1

y x〉 , ∀u ∈ A(x) and ∀v ∈ A(y). (5)
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The gradient of a differentiable function ϕ : M → R, gradϕ, is the vector field metrically equivalent to the
differential dϕ. Thus

〈gradϕ,X〉 = dϕ(X) = Xϕ,

where X is also a vector field. Let p ∈M. The mapping x 7→ d2(x, p) is a smooth map and

1
2

gradxd2(x, p) = − exp−1
x p, (6)

where gradx denotes the gradient with respect to x. (See for example, Proposition 4.8 of [16], page 108).

Definition 2.4. Let M be a Hadamard manifold. A single-valued mapping T : M→M is called:

(i) Lipschitz if there exists K > 0 such that d(Tx,Ty) ≤ Kd(x, y) for all x, y ∈ M (the infimum of the K’s that
satisfy the above inequality is called Lipschitz constant of T).

(ii) locally Lipschitz near a point x ∈M if there exists r > 0 such that the mapping T|B(x;r) is Lipschitz.

(iii) locally Lipschitz on M if it is locally Lipschitz near every point in M.

(iv) nonexpansive if it is Lipschitz with Lipschitz constant K ≤ 1.

(v) quasi-nonexpansive if Fix(T) := {x ∈M : Tx = x} , ∅ and d(Tx, y) ≤ d(x, y) for each x ∈M, and y ∈ Fix(T).

In order to show the abundance of quasi-nonexpansive mappings on Hadamard manifolds we give the
following example.

Example 2.5. Assume that M is an n-dimensional Hadamard manifold and x ∈ M is arbitrary and fixed. Take a
quasi-nonexpansive mapping f : TxM ≡ Rn

→ TxM ≡ Rn with Fix( f ) = {0} (there are a lot of mappings with this
property, especially f can be taken nonexpansive with {0} as the fixed point set). Consider the mapping 1 : M→ M,
defined by 1(y) := expx ◦ f ◦ exp−1

x y. Clearly, Fix(1) = {x}. Also, we have

d(1(y), x) = d(expx ◦ f ◦ exp−1
x y, x) = ‖ f (exp−1

x y)‖

= ‖ f (exp−1
x y) − 0‖ ≤ ‖ exp−1

x y‖ = d(y, x),

which shows that 1 is quasi-nonexpansive but it is not necessarily nonexpansive.

The set of all cluster points of u(t), denoted by ω(u(t)), is defined as follows

ω(u(t)) := {q ∈M : ∃{tn} ⊆ [0,∞) s.t. tn →∞,u(tn)→ q}.

The set of all cluster points of a sequence un is defined similarly.

3. Convergence of the solutions

It is well known that if ϕ : M→ R is a convex differentiable function, then gradϕ is a monotone vector
field. Ahmadi and Khatibzadeh in [3] showed that if T : M→M is a nonexpansive mapping, then− exp−1

x Tx
is a monotone vector field. In [1, 4, 15], the authors studied (1) in Riemannian and Hadamard manifolds
for A = gradϕ and A = − exp−1

x Tx, where T is a nonexpansive mapping, and proved the convergence of
solutions to a minimum point of ϕ and a fixed point of T, respectively. In this section, we replace the
monotone vector field A with − exp−1

x Tx, where T : M→ M is a locally Lipschitz and quasi-nonexpansive
mapping.

In fact, we consider the following first-order systemu̇(t) = exp−1
u(t) Tu(t),

u(0) = x ∈M.
(7)

where T : M→ M is a locally Lipschitz and quasi-nonexpansive mapping. First, we prove the existence of
solutions to (7) when T is locally Lipschitz. For this purpose, we prove that the vector field x 7→ exp−1

x Tx is
Lipschitz on bounded sets.
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Proposition 3.1. If T : M→M is locally Lipschitz, then ψ(x) := exp−1
x Tx is Lipschitz on bounded sets.

Proof. Let C ⊆ M be bounded and x, y ∈ C. Set l = d(x, y) and let γ : [0, l] → M be a geodesic curve in M
with endpoints x and y. By (4), we have

‖Pγ(l),γ(0)ψ(γ(l)) − ψ(γ(0))‖γ(0) = ‖Py,x exp−1
y Ty − exp−1

x Tx‖x

= ‖Py,x exp−1
y Ty − exp−1

x Ty + exp−1
x Ty − exp−1

x Tx‖x

≤ ‖Py,x exp−1
y Ty − exp−1

x Ty‖x + ‖ exp−1
x Ty − exp−1

x Tx‖x

≤ ‖Pγ(l),γ(0) exp−1
γ(l) Tγ(l) − exp−1

γ(0) Tγ(l)‖γ(0) + Kd(x, y),

where the last inequality is obtained by using the comparison theorem for triangles and the Lipschitz
property of T on bounded sets. Now define h : [0, l] ⊆ R→ Rn by

h(t) := Pγ(t),γ(0) exp−1
γ(t) Tγ(l).

Clearly, h is a smooth function and hence ḣ admits its extremum points on the compact set [0, l] and therefore
ḣ is bounded. Now a corollary of the mean value theorem implies that

‖Pγ(l),γ(0) exp−1
γ(l) Tγ(l) − exp−1

γ(0) Tγ(l)‖γ(0) = ‖h(l) − h(0)‖ ≤Ml,

where M := max0≤t≤diamC ‖ḣ(t)‖, and diam C = sup{d(u, v) : u, v ∈ C}.

Remark 3.2. Proposition 3.1 guarantees the existence and uniqueness of a global solution to (7). More precisely,
since ψ is Lipschitz on bounded sets, by the Cauchy-Lipschitz theorem, for any initial point u(0) = x ∈ M, there
exists a unique local solution to the Cauchy problem (7). Let u(t) denote the corresponding maximal solution which is
defined on some interval [0,T ) with 0 < T ≤ ∞. If T , ∞, an argument similar to what is represented in the proof
of Theorem 3.3 shows that u is bounded, and therefore limt→T u(t) := uT exists. Now considering (7) with the initial
condition u(T ) = uT and applying the Cauchy-Lipschitz theorem we obtain a solution on an interval which is larger
than [0,T ). This is a contradition with the maximality of T . Hence u is infinitely extendible to the right.

The following theorem is the main result of this section. To prove this theorem we adapt the proof of a
theorem due to Bruck [6] to the setting of Hadamard manifolds.

Theorem 3.3. Assume that T : M → M is a quasi-nonexpansive mapping and u(t) is a solution to the system (7).
Then u(t) converges to a fixed point of T.

Proof. By the comparison theorem for triangles, we have

d2(Tx, x) ≤ 2〈exp−1
x Tx, exp−1

x y〉, ∀x ∈M,∀y ∈ Fix(T). (8)

Let y ∈ Fix(T) be fixed. The above inequality yields:

d
dt

d2(u(t), y) = 〈gradu(t)d
2(u(t), y), u̇(t)〉 = −2〈exp−1

u(t) y, exp−1
u(t) Tu(t)〉 ≤ 0.

Therefore limt→∞ d2(u(t), y) exists. By (8), we get:

‖u̇(t)‖2 = ‖ exp−1
u(t) Tu(t)‖2 = d2(Tu(t),u(t)) ≤ 2〈exp−1

u(t) Tu(t), exp−1
u(t) y〉

= −
d
dt

d2(u(t), y).

The above inequality implies that ‖u̇(t)‖ ∈ L2(0,+∞; M) and hence
h(t) := 〈exp−1

u(t) Tu(t), exp−1
u(t) y〉 belongs to L1(0,∞; M). Let q ∈ ω(u(t)). There exists a sequence tk such

that tk → +∞ and u(tk)→ q. Since h ∈ L1(0,+∞; M) for all ε > 0, we have

µ({t ∈ R : h(t) > ε}) < +∞,
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where µ is the Lebesgue measure. On the other hand, for each ε > 0 there exist s > 0 and k > 0 sufficiently
large such that h(s) < ε and |tk − s| < ε2. Besides, by the Cauchy-Schwarz inequality, we have

d(u(tk),u(s)) ≤
∫ tk

s
‖u̇(t)‖dt ≤

( ∫ ∞

0
‖u̇(t)‖2dt

) 1
2 √tk − s ≤Mε,

where M := ‖u̇(t)‖2. Taking ε = 1
j , there exist sequences s j and k j such that s j → +∞ and k j → +∞ and h(s j) <

1
j and |tk j − s j| < 1

j2 . Therefore d(u(tk j ),u(s j)) ≤ M
j . This means 〈exp−1

u(s j)
Tu(s j), exp−1

u(s j)
y〉 → 0 and u(s j) → q

as j tends to infinity. Now [11, Lemma 2.4 (i)] yields that 〈exp−1
q Tq, exp−1

q y〉 = 0. The comparison theorem
for triangles and the fact that T is quasi-nonexpansive imply that d2(Tq, q) + d2(y, q) ≤ d2(Tq, y) ≤ d2(q, y).
Therefore q ∈ Fix(T). The proof is now complete because for each y ∈ Fix(T), limt→+∞ d2(u(t), y) exists.

4. Discrete case

As in the linear spaces there are two approaches for the discretization of (7): the forward and backward
discretizations. The backward discretization induces the well-known proximal point algorithm for vector
field − exp−1

x Tx. In [2, 11, 13], the authors studied this algorithm in the case that T is nonexpansive. In fact,
they considered a more general case and studied the proximal point algorithm for monotone vector fields.
The forward discretization yields the Mann iteration method. In [12], the authors studied the convergence
of the Mann iteration for vector field − exp−1

x Tx when T is nonexpansive. It is easy to see that the same
reasoning also works for a Lipschitz and quasi-nonexpansive mapping. Therefore, this section is devoted
to the convergence of the backward discretization of (7) i.e. the proximal point algorithm for the vector
field exp−1

x Tx on a Hadamard manifold M, where T : M→M is a Lipschitz quasi-nonexpansive mapping.
Let C be a nonempty closed convex subset of M and T : C → C be a quasi-nonexpansive mapping. The
backward discretization of (7) is formulated as follows− exp−1

un
un−1 = λn exp−1

un
Tun,

u0 ∈ C.
(9)

Theorem 4.1. Let C be a nonempty closed convex subset of M, and T : C → C be a quasi-nonexpansive mapping.
Also suppose λn is a sequence of real numbers such that lim infλn > 0. If u0 ∈ C is arbitrary and un iteratively
defined by (9), then un → p ∈ Fix(T).

Proof. Let y ∈ Fix(T) be arbitrary and fixed. By the comparison theorem for triangles, we see that

−2〈exp−1
un

un−1, exp−1
un

y〉 ≤ d2(un−1, y) − d2(un, y). (10)

Substituting from (9) in the above inequality, and then using (8) we conclude that the sequence un is Fejér
convergent to Fix(T). Now by [11, Lemma 4.6] it is enough to prove that ω(un) ⊆ Fix(T). For this purpose,
let q ∈ ω(un). There exists a subsequence unk of un such that unk → q. Using (8), we get

d2(Tun,un) ≤ 2〈exp−1
un

Tun, exp−1
un

y〉 = −
2
λn
〈exp−1

un
un−1, exp−1

un
y〉

≤
1
λn
{d2(un−1, y) − d2(un, y)}.

Summing up both sides of the above inequality from n = 1 to n = N, we have

N∑
n=1

d2(Tun,un) ≤Md2(u0, y),

where M := sup 1
λn

. Tending N to infinity yields d(Tun,un) ∈ l2 which yields d(Tun,un) → 0 and hence
d(Tunk ,unk )→ 0. Now, the continuity of T completes the proof.
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The recent theorem shows the convergence of the sequence un generated by (9) to a fixed point of T.
It remains to prove the existence of the sequence given by (9). On the other hand, since (9) is an implicit
equation, it is not easy to compute un. In the following proposition we show a way to compute (or at least
approximate) un by the Picard iterations of a contraction on the Hadamard manifold M.

Proposition 4.2. Let C be a nonempty closed convex subset of M, and T : C → C be a Lipschitz mapping with
Lipschitz constant K > 1. If λn < 1

K−1 , for all n ∈ N, then un in (9) is the unique fixed point of the contraction
mapping

ϕ(x) :=
1

1 + λn
un−1 ⊕

λn

1 + λn
Tx. (11)

Proof. First we show that un lies on the unique geodesic segment joining un−1 and T(un). It is equivalent to
show that

d(un−1,Tun) = d(un−1,un) + d(un,Tun). (12)

By the comparison theorem for triangles, we have

d2(Tun,un) + d2(un−1,un) − 2〈exp−1
un

Tun, exp−1
un

un−1〉 ≤ d2(Tun,un−1).

Using (9) and the Cauchy-Schwarz inequality, we get

(1 + λn)d(Tun,un) ≤ d(Tun,un−1).

On the other hand, we have

d(Tun,un−1) ≤ d(Tun,un) + d(un,un−1) = d(Tun,un) + ‖ exp−1
un

un−1‖

= d(Tun,un) + ‖λn exp−1
un

Tun‖ = d(Tun,un) + λnd(Tun,un)

= (1 + λn)d(Tun,un).

Therefore

d(Tun,un−1) = (1 + λn)d(Tun,un), (13)

which together with (9) implies (12). Also by (13) we have d(un−1,un) = (1− 1
1+λn

)d(un−1,Tun) and d(un,Tun) =
1

1+λn
d(un−1,Tun). On the other hand, ϕ defined in (11), can also be rewritten as ϕ(x) = expun−1

λn
1+λn

exp−1
un−1

Tx.
For every x, y ∈ C, we have d(un−1, ϕ(x)) = λn

1+λn
d(un−1,Tx) and d(un−1, ϕ(y)) = λn

1+λn
d(un−1,Ty). This together

with (4) implies that

d(ϕ(x), ϕ(y)) ≤
λn

1 + λn
‖exp−1

un−1
Tx − exp−1

un−1
Ty‖

≤
λn

1 + λn
d(Tx,Ty)

≤
λn

1 + λn
Kd(x, y),

where K is the Lipschitz constant of T. Now, the contraction mapping principle concludes the desired
result.

The above discussion yields the subsequent conclusion.

Theorem 4.3. Let C be a nonempty closed convex subset of M, and T : C→ C be a quasi-nonexpansive and Lipschitz
mapping with Lipschitz constant K > 1. Also suppose λn is a sequence of real numbers such that λn < 1

K−1 , for all
n ∈N, and lim infλn > 0. If u0 ∈ C is arbitrary, then the sequence un generated by (9) exists and un → p ∈ Fix(T).



H. Khatibzadeh, M. Rahimi Piranfar / Filomat 34:7 (2020), 2217–2224 2224

Acknowledgement
The authors are grateful to the referee for the constructive comments leading to the improvement of the

paper.

References

[1] P. Ahmadi, H. Khatibzadeh, Convergence and rate of convergence of a non-autonomous gradient system on Hadamard manifolds.
Lobachevskii Journal of Mathematics 35 (2014) 165–171.

[2] P. Ahmadi, H. Khatibzadeh, On the convergence of inexact proximal point algorithm on Hadamard manifolds. Taiwanese Journal
of Mathematics 18 (2014) 419–433.

[3] P. Ahmadi, H. Khatibzadeh, Long time behavior of quasi-convex and pseudo-convex gradient systems on Riemannian manifolds.
Filomat 31 (2017) 4571–4578.

[4] P. Ahmadi, H. Khatibzadeh, Semi-group generated by evolution equation associated with monotone vector fields, Publicationes
Mathematicae Debrecen 93 (2018) 285–301.

[5] J. B. Baillon, H. Brezis, Une remarque sur le comportement asymptotique des semigroupes non linéaires, Houston Journal of
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