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Abstract. This study examines a scenario in which two competitors, called a leader and a follower,
sequentially create their hub and spoke networks to maximize their profits. It is assumed that a non-hub
node can be allocated to at most one hub. The pricing is regulated with a fixed markup. Demand is split
according to the logit model, and customers patronize their choice of route by a price. Two variants of
this Stackelberg competition are addressed: deterministic and robust. In both cases, it was shown how to
present the problem as a bi-level mixed-integer non-linear program. When it comes to the deterministic
variant, a mixed-integer linear reformulation of the follower’s model is given. For the robust variant, it is
shown how to reformulate the follower’s program as a mixed-integer conic-quadratic one. The benefits of
these reformulations are that they allow the usage of state-of-the-art solvers in finding feasible solutions.
As a solution approach for the leader, an alternating heuristic is proposed. Computational experiments are
conducted on the set of CAB instances and thoroughly discussed, providing some managerial insights.

1. Introduction

Hub Location Problem (HLP) arises frequently in many logistic and engineering fields such as the design
of airline passenger flow, maritime transport, post-delivery services, the communication network design,
emergency services, chain stores in the supply chain, etc. The main task is to select some points (formally,
nodes in a graph) that would serve as hubs and use them for flow redirection purposes, with respect to
given objective. Hubs are applied to decrease the number of transportation links (called spokes) between
the origin and destination nodes (O-D pairs) and to use transportation resources more efficiently. The HLPs
can be classified according to the source that determines the number of hubs, the number of allocations of a
non-hub node to hubs, weather the hubs are capacitated or uncapacitated, the hub location and allocation
cost, etc. An interested reader is referred to papers [1–7] for a better and deeper overall understanding of
the topic.

Several extensions of the classic hub location problems have been used quite successfully, as one can
observe in [8–11]. This research is oriented towards a particular, more realistic extension of the classic HLP
and an application of heuristic solution approach to it. The extension is based on pricing. Lambrecht et
al. [12] identify the price as an important service attribute that affects the client’s choice. In general, we
can assume that the companies are more interested in profit maximization than in reducing unnecessary
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costs. For the facility location problems, some of the recent studies are [13–15]. As Lüer-Villagra and
Marianov [11] have argued, the location or route opening decisions can be very dependent on the revenues
that a company can obtain. In turn, revenues depend on the price structure. In this study, it is assumed
that prices are regulated, moreover that markups are fixed. This simplification is justified observing that
regulation is a very common practice. It represents a legal norm intended to shape conduct that is a by-
product of imperfection. Common examples of regulation include control on market entries, prices, wages,
development, pollution, and standards of production for certain goods. Price regulation refers to the policy
of setting the price by a government agency, legal statute, or regulatory authority. Under this policy, fixed,
minimum, and maximum prices may be set. Regulatory pricing is not an unrealistic scenario. For example,
IATA (International Air Transport Association) has a history of price regulation in the airline industry (as
it was noted in [16]). The most simple form of regulation is a direct price setting, i.e., a scenario in which
the markups are already determined (fixed). Despite some opposing arguments on price regulation, it is
still considered by many scholars as something positive from the social point of view, because it usually
reduces the economic profits of monopolies. For more information, please, see [17].

Following the work of Čvokić et al. [18], the demand is taken to be perfectly inelastic, as a natural setting
for the fixed markup pricing. Moreover, the same assumption is taken by Lüer-Villagra and Marianov
in [11] for non-regulated prices. When it comes to the economies of scale, a constant (flow-independent)
discount between hubs is considered, which is in the literature addressed as the fundamental approach.
The non-hub nodes can be allocated to at most one hub, i.e., a single allocation variant is considered. The
source that determines the number of hubs is endogenous, therefore the goal is to determine the optimal
number of hubs, too. Besides these basic settings, this study considers a duopoly. Usually, these kinds of
duopolies are presented as bi-level programs, that are often, as problems, harder than the well-known NP-
complete decision problems (for more insight into ΣP

2 hard location problems one can examine [13, 19, 20]).
All these traits make this setting for the problem more interesting and more realistic, compared to the hub
location problems in which the number of hubs is exogenously determined, the pricing is not included, and
a response from the competition is not considered.

The competition between firms that use the hub and spoke topology has been studied mainly from a
sequential location approach. There is a firm, the leader, who is going to enter a market as the first player.
Another firm, the follower, also wants to enter the same market, but it is waiting for the leader to make
its move. The paper of Sasaki and Fukushima [21] was the first one to address this issue. They have
presented the continuous Stackelberg HLP in which the incumbent competes with several entrants for profit
maximization. For every route, only one hub was allowed. Čvokić et al. [18] presented a variant with
multiple allocations, with fixed markups, without considering a robust counterpart. Usual linearization
techniques happened to be not very effective. The largest instances that could be solved by a heuristic
approach had 10 nodes, i.e. they required unreasonable large running times. Mahmutogullari and Kara
[22] addressed the competitive bi-level HLP in which market share maximization was the objective and hubs
were determined exogenously. In their paper, the demand is divided among the competitors by elementary
“the-winner-takes-it-all” rule: a competitor with lower route costs gets the whole demand. They have
provided an exact solution method. De Araujo et al. have constructed a new exact algorithm [23]. Recently,
the (r|p) hub-centroid problem under the price war was introduced in [24].

In this research, the focus is on the Stackelberg competition of uncapacitated single allocation hub
location problem under fixed markups, where a logit rule was used to model the discrete choice and
the profit maximization objective. The logit rule is a much more realistic approach than the already
mentioned “the-winner-takes-it-all”. The reader is referred to paper [16] and book [25] for a better and
deeper understanding of the logit model. Differently to other studies of bi-level hub location problems, a
market coverage does not need to be total, i.e., not all non-hub nodes have to be allocated. This relaxation
of classic hub location constraints leads to a scenario in which competitors seek for the best corner of the
market, again making this problem more realistic, but also computationally harder. Two variants of this
Stackelberg game are addressed: deterministic and robust.

Considering uncertainty has obtained significant attention in the industry and academia over the last
years [26–29]. In the robust optimization, the decision or environmental variables are subject to change
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after obtaining the optimal (of final) solution. Therefore, one has to consider that the obtained (optimal)
solution should be acceptable with respect to slight changes in the variable values. The available literature
dealing with uncertainty in the context of hub location problems is very cramped, especially for the bi-level
models. In the case of classic one-level programs, Sim et al. [30] considered the stochastic travel time on
each link and the incorporated service level requirements through chance constraints in stochastic p-hub
problems. Yang [31] incorporated a seasonal variation of demand into an airfreight hub location problems
and proposed a two-stage stochastic program method as the solution methodology. Contreras et al. [32]
considered uncertain demand and transportation cost with a known probability distribution for multiple
allocation uncapacitated hub location problems. Alumur et al. [33] described the effects of uncertainty in
demand as well as the set-up cost by introducing a scenario-based stochastic model and demonstrated the
sub-optimality of the deterministic solution of hub location problems in the presence of uncertainty. Up
to the knowledge of the author, the robust optimization was not considered in the hub location literature
for the bi-level models, especially when the pricing, non-elementary binary choice models, and non-total
market coverage are considered.

This paper is organized as follows. Section 2 describes the problem and the corresponding bi-level
mathematical model for the deterministic variant. In the same section, 3-index linear (re)formulations of
the follower’s and auxiliary problems are provided. In Section 3, the robust variant of the problem is
presented, after which is shown how to solve the inner minimization problem. The analytic solution led
to the conic quadratic reformulation of the robust variants of follower’s and the corresponding auxiliary
programs. As a solution approach for both variants, an alternating heuristic is proposed. The description
of this metaheuristic is given in Section 4. The results of computational study are presented in Section 5.
Finally, in Section 6, some concluding remarks on this research are given, addressing the possible future
lines of work.

2. Deterministic leader-follower single allocation hub location problem under fixed markups

Here, notation and formulation for the deterministic variant are presented. The same notation is also
used for constructing the robust counterpart. To differentiate the competitors, sometimes different pronouns
will be used for them: “she” for the leader and “he” for the follower.

The basic setting is a graph G(N,A), where N is the non-empty set of nodes and A is the set of arcs.
Without loss of generality, we assume A = N×N. A hub can only be established at the node k ∈ N. For each
node k ∈ N there is a certain fixed costs fk > 0 assigned to it for establishing a hub at that particular location.
A source for determining the number of hubs is endogenous. There are no hub capacity constraints, nor
ones that prescribe the number of hubs. For every arc (i, k) ∈ A there is a fixed cost 1ik > 0 for allocating i
to k, and a (variable) transport cost per unit of flow cik > 0. The transport cost is a non-decreasing function
of distance. A non-hub node i ∈ N can be allocated to exactly one hub k ∈ N (single allocation). The
allocated spoke allows traffic in both directions and does not imply the flow direction. A non-hub node can
not be allocated to another non-hub node. We use what is called the fundamental approach to model the
economies of scale. The resulting hub backbone should be totally interconnected. To model the inter-hub
discounts, we take that χ, α and δ to be the (discount) transportation factors due to flow consolidation in
the collection (origin to hub), transfer between hubs, and distribution (hub to destination), respectively.
Concatenation of arcs composes a route, where hubs are located at the joints. At most two hubs are allowed
to be on a single route. In other words, at most two stops are permitted. The transport cost ci j,kl for a
route i→k→l→ j is computed as ci j,kl = χcik + αckl + δcl j. Customers are paying their respective expenses,
i.e. the mill pricing is used. A demand wi j for every O-D pair (i, j) ∈ A is assumed to be non-elastic and
non-negative. The choice of route is based on the price. The logit model (MNL) is used for a discrete
choice estimation, which is essentially a rule that determines how much of the flow is going to be captured
considering given price differences. It has a sensitivity parameter Θ with an already known positive value
assigned. Larger Θ means that customers are very sensitive to price differences, and they will mostly
choose less expensive routes. Smaller Θ means that the clients are less sensitive to price differences. It is
assumed that the regulated mill pricing is used (the customer pays their transportation expenses), and the
form of regulation is a direct price setting. Particularly, the markups µi j,kl > 0 are taken to be fixed. Here,
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the markup is a difference between a service price pi j,kl and the corresponding cost ci j,kl. There are no budget
constraints. Both competitors are trying to maximize their profits, instead of market share.

Remark 2.1. In the literature, the markup is also expressed as a percentage over the cost, i.e. as pi j,kl−ci j,kl

ci j,kl
× 100%.

Remark 2.2. The fixed markup pricing is equivalent to the fixed margin pricing, because the margin is defined as a
difference between service price and cost over the price: mi j,kl =

pi j,kl−ci j,kl

pi j,kl
. In other words, we have that mi j,kl =

µi j,kl

pi j,kl
.

2.1. Mathematical formulation of the deterministic variant
We will use the following variables to describe the choices made by the leader and the follower:

• xik = 1 if the leader allocates a node i to hub k ∈ N, and 0 otherwise;

• ui j,kl is the fraction of flow going from i ∈ N to j ∈ N through the leader’s hubs located at k, l ∈ N;

• yik = 1 if the follower allocates a node i to hub k ∈ N, and 0 otherwise;

• vi j,kl is the fraction of flow going from i ∈ N to j ∈ N through the follower’s hubs located at k, l ∈ N.

Also, to represent the sequence of variables, we will use a more compact notation: x = (xi j)i, j∈N, y = (yi j)i, j∈N.
The solution set of follower’s problem, for a given leader’s solution x, is shortly denoted as F(x). The
optimal solutions are denoted with the star, as usual.

The leader-follower single allocation hub location under fixed markups can be represented as a bi-level
mixed-integer non-linear mathematical program. For the leader, the following model is proposed.

max

∑
i, j,k,l∈N

µi j,klwi jui j,kl −

∑
k∈N

fkxkk −
∑
i,k∈N

(1ik + 1ki)xik −
∑
k,l∈N

1klxkkxll (1)

subject to

ui j,kl =
xikx jle−Θ(ci j,kl+µi j,kl)∑

s,t∈N xisx jte−Θ(ci j,st+µi j,st) + γ∗i j

(2)

γ∗i j =
∑
s,t∈N

y∗isy∗jte
−Θ(ci j,st+µi j,st) (3)∑

k∈N

xik ≤ 1, ∀i ∈ N (4)

xik ≤ xkk, ∀i, k ∈ N (5)
y∗ ∈ F(x) (6)
xik ∈ {0, 1}, ∀i, k ∈ N (7)

The profit (1) is calculated as a sum over all net flow incomes minus the cost of network. The net income
for a route i→k→l→ j is calculated as a product of margin and demand, where ui j,kl indicates how much of
the total demand is going to be captured by the leader. On the other hand, the network cost is composed
of the sum of hub location costs, the sum of non-hub to hub allocation costs, and sum that represents the
cost of inter-hub connections. The leader’s market share for a particular price on a route i→k→l→ j is given
by (2). The equations (3) characterize the effect of the follower’s optimal solution on the leader’s market
share. The constraint set (4) denotes that each non-hub node if allocated is connected to exactly one hub,
while (5) stipulates that non-hub node can be allocated only to a hub. Constraint (6) denotes that for a
given leader’s solution x, only the optimal follower’s one y∗ is considered. Finally, constraints (7) state the
domain of decision variables. The total number of constraint in the leader’s model is |N|2 + |N| + 1. There
are |N|2 binary variables and zero continuous.
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It is worth to recall that for the bi-level problems, a solution (x, y) is called semi-feasible if x is feasible for
the leader, y ∈ F(x), but y is not optimal. For a solution to be feasible, it is required that y is optimal.

The follower’s problem can be formulated similarly as the leader’s.

max

∑
i, j,k,l∈N

µi j,klwi j,klvi j,kl −

∑
k∈N

fkykk −
∑
i,k∈N

(1ik + 1ki)yik −
∑
k,l∈N

1klykkyll (8)

subject to

vi j,kl =
yiky jle−Θ(ci j,kl+µi j,kl)∑

s,t∈N yisy jte−Θ(ci j,st+µi j,st) + ηi j
(9)

ηi j =
∑
s,t∈N

xikx jle−Θ(ci j,st+µi j,st) (10)∑
k∈N

yik ≤ 1, ∀i ∈ N (11)

yik ≤ ykk, ∀i, k ∈ N (12)
yik ∈ {0, 1}, ∀i, k ∈ N (13)

The profit (8) is calculated as a sum over all net flow incomes minus the cost of network. Follower’s
route is represented with the product yiky jl. The net income for a route i→k→l→ j is calculated as a product
of margin and demand, where vi j,kl indicates how much of the total demand is going to be captured by the
follower. On the other hand, the network cost is composed of the sum of hub location costs, the sum of
non-hub to hub allocation costs, and sum that represents the cost of inter-hub connections. The follower’s
market share for a particular price on a route i→k→l→ j is given by (9). The equations (10) characterize the
effect of the leader’s optimal solution on the follower’s market share. The constraint set (11) denotes that
each non-hub node is allocated to at most one hub, while (12) stipulates that non-hub node can be allocated
only to a hub. Finally, the constraints (13) state the domain of decision variables. The total number of
constraints in the follower’s model is |N|2 + |N|. There are |N|2 binary variables and zero continuous.

Because the sum of objective functions is not a constant, an issue can arise when the follower’s problem
has several optimizers. For example, the leader can be additionally harmed if the follower chooses a
solution, among optimal ones, that is the most inconvenient for the leader. This is called a pessimistic
scenario (or expectation). On the other hand, the follower can choose a hub and spoke topology, among
optimal ones, to provide maximal profit to the leader, as a way to instrument the social welfare of the
players (but not on the cost of his profit). This is called an optimistic scenario (or expectation), which we
will be assumed here. In other words, we are ought to consider the following auxiliary problem.

max

∑
i, j,k,l∈N

µi j,klwi jui j,kl −

∑
k∈N

fkxkk −
∑
i,k∈N

(1ik + 1ki)xik −
∑
k,l∈N

1klxkkxll (14)

subject to (2)-(3), (9)-(13) and∑
i, j,k,l∈N

µi j,klwi j,klvi j,kl −
∑
k∈N

fkykk −
∑
i,k∈N

(1ik + 1ki)yik −
∑
k,l∈N

1klykkyll ≥ F∗ (15)

where F∗ represents the optimal objective value of the follower’s problem. As we can see, in the auxiliary
problem, there is only one additional constraint, compared to the (narrow) follower’s model.

Remark 2.3. Essentially, the follower’s problem can be seen as a bi-objective program, for which the preferred solutions
are obtained by an a priori lexicographic method.

Remark 2.4. Because the network installation cost is sunk, it can be omitted in the auxiliary model.
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To understand the given models and follow more easily the ideas and concepts, a small dimension
example is presented, with the appropriate explanation.

Example 2.5. Consider a setting in which the inter-hub discount is α = 0.8, the price sensitivity is Θ = 3, and
the margin is taken to be 40% of the route cost. The values of demands and costs are taken from the CAB data set,
considering the first nine cities in Table 1 from the paper of O’Kelly [43]. On Fig. 1, two situations are presented:

(a) The leader makes the first move. Her hubs are located in cities 3 and 8. The leader’s profit is estimated to be
238.07.

(b) The follower enters the market that is already served by the leader. His hub backbone is a singleton, i.e, only the
city 3 is a hub. In this situation the profits of competitors are:

· -205.08 for the leader – she is heading into a bankrupt

· 29.96 for the follower.

Obviously, the leader needs to choose her network very carefully, i.e., for every leader’s network she needs to consider
the follower’s best response and how that will affect her profit.

(a) (b)

Figure 1: An example of the leader-follower scenario: (a) the leader (red) makes the move, (b) the follower
(blue) reacts to the given leader’s network. Hubs are denoted by rectangles. It is assumed that the hubs in
one competitor’s network are mutually interconnected. The numbers correspond to the first 9 cities from
the Table 1 in [43].

2.2. Linear reformulation of the follower’s model

The product ykkyll (in (8) and (15)) can be substituted by a real non-negative variable hkl (for all k, l ∈ N),
accompanied by additional constraint sets

hkl − ykk − yll + 1 ≥ 0, ∀k, l ∈ N (16)
hkl ≥ 0, ∀k, l ∈ N. (17)
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The net flow income can be rewritten as
∑

i, j∈N wi j
∑

k∈N Ri j,k, where Ri j,k is a real non-negative variable and
the following additional constraints are satisfied:

Ri j,k ≤ yikM, ∀i, j, k ∈ N (18)

Ri j,k ≤
∑
l∈N

µi j,kl
e−Θ(ci j,kl+µi j,kl)

e−Θ(ci j,kl+µi j,kl) + ηi j
y jl, ∀i, j, k ∈ N (19)

Ri j,k ≥ 0, ∀i, j, k ∈ N, (20)

where M is a sufficiently large number. Note that we do not need products yisy jt (for s, t ∈ N) in the
denominator, i.e., the whole sum can be reduced to the simple exponential term. In particular, if yik = 0 or
y jl = 0, then the whole product is 0. On the other hand, if yik = y jl = 1, then because of (11) summation is
not needed and s = k ∧ t = l. Moreover, the product yiky jl is equal to 1, thus it is redundant, too.

The follower’s problem can be written as the following mixed-integer linear program

max

∑
i, j∈N

wi j

∑
k∈N

Ri j,k −

∑
k∈N

fkykk −
∑
i,k∈N

(1ik + 1ki)yik −
∑
k,l∈N

1klhkl (21)

subject to (10)-(13) and (16)-(20).
This reformulation of the original model has 2|N|3 + 2|N|2 + |N| constraints, |N|2 binary variables, and

|N|3 + |N|2 continuous ones. Compared to the original follower’s model, the number of constraints and
continuous variables is increased. On the other hand, in both models, the number of binary variables is the
same.

Additionally, we can similarly reformulate the auxiliary model, taking into account Remark 2. Firstly,
the constraint (15) can be written as∑

i, j∈N

wi j

∑
k∈N

Ri j,k −

∑
k∈N

fkykk −
∑
i,k∈N

(1ik + 1ki)yik −
∑
k,l∈N

1klhkl ≥ F∗ (22)

For the objective of auxiliary problem, to reformulate the net flow income term, we can introduce a new
non-negative variable Ui j such that

Ui jηi j + Ui jγ
∗

i j ≤
∑
k,l∈N

µi j,klxikx jle−Θ(ci j,kl+µi j,kl), ∀i, j ∈ N (23)

Ui j ≥ 0, ∀i, j ∈ N. (24)

Right hand side is a constant. The second term in the left hand side is non-linear. Straightforward
substitutions lead us to the following set of new constraints:

Ui jηi j +
∑
s∈N

ϕi j,s ≤
∑
k,l∈N

µi j,klxikx jle−Θ(ci j,kl+µi j,kl), ∀i, j ∈ N (25)

ϕi j,s ≤ yisMϕ, ∀i, j, s ∈ N (26)

ϕi j,s ≤
∑
t∈N

e−Θ(ci j,st+µi j,st)ψi j,t, ∀i, j, s ∈ N (27)

ϕi j,s ≥
∑
t∈N

e−Θ(ci j,st+µi j,st)ψi j,t − (1 − yis)Mϕ, ∀i, j, s ∈ N (28)

ψi j,t ≤ y jtMψ, ∀i, j, t ∈ N (29)
ψi j,t ≤ Ui j, ∀i, j, t ∈ N (30)
ψi j,t ≥ Ui j − (1 − y jt)Mψ, ∀i, j, t ∈ N (31)
Ui j ≥ 0, ∀i, j ∈ N (32)
ϕi j,s ≥ 0, ∀i, j, s ∈ N (33)
ψi j,t ≥ 0, ∀i, j, t ∈ N. (34)
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where Mφ and Mψ are large enough numbers. Finally, we have a mixed-integer linear model for the
auxiliary program:

max

∑
i, j∈N

wi jUi j −

∑
k∈N

fkxkk −
∑
i,k∈N

(1ik + 1ki)xik −
∑
k,l∈N

1klxkkxll (35)

subject to (10)-(13), (16)-(20), (22), and (25)-(34).
The reformulation of auxiliary model has 8|N|3 + 3|N|2 + |N| + 1 constraints. The number of binary

variables stayed the same, but on the other hand, there are 3|N|3 + 2|N|2 continuous ones. The increase in
the number of constraints and continuous variables for this reformulation is much bigger than the increase
in the reformulation of the follower’s model. In other words, if there is another solution for the follower,
we could expect longer running times when solving the auxiliary problem, compared to the running time
needed to solve the follower’s model.

Remark 2.6. The product of binary variables xkkxll is not the subject of reformulation, because the leader has already
made her move, i.e., the follower knows what are the values of her decision variables.

3. Robust leader-follower single allocation hub location problem under fixed markups

The usual parameter that is considered to be affected by some small perturbation is the demand. In
particular, the demand distribution is unknown, and only some of its attributes are available. One way
to approach this issue is to assume that the uncertain parameter can be expressed as a linear combination
of a known mean and several independent random variables, as Chen et al. [34] did it in their study.
More specifically, Wagner et al. [35] showed that such affine combination for demand uncertainty is
capable of capturing systematic and non-systematic risk associated with freight demand. Consequently,
the uncertain demand is assumed to be affine dependent on a known mean and some independent random
variables. Shahabi and Unnikrishnan [36] presented a robust formulation for the one-level uncapacitated
single and multiple allocation hub location problems where demand is uncertain, and its distribution is not
entirely specified. Conducted computational experiments suggested locating more hubs when accounting
for demand uncertainty using robust optimization, compared to the deterministic setting. Čvokić and
Stanimirović [8] studied a robust case of one-level uncapacitated single allocation hub location problem
when the price-dependent demand is introduced. Computational investigation showed that a lot of weight
is put on the pricing structure, which serves to suppress the impact of uncertainty.

In particular, the demand is structurally characterized by an estimated mean d and a set of independent
random variables ũt as

d̃i j = di j +
∑
t∈T

bi jtζt, ∀i, j ∈ N, (36)

where T represents the set of uncertainty sources. Alongside with that, bi jt ∈ R represents a weight
associated with the corresponding random variable, i.e. weight of the uncertainty source. Each independent
variable represents one source of uncertainty causing demand perturbation from the mean value. The
variables ζt ∈ R (t ∈ T) are referred to as the primitive uncertainty variable defined by the following three
underlying assumptions:

• the mathematical expectation is zero, i.e. E(ζt) = 0

• |ζt| ≤ 1

• ζt are all independent.
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The classic worst case analysis leads to an over-conservative solution. This issue is handled by taking that
the norm of a vector of uncertain random variables ζ is bounded by some Ω > 0, which defines a so-called
ellipsoidal uncertainty set {ζ | ||ζ|| ≤ Ω}. As a result, we have a computationally tractable formulation with
the appropriate level of conservativeness (see [34]). Ω is called the budget of uncertainty or the risk budget.
More conservative decision making requires a larger risk budget so that the solutions are more “protected”
against the possible demand perturbations. The choice of Ω = 0 would yield an unprotected deterministic
solutions. In studies [37] and [38] the uncertainty budget, as a theoretical input for the robust optimization
framework, was found to vary between values 0 and 3. We refer an interested reader to [34] and [36], for a
better understanding of the topic and terminology that is used.

3.1. Mathematical formulation of the robust variant

The robust leader-follower single allocation hub location problem under fixed markups can be repre-
sented as a bi-level mixed-integer non-linear mathematical program. The robust variant for the leader’s
problem can be neatly represented as a max-min model

max

min
||ζ||≤Ω

∑
i, j,k,l∈N

µi j,klw̃i jui j,kl

 −

∑
k∈N

fkxkk −
∑
i,k∈N

(1ik + 1ki)xik −
∑
k,l∈N

1klxkkxll (37)

where

w̃i j = wi j +
∑
t∈T

bi jtζt, ∀i, j ∈ N (38)

and constraints (2)-(7) must be satisfied. In the same manner, the robust variant for the follower can be
represented as

max

min
||ζ||≤Ω

∑
i, j,k,l∈N

µi j,klw̃i j,klvi j,kl

 −

∑
k∈N

fkykk −
∑
i,k∈N

(1ik + 1ki)yik −
∑
k,l∈N

1klykkyll (39)

where constraints (9)-(13) are satisfied.
Additionally, as in the deterministic case, we need to define the auxiliary problem for the optimistic

scenario

max

min
||ζ||≤Ω

∑
i, j,k,l∈N

µi j,klw̃i jui j,kl

 −

∑
k∈N

fkxkk −
∑
i,k∈N

(1ik + 1ki)xik −
∑
k,l∈N

1klxkkxll (40)

subject to constraints (2)-(3), (9)-(13) and an additional onemin
||ζ||≤Ω

∑
i, j,k,l∈N

µi j,klw̃i jvi j,kl

 −

∑
k∈N

fkykk −
∑
i,k∈N

(1ik + 1ki)yik −
∑
k,l∈N

1klykkyll ≥ F̃∗ (41)

where F̃∗ is the optimal objective value for the follower’s problem.
In all these robust models, the number of constraints is the same as in the deterministic counterpart.
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3.2. Solution of the inner minimization problem

Considering that the inner minimization problem is defined in terms of the variables ζt, the sum of net
flow incomes (39) for the follower can be rewritten in the following manner

min
||ζ||≤Ω

∑
i, j,k,l∈N

µi j,kl

wi j +
∑
t∈T

bi jtζt

 vi j,kl (42)

=
∑

i, j,k,l∈N

µi j,klwi jvi j,kl +

min
||ζ||≤Ω

∑
i, j,k,l∈N

µi j,kl

∑
t∈T

bi jtζi jt

 vi j,kl

 (43)

To reduce our program to a computationally tractable formulation we focus our attention to the new
problem

min
||ζ||≤Ω

∑
i, j,k,l∈N

µi j,kl

∑
t∈T

bi jtζi jt

 vi j,kl (44)

In order to solve it, a Lagrangian relaxation scheme can be used to determine the expression for the primitive
uncertainty variables ζt. The associated Lagrangian function is

L(ζ, λ) =
∑

i, j,k,l∈N

∑
t∈T

µi j,klbi jtζi jtvi j,kl + λ(||ζ|| −Ω). (45)

for a Lagrangian multiplier λ ≥ 0, that corresponds to ||ζ|| ≤ Ω. The First Order Condition for the associated
unconstrained optimization problem is given as

∂L(ζ, λ)
∂ζt

=
∑

i, j,k,l∈N

µi j,klbi jtvi j,kl + λ
ζt

||ζ||
= 0, ∀t ∈ T (46)

λ(Ω − ||ζ||) = 0. (47)

Assuming λ > 0, from the equation (46) we have that the optimal value for ζt is

ζt = −
||ζ||
λ

∑
i, j,k,l∈N

µi j,klbi jtvi j,kl, ∀t ∈ T. (48)

Observe that for λ = 0 the equation (46) does not have any solution in terms of ζ. Therefore, taking into the
account the equation (47), we can conclude that ||ζ|| = Ω. Now, bearing in mind the last equation, we may
write ||ζ|| as

||ζ|| =
Ω

λ

√√√√√∑
t∈T

 ∑
i, j,k,l∈N

µi j,klbi jtvi j,kl


2

(49)

Again, from equation (47) the optimal value for ||ζ|| is equal to Ω and therefore the optimal value for λ is
given as

λ =

√√√√√∑
t∈T

 ∑
i, j,k,l∈N

µi j,klbi jtvi j,kl


2

(50)
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Returning back λ into (48), the optimal value for ζt can be written as

ζt = −Ω

∑
i, j,k,l∈N µi j,klbi jtvi j,kl√∑

t∈T

(∑
i, j,k,l∈N µi j,klbi jtvi j,kl

)2
(51)

The optimal value of our inner optimization problem (44) is equal to

−Ω

√√√√√∑
t∈T

 ∑
i, j,k,l∈N

µi j,klbi jtvi j,kl


2

. (52)

Incorporating this solution into (39), the robust total net income equation can be converted to

∑
i, j,k,l∈N

µi j,klwi jvi j,kl − Ω

√√√√√∑
t∈T

 ∑
i, j,k,l∈N

µi j,klbi jtvi j,kl


2

(53)

For the sake of clarity, we introduce ρ to present the last equation as∑
i, j,k,l∈N

µi j,klwi jvi j,kl −Ωρ (54)

where

ρ =

√√√√√∑
t∈T

 ∑
i, j,k,l∈N

µi j,klbi jtvi j,kl


2

(55)

Remark 3.1. The same procedure would lead to a closed-form expression for the solution of leader’s inner minimization
problem.

In the next section, we present how to reformulate our objective, i.e., to obtain a possible tractable conic
quadratic formulation.

3.3. Conic quadratic reformulation of the robust follower’s model
We can further exploit the properties of the robust follower’s model, introducing auxiliary positive

variables πt to reformulate (53) using linear and conic quadratic inequalities (constraints). This can be done
as follows∑

t∈T

π2
t ≤ ρ

2 (56)∑
i, j,k,l∈N

µi j,klbi jtvi j,kl ≤ πt, ∀t ∈ T (57)

ρ ≥ 0 (58)
πt ≥ 0, ∀t ∈ T (59)

Now we have all the knowledge to formulate the robust variant of the follower’s problem as a mixed-
integer conic quadratic program

max

∑
i, j∈N

wi j

∑
k∈N

Ri j,k − Ωρ −

∑
k∈N

fkykk −
∑
i,k∈N

(1ik + 1ki)yik −
∑
k,l∈N

1klhkl (60)
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subject to (10)-(13), (16)-(20) and∑
t∈T

π2
t ≤ ρ

2 (61)∑
i, j,k∈N

bi jtRi j,k ≤ πt, ∀t ∈ T (62)

ρ ≥ 0 (63)
πt ≥ 0, ∀t ∈ T (64)

This conic-quadratic reformulation of the originally non-linear and non-quadratic model has one conic-
quadratic constraint, 2|N|3 + 2|N|2 + |N| + |T| linear ones, and |N|2 binary and |N|3 + |N|2 + |T| + 1 continuous
variables. Obviously, there is an increase in the number of constraints and continuous variables, compared
to the deterministic counterpart. Interestingly, the number of binary variables is still unchanged.

The reformulation of auxiliary program for the robust variant is done in the same fashion. In particular,
we obtain the following model.

max

∑
i, j,k,l∈N

wi jUi j − Ω%
−

∑
k∈N

fkxkk −
∑
i,k∈N

(1ik + 1ki)xik −
∑
k,l∈N

1klxkkxll (65)

subject to constraints (10)-(13), (16)-(20), (25)-(34), (61)-(63), and an additional ones∑
i, j∈N

wi j

∑
k∈N

Ri j,k − Ωρ −

∑
k∈N

fkykk −
∑
i,k∈N

(1ik + 1ki)yik −
∑
k,l∈N

1klhkl ≥ F̃∗ (66)∑
t∈T

φ2
t ≤ %

2 (67)∑
i, j,k,l∈N

bi jtUi j ≤ φt, ∀t ∈ T (68)

% ≥ 0 (69)
φt ≥ 0, ∀t ∈ T. (70)

where F̃∗ is the optimal objective value for the follower’s problem.
This conic-quadratic reformulation of the originally non-linear and non-quadratic model has two conic

quadratic constraints and 8|N|3 +3|N|2 + |N|+2|T|+1 linear ones. The number of binary variables has stayed
the same, but the continuous ones count up to 2|N|3 + 2|N|2 + 2|T| + 2. The same observation for the robust
follower’s problem holds for the robust auxiliary one.

4. Solution approach

Metaheuristics are widely used to solve hard combinatorial optimization problems. Here, the solution
approach is based on an alternating heuristic (AH), firstly presented in [39]. Some of the recent applications
can be found in [13, 14, 18]. The main idea is built on Hotelling‘s observation that at equilibrium, on a line,
the duopoly facilities tend to cluster together at some central point of the market [40]. While d’Aspermont
et al. [41] have shown that this observation does not hold in the case of variable prices, it does hold in
the case of fixed and equal prices (see [39]). Besides this, designing a sophisticated heuristic approach for
both variants of the problem (deterministic and robust) is not an easy task. The AH is chosen because of its
simplicity, robustness, and the previously mentioned observation for the fixed prices.

Essentially, one can consider the AH similar to the coordinate descent (ascend). The same underlying
idea is presented in several widely popular heuristics: Blahut-Arimoto algorithm in coding theory, the
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expectation-maximization algorithm in statistics, the concave-convex procedure in global optimization,
k-means in machine learning, etc.

The instance is represented as a pair of finite associative arrays (x, y∗), according to the description in
subsection 2.1. The size of array is |N|. In the algorithm, xi represents the leader’s network, during the i-th
iteration. Accordingly, yi represents the corresponding follower’s network.

The algorithm starts with a monopolistic solution. In other words, the alternating heuristic is a natural
approach to estimate the evolution of market competition for this setting. In the literature, the AH can
start from the arbitrary feasible solution, but here, intentionally, the monopolistic solution is chosen as the
starting one. One reason is the already mentioned evolution of market competition, and the other is to have
the ability to compare the final solution found by the AH with the monopolistic one.

Remark 4.1. The monopolistic solution can be obtained by solving the follower’s problem under the assumption that
the incumbent does not serve the market.

The follower’s problem F(xi) (in i-th iteration) is solved exactly, utilizing the proposed reformulations,
i.e., a commercial solver can be used like CPLEX or Gurobi.

Every iteration corresponds to one callback of the exact algorithm for the follower’s problem. In the
same iteration, the roles are switched, i.e., for the obtained solution of follower, the leader takes his role.
This is portrayed at line 8. Note that the leader’s profit is computed after the follower’s one.

The termination condition is a cycle detection. It is obvious that this procedure would converge because
the number of all semi-feasible solutions is finite. Moreover, this way the AH could capture the Nash
equilibrium if it exists. Because the follower’s and auxiliary problems can be exactly solved (utilizing the
proposed reformulations), the AH returns a feasible solution, not just semi-feasible.

Remark 4.2. Cycles can be very long, therefore in the literature, it is not unusual to include the upper bound on the
number of iterations in the termination criterion.

Algorithm 1: Alternating heuristic
Data: instance parameter values
Result: a feasible solution (x, y∗)

1 i← 1
2 xi ← the monopolistic solution
3 while xi < {x j | j ∈ {1, . . . , i − 1}} do
4 y∗i ← F(xi) solved exactly (e.g. by a solver)
5 zF∗

i ← the follower’s profit
6 zL

i ← the leader’s profit
7 i← i + 1
8 xi ← y∗i−1

9 k← arg max j∈{1,...,i} zL
j

10 x← xk

11 zF∗
← zF∗

k
12 y∗ ← the solution of corresponding auxiliary problem for x and zF∗

Since the follower’s problem itself is hard to solve, the alternating heuristic could require a significant
amount of computational resources, especially in the case of robust variant. It is important to note that
some authors use heuristics to solve the follower’s problem (line 4), disregarding the existence of exact
method. The feasible solution is found only at the end of search process. On top of that, solving the
auxiliary problem can be very time consuming itself, because the logit model obviously affects the chance
for finding a different optimal solution for the follower, which is quite substantial in the case of non-linear
conic-quadratic programs. A preliminary investigation showed that the runtime of solving the auxiliary
model can sometimes be longer than the whole while-loop in the proposed AH. Thus, it was natural to
design the approach so that the auxiliary model is solved at the last step of Algorithm 1.
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Remark 4.3. In the following two cases it is not needed to solve the auxiliary problem:

• the follower does not enter the market (entry deterrence)

• the leader does not enter the market (non-profitable setting).

Remark 4.4. If the best solution for the leader (line 10)) is the Nash equilibrium, solving the auxiliary problem can
give a feasible solution that is not a Nash equilibrium.

5. Computational experiments

Computational experiments were conducted using the instances generated from the CAB data set, firstly
presented by O’Kelly [43]. Instance size was taken to be 20 and 25 for the deterministic variants, and 20
for the robust ones. In total, 960 instances were examined. All mathematical programs were implemented
in Python 3.6 (as a part of Anaconda suite). The Gurobi 8.0 was used as a solver, installed on Windows 10
OS. The tests were performed on an Intel(R) Core(TM) i7-7700 CPU @ 3.60GiHz processor with 24.0 GiB of
DDR4 RAM.

The fixed cost of opening a hub at node fk = 100 was set to be the same for all nodes, as usual for the CAB
instances. The spoke allocation cost 1ik for every O-D pair (i, j) is computed similarly as in [42] and [11]:

1ik = f
cik
βik

maxi,k∈N
cik
βik

. The discount factors χ and δ were set to 1, and α took values from the set {0.2, 0.4, 0.6, 0.8}.

The markupµi j,kl is taken as the cost percentageµi j,kl = p·ci j,kl, where p ∈ {0.05, 0.1, 0.2, 0.4}, that is percentages
were: 5%, 10%, 20%, 40%. The price sensitivity factor Θ took values from a set {3, 6, 9, 12, 15}. These are the
rounded and equally distributed values of Θ taken from [11].

When it comes to the robust variant, the risk budget value Ω was set to 1.5, as in [36]. Two levels of
uncertainty sources were considered. Five instances of the bi jt parameter were randomly generated, where
bi jt ∈ [0, 0.2wi j] for the lower uncertainty level, and bi jt ∈ [0, 0.5wi j] for the higher one. Preliminary experi-
ments showed that for our bi-level model there is no sense to examine much higher levels of uncertainty
sources (e.g. bi jt ∈ [0, 0.8wi j]).

Among the usual elements of analysis in location theory, here we address the net profit margin (NPM),
which is the ratio of net profits to revenues for a company or business segment. Usually expressed as a
percentage, the measurement reveals the amount of profit that a company can take from its total income.
In other words, the net profit margin is calculated as follows

NPM =
objective value

revenue
100% (71)

Calculating the net profit margin of a business is a routine part of financial analysis, particularly a vertical
analysis.

Four solution types were observed: the Nash equilibrium, the entry deterrence, the non-profitable
setting, and the best of examined. The last type will be denoted in such fashion because both competitors
have non-negative profit values and the solution type is not one of the previous ones.

All figures are created using Matplotlib Python’s package by Droettboom et al. [44]. Although the line
plots are not often used in the experimentation of multiple instances, they are given in order to express
pattern observations.

5.1. Results for the deterministic variant of LFSAHLuFM
From the Table 1 we can see that the dominant solution type is the Nash equilibrium. In general, larger

instances and larger markups give more space to the competitors.
The running time data for both batches of instances (without step 6):

• |N| = 25: min = 411.35s, max = 17653.35s, mean = 3296.78s, σ = 3151.66

• |N| = 20: min = 21.67s, max = 296.50s, mean = 108.72s, σ = 64.68
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Table 1: Solution type percentages for the deterministic variant.

|N|
Nash

equilibrium
Entry

deterrence
Non-profitable

setting
The Best of
examined

25 73.75% 0.0% 0.0% 26.25%
20 58.75% 1.25% 0.0% 40.0%

both 66.25% 0.625% 0.0% 33.125%

where σ represents the standard deviation. As it can be seen, the alternating heuristic can be very time-
consuming. Obviously, in the case of Nash equilibrium, the best solution was found at the end of execution
time.

(a) (b)

Figure 2: The effect of markup on profit: (a) |N| = 20, (b) |N| = 25. Different line colors represent different
combinations of instance parameters α and Θ.

From the results of computational experiments, the effect of instance parameter α is not very clear. There
is no strict regularity, but it could be said that a leader should expect a higher profit if α is big enough. No
regularity was observed when it comes to the effect of α on NPM. Interestingly, it was found that the effect
of discount factor α on NPM is venial in case of a monopolistic solution.

Similarly, no solid pattern was observed when it comes to the effect of price sensitivity parameter Θ on
the objective value, but differently to the discount factor α, the leader could expect a higher profit and a
larger NPM for smaller values of Θ.

The effect of markup was the most discernible. A larger markup in most cases leads to a higher profit
(Fig. 2) and bigger NPM (Fig. 3).

Basically, in almost all cases a combined effect of higher markup, larger inter-hub discount factor α, and
a smaller value of sensitivity parameter Θ lead to a higher profit. The same can be said for the NPM.

The results obtained by alternating heuristic suggests that there could be a pattern in profit comparisons.
In the case of Nash equilibrium, profits are equal, obviously. On the other hand, if the solution type is the
best of examined, it is observed that the follower usually can gain higher profit than the leader, i.e., usually,
there is no first move advantage. The opposite situation was observed only in five cases and for all of them
|N| = 20. For NPM, we could say that the same pattern holds, although in one case when |N| = 25 this was
not true.

In this study, the setting is much more complex than in Hotteling‘s problem. Therefore, it is natural
to investigate the (dis)similarity of hub backbones. For strings (ordered arrays), one of the usual distance
measures is the edit (Levenshtein) distance — the minimum-weight series of edit operations that transform
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(a) (b)

Figure 3: The effect of markup on net profit margin: (a) |N| = 20, (b) |N| = 25. Different line colors represent
different combinations of instance parameters α and Θ.

one string into another. The edit operations are insertion, deletion, and substitution. Following this
logic for strings, we can create a similar measure. Because sets are unordered, the minimal number
of operations to transform a set A into a set B is max(|A\B|, |B\A|): min(|A\B|, |B\A|) substitutions and
max(|A\B|, |B\A|) −min(|A\B|, |B\A|) insertions xor deletions, depending on which set difference is larger.

Here, the computational experiments suggest that with the increase of instance size there is a tendency
to set edit distance to become smaller. Table 2 presents the min, max, and average size of set edit distances
between hub backbones of the leader and follower. On average, 0.35 edit operations were needed for
conducted computational experiments.

Table 2: Min, max and average set edit distances between the leader’s and follower’s hub backbones.

|N|
Minimal set
edit distance

Maximal set
edit distance

Average set
edit distance

25 0 3 0.2625
20 0 4 0.4375

both 0 4 0.35

The similarity of hub backbones can be measured using the Jaccard similarity coefficient. In this case,
the solutions in which the follower does not enter the market should be ignored to avoid the zero division
error. The results for the Jaccard similarity index are presented in Table 3. On average, the hub backbones
of competitors tend to share a lot of hubs. Interestingly, the Jaccard similarity index is higher for 25-size
instances.

Table 3: Min, max and average values of Jaccard similarity indexes for the hub backbones of leader and
follower.

|N|
Minimal Jaccard

similarity coefficient
Maximal Jaccard

similarity coefficient
Average Jaccard

similarity coefficient
25 0 1 0.905
20 0 1 0.825

both 0 1 0.866
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These experimental results could look counter-intuitive at first glance, but the reason for this may lay
in the fact that the smaller instances leave less “maneuvering” space for the follower. Also, the solutions of
the auxiliary model were not different from the corresponding solutions of the follower’s model.

In Figure 4 we can see how typical hub and spoke topologies look like on the CAB dataset of largest
US airports, as the network solutions for the competitors. It is obvious that the leader’s and follower’s
networks share a lot of infrastructures. Their set edit distance is 1 and the Jaccard similarity coefficient is 2/3.
Also, the allocations of cities (nodes) 6, 15, 20, and 21 may catch the eye of a reader. They are all allocated
to the hub 12, although these cities are in the close vicinity of hub 4. Unusual at first sight, one should keep
in mind that the objective is not the minimization of transportation costs, nor the transportation time for
the customers, but the maximization of the company’s own profit.

Figure 4: The leader’s (red) and follower’s (blue) networks, obtained by alternating heuristics as the best
solution. The instance parameter values are: α = 0.6, µi j,kl = 0.1 · ci j,kl,Θ = 9. The numbers correspond to the
cities from the Table 1 in [43]. It is assumed that the hubs are mutually interconnected for both competitors,
separately.

5.2. Results for the robust variant of LFSAHLuFM
In this case, the entry deterrence solution type was more often observed, compared to the deterministic

case, especially for the low markups. Percentages of solution types for the robust variant are given in Table
4.

The running time data for both batches of instances (lower and higher level), excluding step 6:

• the lower level of uncertainty sources: min = 41.01s, max = 796.36s, mean = 263.97s, σ = 213.15

• the higher level of uncertainty sources: min = 12.63s, max = 1207.59s, mean = 184.33s, σ = 272.53

where σ represents the standard deviation. As expected, the computational time of alternating heuristic is
longer for robust problems. Interestingly, the higher level of uncertainty sources lead to shorter runtime
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Table 4: Solution type percentages for the robust variant.

Level of
uncertainty

sources

Nash
equilibrium

Entry
deterrence

Non-profitable
setting

The Best of
examined

lower 49.0% 40.0% 0.0% 26.0%
higher 15.25% 46.5% 25.75% 12.5%
both 32.125% 43.25% 12.875% 19.25%

in average. The reason for this is because there are a lot of entry deterrence solutions, that pull down the
mean value.

(a) (b)

Figure 5: The effect of markup on profit: (a) lower level of uncertainty sources, (b) higher level of uncertainty
sources. Different line colors represent various combinations of instance parameters α and Θ.

Like in the deterministic case, the effect of markup was the most discernible. In most cases, a larger
markup leads to a higher profit (Fig. 5). A bigger markup leaves more space for the follower, too. But in
the robust optimization competitors need to immunize possible turmoils of demand. This usually requires
more developed and more costly infrastructure, but the generosity of the market has to be taken into
account, too. When it comes to the NPM, the effect is even more discernible (Fig. 6). In a way, this justifies
taking into account the NPM. For several instances, a very interesting and counterintuitive situation was
observed — the objective value for the leader was zero, although the follower’s objective value was positive.
Basically, this observation says that there are instances for which it is not profitable to enter the market as
the first competitor.

Comparing the leader’s hub locations for the robust and deterministic variants is done by computing
the already mentioned set edit distances and Jaccard similarity indexes. For both measures, an average
value was computed, based on all corresponding five instance sets of bi jt values. The results for set edit
distances are presented in Table 5 and findings for the Jaccard similarity indexes are given in Table 6. The
entries in tables suggest that the hub backbones of competitors in robust solutions should be less similar,
compared to their deterministic counterparts, when the level of uncertainty sources is becoming higher.
Particularly, the set edit distances are getting larger, naturally corresponds to the smaller values of Jaccard
similarity index.

Computational experiments conducted by Shahabi and Unnikrishnan [36] on the same data set showed
that for the classic hub location problem (with the cost minimization objective), the robust variant implies
that more hubs should be established. The similar observation holds for the monopolistic solutions in our
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(a) (b)

Figure 6: The effect of markup on net profit margin: (a) the lower level of uncertainty sources, (b) the higher
level of uncertainty sources. Different line colors represent various combinations of instance parameters α
and Θ.

Table 5: Min, max and average set edit distances between sorted lists of leader’s hubs in robust and
deterministic variant.

|N|
Minimal average
set edit distance

Maximal average
set edit distance

Average of average
set edit distances

lower 0 3 0.72
higher 0.2 3 1.5475
both 0 3 1.3375

setting. On the other hand, because of competition, a different pattern is observed (although solutions are
obtained using a heuristic approach). The following lines present the descriptive statistics for the average
differences between the hub backbone size of robust solution and its deterministic counterpart.

• the lower level of uncertainty sources: min = -2.6, max = 0.6, mean = 0.35, median = 0.0, σ = 0.56

• the higher level of uncertainty sources: min = -3.0, max = 0.6, mean = -1.125, median = -1.0, σ = 0.89

In other words, it is reasonable to expect a smaller number of hubs in the leader’s robust solution network,
compared to her deterministic hub backbone. This suggests that the effect of discrete choice rule and
competitive setting should not be neglected.

Solutions of the auxiliary model were not different from the corresponding solutions of the follower’s
model.

In Figure 7 we can see how typical hub and spoke topologies look like the network solutions for the
competitors in the robust case. The data set corresponds to the first 20 CAB cities. As can be seen, the hub
locations in the left and right sub-figures differ and the corresponding solution types are also different. On
the left sub-figure, the networks of the leader and follower are the same. Contrary to this situation, on the
right sub-figure, we can see that only the leader’s network is depicted. In other words, it is not profitable
for the follower to enter the market, and the leader’s network corresponds to the monopolistic solution.
Moreover, we can see that market coverage is not total. Particularly, the nodes (cities) 2, 5, 10, and 13 are
not part of the leader’s hub and spoke topology.
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Table 6: Min, max and average values of average Jaccard similarity indexes determined for the leader’s hub
backbones in robust and deterministic variants.

|N|
Minimal average Jaccard

similarity coefficient
Maximal average Jaccard

similarity coefficient
Average of average

Jaccard similarity coefficient
lower 0 1 0.629
higher 0 0.8 0.184
both 0 1 0.432

(a) (b)

Figure 7: The leader’s (red) and follower’s (blue) networks, obtained as a solution of the robust variant,
by the alternating heuristic. Hubs are denoted by rectangles. Sub-figure (a) depicts the solution when
the level of uncertainty sources are lower, and sub-figure (b) when they are higher. The numbers corre-
spond to the first 20 cities (i.e., not all 25 ones) from Table 1 in [43]. The instance parameter values are
α = 0.6, µi j,kl = 0.1 · ci j,kl, and Θ = 9.

6. Conclusion

In this study, we have formally examined the scenario in which two competitors, called the leader and
the follower, sequentially create their hub and spoke networks, for which only a single allocation is allowed.
The number of hubs is not determined in advance, differently to the (r|p)-hub centroid problem. Moreover,
the market does not need to be totally covered, so competitors are also seeking to find the best “corner” of
the market, each for itself. It is assumed that the customers patronize a chosen route mainly according to
its price. The market pricing is regulated, i.e., every route has its fixed markup. The demand is taken to
be non-elastic, and the MNL is the discrete choice model. Two variants of this problem were addressed:
deterministic and robust.

It was shown how to present this Stackelberg competition as the corresponding bi-level mixed-integer
non-linear program. Furthermore, it can be seen how the follower’s model can be reformulated as a mixed-
integer linear program in the deterministic case, and as a mixed-integer conic quadratic program in the case
of robust variant. The reformulation of the robust follower’s problem is based on the analytic solution of
the corresponding inner minimization problem. The direct benefit from these reformulations is that they
allow the usage of state-of-the-art solvers to obtain feasible solutions, instead of semi-feasible ones. The
same was shown for the corresponding auxiliary problems.

Computational investigation for deterministic variant showed that the majority of best-found solutions
composed a Nash equilibrium, especially in the case of larger instances and higher markups. When it
comes to the profit, it was observed that the higher markup, bigger inter-hub discount α, and a smaller
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value of sensitivity parameter Θ lead to higher objective value. There is a strong tendency for competitors
to share hub locations.

In the case of robust variant, there was a lot of entry deterrence type solutions. One reason behind
this could be the instance size, not big enough markup, and height of the level of uncertainty sources.
The alternating heuristic has provided a few quite interesting solutions in which it is not profitable for
the leader to enter the market. Also, differently to the conclusions for the non-competitive robust hub
location problems, with the cost minimization objective, the size of hub backbone in the robust solution is
usually smaller than the size of the deterministic counterpart. On the other hand, the similarity between
the leader’s hub locations in both variants is smaller than the similarity of the leader’s and follower’s hub
locations in the deterministic case. This finding suggests that robust solutions are qualitatively different
than the deterministic ones. The effect of markup on the net profit margin was more perceptible, compared
to the effect on the objective value. In a way, this observation justified the introduction of net profit margin
into the analysis of computational investigation.

One obvious line of research is the construction of exact solution approach. This way, we could obtain
better insight and incidentally we would be able to estimate the quality of different heuristics. Also,
promising areas of research are the investigation of polynomial and approximation hierarchies, as well as
the consideration of some other ways to address the uncertainty, like fuzzy sets.
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