On \(n\)th Roots of Normal Operators

B.P. Duggal\(^a\), I.H. Kim\(^b\)

\(^a\)8 Redwood Grove, London W5 4SZ, England (U.K.)
\(^b\)Department of Mathematics, Incheon National University, Incheon, 22012, Korea

Abstract. For \(n\)-normal operators \(A\) \([2, 4, 5]\), equivalently \(n\)-th roots of normal Hilbert space operators, both \(A\) and \(A^*\) satisfy the Bishop–Eschmeier–Putnam property \((\rho)_n\). \(A\) is decomposable and the quasi-nilpotent part \(H_n(A - \lambda)\) of \(A\) satisfies \(H_n(A - \lambda)^{-1}(0) = (A - \lambda)^{-1}(0)\) for every non-zero complex \(\lambda\). \(A\) satisfies every Weyl and Browder type theorem, and a sufficient condition for \(A\) to be normal is that either \(A\) is dominant or \(A\) is a class \(\mathcal{A}(1, 1)\) operator.

1. Introduction

Let \(B(\mathcal{H})\) denote the algebra of operators, equivalently bounded linear transformations, on a complex infinite dimensional Hilbert space \(\mathcal{H}\) into itself. Every normal operator \(A \in B(\mathcal{H})\), i.e., \(A \in B(\mathcal{H})\) such that \([A^*, A] = A^*A - AA^* = 0\), has an \(n\)th root for every positive integer \(n > 1\). Thus given a normal \(A \in B(\mathcal{H})\), there exists \(B \in B(\mathcal{H})\) such that \(B^n = A\) (and then \(\sigma(B^n) = \sigma(B)^n = \sigma(A)\)). A straightforward forward application of the Putnam-Fuglede commutativity theorem \([14, \text{Page 103}]\) applied to \([B, B^n] = 0\) then implies \([B^n, B^n] = 0\). (Conversely, \([B^n, B^n] = 0\) implies \(B^n\) is normal). Operators \(B \in B(\mathcal{H})\) satisfying \([B^n, B^n] = 0\) have been called \(n\)-normal, and a study of the spectral structure of \(n\)-normal operators, with emphasis on the properties which \(B\) inherits from its normal avatar \(B^n\), has been carried out in \([2, 4, 5]\).

Given \(A \in B(\mathcal{H})\), let \(\sigma(A) \subseteq \mathcal{L} < \frac{\pi}{2}\) denote that \(\sigma(A)\) is contained in an angle \(\mathcal{L}\), with vertex at the origin, of width less than \(\frac{\pi}{2}\). Assuming \(\sigma(B) \subseteq \mathcal{L} < \frac{\pi}{2}\) for an \(n\)-normal operator \(B \in B(\mathcal{H})\), the authors of \([2, 4, 5]\) prove that \(B\) inherits a number of properties from \(B^n\), amongst them that \(B\) satisfies Bishop-Eschmeier-Putnam property \((\rho)_n\), \(B\) is polaroid (hence also isoloid) and \(\lim_{m \to \infty} \langle x_m, y_m \rangle = 0\) for sequences \(\{x_m\}, \{y_m\} \subset \mathcal{H}\) of unit vectors such that \(\lim_{m \to \infty} ||(B - \lambda)x_m|| = 0 = \lim_{m \to \infty} ||(B - \mu)y_m||\) for distinct scalars \(\lambda, \mu \in \sigma(B)\). (All our notation is explained in the following section.) That \(B\) inherits a property from \(B^n\) in many a case has little to do with the normality of \(B^n\), but is instead a consequence of the fact that \(B^n\) has the property. Thus, if the approximate point spectrum \(\sigma_a(B^n) = \sigma_a(B^n)\) is normal (recall: \(\lambda \in \sigma_a(B^n)\) is normal if \(\lim_{m \to \infty} ||(B^n - \lambda)x_m|| = 0\) for a sequence \(\{x_m\} \subseteq \mathcal{H}\) of unit vectors implies \(\lim_{m \to \infty} ||(B^n - \lambda)^\ast x_m|| = 0\); hyponormal operators, indeed dominant operators, satisfy this property), \(\sigma(B) \subseteq \mathcal{L} < \frac{\pi}{2}\), and \(\{x_m\}, \{y_m\}\)
are sequences of unit vectors in \(H \) such that \(\lim_{m \to \infty} \| (B^n - \lambda^n)x_m \| = 0 = \lim_{m \to \infty} \| (B^n - \mu^n)y_m \| \) for some distinct \(\lambda, \mu \in \sigma_d(B) \), then

\[
\lim_{m \to \infty} \lambda^n(x_m, y_m) = \lim_{m \to \infty} \langle B^n x_m, y_m \rangle = \lim_{m \to \infty} \langle x_m, B^n y_m \rangle = \mu^n \lim_{m \to \infty} \langle x_m, y_m \rangle
\]

implies

\[
(\lambda - \mu) \lim_{m \to \infty} \langle x_m, y_m \rangle = 0 \iff \lim_{m \to \infty} \langle x_m, y_m \rangle = 0
\]

(cf. [4, Theorem 2.4]). It is well known that \(w \)-hyponormal operators satisfy property \((\beta)_c \) ([3]). If \(B^n \in (\beta)_c \) (i.e., \(B^n \) satisfies property \((\beta)_c \)) and \(\sigma(B) \subseteq \z < \frac{2\pi}{\nu} \), then [7, Theorem 2.9 and Corollary 2.10] imply that \(B + N \in (\beta)_c \) for every nilpotent operator \(N \) which commutes with \(B \) (cf. [5, Theorem 3.1]). Again, if \(B^n \) is polaroid and \(\sigma(B) \subseteq \z < \frac{2\pi}{\nu} \), then \(B \) is polaroid (hence also, isoloid) ([9, Theorem 4.1]). Observe that paranormal operators are polaroid. \(n \)th roots of normal operators have been studied by a large number of authors (see [18], [17], [6], [11], [13]) and there is a rich body of text available in the literature. Our starting point in this note is that an \(n \)-normal operator \(B \) considered as an \(n \)th root of a normal operator has a well defined structure ([13, Theorem 3.1]). The problem then is that of determining the “normal like” properties which \(B \) inherits. We prove in the following that the condition \(\sigma(B) \subseteq \z < \frac{2\pi}{\nu} \) may be dispensed with in many a case (though not always). Just like normal operators, \(n \)th roots \(B \) have SVEP (the single-valued extension property) everywhere, \(\sigma(B) = \sigma_d(B) \), \(B \) is polaroid (hence also, isoloid). \(B \in (\beta)_c \) (as also does \(B^* \)) and (the quasinilpotent part) \(H_0(B - \lambda) = (B - \lambda)^{-1}(0) \) at every \(\lambda \in \sigma_d(B) \) except for \(\lambda = 0 \) when we have \(H_0(B) = B^{-\pi}(0) \). Again, just as for normal operators, \(B \) satisfies various variants of the classical Weyl’s theorem \(\sigma(B) \setminus \sigma_d(B) = \Pi_0(B) \) (resp., Browder’s theorem \(\sigma(B) \setminus \sigma_d(B) = \Pi_0(B) \)). It is proved that dominant and class \(\mathcal{A}(1, 1) \) operators \(B \) are normal.

2. Notation and terminology

Given an operator \(S \in B(H) \), the point spectrum, the approximate point spectrum, the surjectivity spectrum and the spectrum of \(S \) will be denoted by \(\sigma_p(S), \sigma_a(S), \sigma_m(S) \) and \(\sigma(S) \), respectively. The isolated points of a subset \(K \) of \(C \), the set of complex numbers, will be denoted by \(\text{iso}(K) \). An operator \(X \in B(H) \) is a quasi-affinity if it is injective and has a dense range, and operators \(S, T \in B(H) \) are quasi-similar if there exist quasi-affinities \(X, Y \in B(H) \) such that \(SX = XT \) and \(YS = TY \).

\(S \in B(H) \) has SVEP, the single-valued extension property, at a point \(\lambda_0 \in C \) if for every open disc \(D \) centered at \(\lambda_0 \) the only analytic function \(f : D \to H \) satisfying \((S - \lambda_0)f(\lambda) = 0 \) is the function \(f \equiv 0 \); \(S \) has SVEP if it has SVEP everywhere in \(C \). (Here and in the sequel, we write \(S - \lambda \) for \(S - \lambda I \).) Let, for an open subset \(\mathcal{U} \) of \(C \), \(\mathcal{E} (\mathcal{U}, H) \) (resp., \(O(\mathcal{U}, H) \)) denote the Fréchet space of all infinitely differentiable (resp., analytic) \(H \)-valued functions on \(\mathcal{U} \) endowed with the topology of uniform convergence of all derivatives (resp., topology of uniform convergence) on compact subsets of \(\mathcal{U} \). \(S \in B(H) \) satisfies property \((\beta)_c \), \(S \in (\beta)_c \), at \(\lambda \in C \) if there exists a neighborhood \(N \) of \(\lambda \) such that for each subset \(\mathcal{U} \) of \(N \) and sequence \(\{ f_n \} \) of \(H \)-valued functions in \(\mathcal{E} (\mathcal{U}, H) \),

\[
(S - z) f_n(z) \to 0 \quad \text{in} \quad \mathcal{E} (\mathcal{U}, H) \quad \Rightarrow \quad f_n(z) \to 0 \quad \text{in} \quad \mathcal{E} (\mathcal{U}, H)
\]

(resp., \(S \) satisfies property \((\beta) \), \(S \in (\beta) \), at \(\lambda \in C \) if there exists an \(r > 0 \) such that, for every open subset \(\mathcal{U} \) of the open disc \(\mathcal{D}(\lambda; r) \) of radius \(r \) centered at \(\lambda \) and sequence \(\{ f_n \} \) of \(H \)-valued functions in \(O(\mathcal{U}, H) \),

\[
(S - z) f_n(z) \to 0 \quad \text{in} \quad O(\mathcal{U}, H) \quad \Rightarrow \quad f_n(z) \to 0 \quad \text{in} \quad O(\mathcal{U}, H).
\]

The following implications are well known ([12], [16]):

\[
S \in (\beta)_c \quad \Rightarrow \quad S \in (\beta) \quad \Rightarrow \quad S \text{ has SVEP}; \quad S, S^* \in (\beta) \quad \Rightarrow \quad S \text{ decomposable}.
\]

The ascent \(\text{asc}(S - \lambda) \) (resp., descent \(\text{dsc}(S - \lambda) \)) of \(S \) at \(\lambda \in C \) is the least non-negative integer \(p \) such that \((S - \lambda)^{-p}(0) = (S - \lambda)^{-(p+1)}(0) \) (resp., \((S - \lambda)^p(H) = (S - \lambda)^{p+1}(H) \)). A point \(\lambda \in \text{iso}(S) \) (resp., \(\lambda \in \text{iso}_d(S) \))
is a pole (resp., left pole) of the resolvent of S if $0 < \text{asc}(S - \lambda) = \text{dsc}(S - \lambda) < \infty$ (resp., there exists a positive integer p such that $\text{asc}(S - \lambda) = p$ and $(S - \lambda)^{-1}(\mathcal{H})$ is closed) ([1]). Let

$$\Pi(S) = \{ \lambda \in \text{iso}(S) : \lambda \text{ is a pole (of the resolvent) of } S \};$$

$$\Pi^f(S) = \{ \lambda \in \text{iso}_p(S) : \lambda \text{ is a left pole (of the resolvent) of } S \}.$$

Then $\Pi(S) \subseteq \Pi^f(S)$, and $\Pi^f(S) = \Pi(S)$ if (and only if) S^* has SVEP at points $\lambda \in \Pi^f(S)$. We say in the following that the operator S is polaroid if $\{ \lambda \in \mathbb{C} : \lambda \in \text{iso}(S) \} \subseteq \Pi(S)$. Polaroid operators are isoloid (where S is isoloid if $\{ \lambda \in \mathbb{C} : \lambda \in \text{iso}(S) \} \subseteq \sigma_p(S)$). Let $\sigma_x = \sigma$ or σ_x. The sets $E^+(S) = E(S)$ or $E^+(S)$ and $E_{\sigma}^+(S) = E_{\sigma}(S)$ or $E_{\sigma}^+(S)$ are then defined by

$$E^+(S) = \{ \lambda \in \text{iso}_p(S) : \lambda \in \sigma_p(S) \},$$

and

$$E_{\sigma}^+(S) = \{ \lambda \in \text{iso}_p(S) : \lambda \in \sigma_{\sigma_p}(S), \dim(S - \lambda)^{-1}(0) < \infty \}.$$

It is clear that

$$\Pi^f(S) \subseteq E^+(S) \text{ and } \Pi^f_0(S) \subseteq E_{\sigma}^+(S)$$

(where $\Pi^f_0(S) = \{ \lambda \in \Pi^f(S) : \dim(S - \lambda)^{-1}(0) < \infty \})$.

The quasi-nilpotent part $H_0(S)$ and the analytic core $K(S)$ of $S \in B(\mathcal{H})$ are the sets

$$H_0(S) = \left\{ x \in \mathcal{H} : \lim_{n \to \infty} \| S^n x \| = 0 \right\},$$

and

$$K(S) = \left\{ x \in \mathcal{H} : \text{there exists a sequence } \{ x_n \} \subseteq \mathcal{H} \text{ and } \delta > 0 \text{ for which } x = x_0, S x_{n+1} = x_n \text{ and } \| x_n \| \leq \delta^{n}\|x\| \text{ for all } n = 1, 2, \ldots \right\}$$

([1]). If $\lambda \in \text{iso}(S)$, then \mathcal{H} has a direct sum decomposition $\mathcal{H} = H_0(S - \lambda) \oplus K(S - \lambda)$, $S - \lambda|_{H_0(S-\lambda)}$ is quasinilpotent and $S - \lambda|_{K(S-\lambda)}$ is invertible. A necessary and sufficient condition for a point $\lambda \in \text{iso}(S)$ to be a pole of S is that there exist a positive integer p such that $H_0(S - \lambda) = (S - \lambda)^{-p}(0)$.

In the following we shall denote the upper semi-Fredholm, the lower semi-Fredholm and the Fredholm spectrum of S by $\sigma_{u}^+(S), \sigma_{l}^-(S)$ and $\sigma(S)$; $\sigma_{u}^+(S), \sigma_{l}^-(S)$ and $\sigma_{u}^-(S)$ (resp., $\sigma_{u}^+(S), \sigma_{l}^-(S)$ and $\sigma(S)$) shall denote the upper Weyl, the lower Weyl and the Weyl (resp., the upper Browder, the lower Browder and the Browder) spectrum of S. Additionally, we shall denote the upper B-Weyl, the lower B-Weyl and the B-Weyl (resp., the upper B-Browder, the lower B-Browder and the B-Browder) spectrum of S by $\sigma_{u}^+(S), \sigma_{l}^-(S)$ and $\sigma_{u}^-(S)$ (resp., $\sigma_{u}^+(S), \sigma_{l}^-(S)$ and $\sigma_{u}^-(S)$). We refer the interested reader to the monograph ([1]) for definition, and other relevant information, on these distinguished parts of the spectrum; our interest here in these spectra is at best peripheral.

3. Results

Throughout the following, $A \in B(\mathcal{H})$ shall denote an n-normal operator. Considered as an nth root of the normal operator A^n, A has a direct sum representation

$$A = \bigoplus_{i=0}^{\infty} A_i|_{H_i} = \bigoplus_{i=0}^{\infty} A_i, \mathcal{H} = \bigoplus_{i=0}^{\infty} \mathcal{H}_i,$$

where A_0 is n-nilpotent and A_i, for all $i = 1, 2, \ldots$, is similar to a normal operator $N_i \in B(\mathcal{H}_i)$. Equivalently,

$$A = B_1 \oplus B_0, B_0 = A_0 \text{ and } B_1 = \bigoplus_{i=1}^{\infty} A_i,$$

where $B_0^* = 0$ and B_1 is quasi-similar to a normal operator $N = \bigoplus_{i=1}^{\infty} N_i \in B\left(\bigoplus_{i=1}^{\infty} \mathcal{H}_i \right)$. Quasi-similar operators preserve SV EP; hence, since the direct sum of operators has SV EP at a point if and only if the summands have SV EP at the point, A and A^* have SV EP (everywhere). Consequently ([1]):

$$\sigma(A) = \sigma(B_1) \cup \{0\} = \sigma(N) \cup \{0\} = \sigma_{u}(A) = \sigma_{u}(A)^r.$$
Since quasi-a are reducing): This fails for the operator A (4, Remark 2.17), and a sufficient condition is that $\sigma(A) \subseteq \mathcal{Z} < \frac{2\pi}{n}$ (for then $(A - \lambda)X = 0 \implies (A^n - \lambda^n)x = 0 \implies (A^n - \lambda^n)x = 0 \iff (A^* - \lambda)x = 0$).

The polaroid property transfers to the Riesz projections $P_{\lambda}(A)$ and $P_N(A)$ corresponding to points $\lambda \in \text{iso}(B_1) = \text{iso}(N)$. Let Γ be a positively oriented path separating λ from $\sigma(B_1)$ and let X, Y be quasi-affinities such that $B_1X = XN$ and $YB_1 = NY$. Then, for all $\mu \not\in \sigma(B_1)$,

$$P_{\lambda}(A) = \frac{1}{2\pi i} \int_{\Gamma} (\mu - B_1)^{-1}d\mu \iff YP_{\lambda}(A) = Y \left\{ \frac{1}{2\pi i} \int_{\Gamma} (\mu - B_1)^{-1}d\mu \right\} Y = P_N(\lambda)Y.$$

A similar argument proves

$$P_{\lambda}(A)X = XP_N(\lambda).$$

Theorem 3.1. A is polaroid.

Proof. Continuing with the argument above, the normality of N implies that the range $H_0(N - \lambda)$ of $P_N(\lambda)$ coincides with $(N - \lambda)^{-1}(0)$. Hence $(N - \lambda)P_N(\lambda) = 0$, and

$$Y(B_1 - \lambda)P_{\lambda}(A) = (N - \lambda)YP_{\lambda}(A) = (N - \lambda)P_N(\lambda)Y = 0 \implies (B_1 - \lambda)P_{\lambda}(A) = 0 \iff H_0(B_1 - \lambda) = (B_1 - \lambda)^{-1}(0).$$

Since $\lambda \in \text{iso}(B_1)$,

$$\bigoplus_{i=1}^{\infty} \mathcal{H}_i = H_0(B_1 - \lambda) \oplus K(B_1 - \lambda) = (B_1 - \lambda)^{-1}(0) \oplus K(B_1 - \lambda)$$

$$\implies \bigoplus_{i=1}^{\infty} \mathcal{H}_i = (B_1 - \lambda)^{-1}(0) \oplus (B_1 - \lambda) \bigoplus_{i=1}^{\infty} \mathcal{H}_i,$$

i.e., λ is a (simple) pole. The n-nilpotent operator B_0 being polaroid, the direct sum $B_0 \oplus B_1$ is polaroid (since $\text{asc}(A - \lambda) \leq \text{asc}(B_0 - \lambda) \oplus \text{asc}(B_1 - \lambda)$ and $\text{dsc}(A - \lambda) \leq \text{dsc}(B_0 - \lambda) \oplus \text{dsc}(B_1 - \lambda)$ for all λ ([20, Exercise 7, Page 293])).

Theorem 3.1 implies:

Corollary 3.2. A is isoid (i.e., points $\lambda \in \sigma(A)$ are eigenvalues of A).

More is true and, indeed, Theorem 3.1 is a consequence of the following result which shows that $H_0(A - \lambda) = (A - \lambda)^{-1}(0)$ for all non-zero $\lambda \in \sigma(A)$.

Theorem 3.3. $H_0(A - \lambda) = (A - \lambda)^{-1}(0)$ for all non-zero $\lambda \in \sigma(A)$ and $H_0(A) = A^{-n}(0)$. In particular, A is polaroid.
it follows that

\[\lambda \in \sigma(N) \quad \text{since normal operators such that} \]

\[\text{to prove the theorem it will suffice to prove} \]

\[\text{implies} \]

\[\text{for all} \ x \in H_0(B_1 - \lambda). \]

Consequently,

\[Yx \in H_0(N - \lambda) = (N - \lambda)^{-1}(0) \implies Y(B_1 - \lambda)x = (N - \lambda)Yx = 0 \iff x \in (B_1 - \lambda)^{-1}(0), \]

and hence

\[H_0(B_1 - \lambda) = (B_1 - \lambda)^{-1}(0) \]

for all \(\lambda \in \sigma(B_1) \). Evidently,

\[H_0(A) = H_0(B_1 \oplus B_0) = B_1^{-1}(0) \oplus B_0^{-1}(0) \subseteq A^{-1}(0). \]

Argue now as in the proof of Theorem 3.1 to prove that \(A \) is polaroid. \(\square \)

The Riesz projection \(P_A(\lambda) \) corresponding to points \(0 \neq \lambda \in \text{iso}(A) \) are, in general, not self-adjoint. Since \(\sigma(A) \subseteq \mathcal{L} < \frac{2\pi}{n} \) ensures \((A - \lambda^{-1})^{-1}(0) \subseteq (A' - \lambda^{-1})^{-1}(0) \) for all \(0 \neq \lambda \in \sigma_p(A) \), \(\sigma(A) \subseteq \mathcal{L} < \frac{2\pi}{n} \) forces \(P_A(\lambda) = P_A(\lambda)^* \) for all \(\lambda \neq 0 \).

Corollary 3.4. If \(\sigma(A) \subseteq \mathcal{L} < \frac{2\pi}{n} \), then the Riesz projection corresponding to non-zero \(\lambda \in \text{iso}(A) \) is self-adjoint.

Remark 3.5. Theorems 3.1 and 3.3 generalize corresponding results from [2], [4], [5] by removing the hypothesis that \(\sigma(A) \subseteq \mathcal{L} < \frac{2\pi}{n} \), and, in the case of Theorem 3.3, the hypothesis on the points \(\lambda \) being isolated in \(\sigma(A) \). Recall from [1, Page 336] that an operator \(S \in \mathcal{B}({\mathcal{H}}) \) is said to have property \(Q \) if \(H_0(S, \lambda) \) is closed for all \(\lambda \): Theorem 3.3 says that the nth roots \(A \) have property \(Q \). Another proof of Theorem 3.3, hence also of the fact that the operators \(A \) satisfy property \(Q \), follows from the argument below proving the subscalarity of \(A \).

Property \((\beta)_c\) (similarly \((\beta)\)) does not travel well under quasi-affinities. Thus \(CX = XB \) and \(B \in (\beta)_c \) does not imply \(C \in (\beta)_c \) (see [7, Remark 2.7] for an example). However, \(C \in (\beta)_c \) implies \(B \in (\beta)_c \) holds, as the following argument proves. If \((f_n) \) is a sequence in \(\mathcal{E}(U, \mathcal{H}) \) such that

\[(B - z)f_n(z) \to 0 \text{ in } \mathcal{E}(U, \mathcal{H}), \]

then

\[X(B - z)f_n(z) = (C - z)Xf_n(z) \to 0 \text{ in } \mathcal{E}(U, \mathcal{H}). \]

Since \(C \in (\beta)_c \) and \(X \) is a quasi-affinity,

\[Xf_n(z) \to 0 \text{ in } \mathcal{E}(U, \mathcal{H}) \implies f_n(z) \to 0 \text{ in } \mathcal{E}(U, \mathcal{H}). \]

Thus \(B \in (\beta)_c \).

Theorem 3.6. \(A \) and \(A^* \) satisfy property \((\beta)_c\).

Proof. Recall from [7, Lemma 2.2] that a direct sum of operators satisfies \((\beta)_c\) if and only if the individual operators satisfy \((\beta)_c\). The operator \(A \) being the direct sum \(B_1 \oplus B_0 \) where \(B_0, B_0' \) being nilpotent satisfy \((\beta)_c\), to prove the theorem it will suffice to prove \(B_1, B_1' \in (\beta)_c \). But this is immediate from the argument above, since normal operators \(N \) satisfy \(N, N^* \in (\beta)_c \) and since there exist quasi-affinities \(X \) and \(Y \) in \(B \left(\bigoplus_{i=1}^\infty \mathcal{H}_i \right) \) such that \(N'X = X'B_1' \) and \(NY = YB_1 \). \(\square \)

\(A \in (\beta)_c \) implies \(A \in (\beta) \), and \(A, A^* \in (\beta) \) implies \(A \) is decomposable ([16]). Hence:
Corollary 3.7. A is decomposable.

We consider next a sufficient condition for the operator A to be normal. However, before that we point out that the operator A satisfies almost all Weyl and Browder type theorems ([11]) satisfied by normal operators.

Weyl’s theorem An operator \(S \in B(H) \) satisfies

- generalized Weyl’s theorem, \(S \in gWt, \) if \(\sigma(S) \setminus \sigma_{	ext{Bor}}(S) = E(S); \)
- a – generalized Weyl’s theorem, \(S \in a - gWt, \) if \(\sigma(a) \setminus \sigma_{	ext{Bor}}(S) = E^a(S) \)

(see [1, Definitions 6.59, 6.81]). Let \(S \in Wt, S \in a - Wt, S \in gBt, S \in a - gBt, S \in Bt \) and \(S \in a - Bt \) denote, respectively, that

- \(S \) satisfies Weyl’s theorem : \(\sigma(S) \setminus \sigma_{aw}(S) = E_0(S), \)
- \(S \) satisfies a – Weyl’s theorem : \(\sigma(a) \setminus \sigma_{aw}(S) = E^a_0(S), \)
- \(S \) satisfies generalized Browder’s theorem : \(\sigma(S) \setminus \sigma_{	ext{Bor}}(S) = \Pi(S), \)
- \(S \) satisfies generalized a – Browder’s theorem : \(\sigma(a) \setminus \sigma_{	ext{Bor}}(S) = \Pi^a(S), \)
- \(S \) satisfies Browder’s theorem : \(\sigma(S) \setminus \sigma_{aw}(S) = \Pi_0(S), \)
- \(S \) satisfies a – Browder’s theorem : \(\sigma(a) \setminus \sigma_{aw}(S) = \Pi_0^a(S), \)

(see [1, Chapter 6]). The following implications are well known ([1, Chapters 5, 6]):

\[
S \in a - gWt \implies \begin{cases} S \in a - Wt \\ S \in gWt \end{cases} \implies S \in Wt \implies S \in Bt,
\]

\[
S \in a - gBt \implies \begin{cases} S \in a - Wt \\ S \in a - gBt \end{cases} \implies S \in a - Bt \implies S \in Bt,
\]

\[
S \in a - gBt \iff S \in a - Bt, \quad S \in gBt \iff S \in Bt.
\]

A has SVEP (guarantees \(A \in a - gBt ([1, Therem 5.37]) \)) and \(\sigma(A) = \sigma_{aw}(A) \) guarantee the equivalence of a-gBt and gBt (hence also of a-gBt with a-Bt and Bt) for \(A. \) The fact that \(A \) is polaroid and \(\sigma(A) = \sigma_{aw}(A) \) guarantees also that \(E(A) = E^a(A) = \Pi^a(A) = \Pi_0(A) \) (and \(E_0(A) = E^a_0(A) = \Pi_0^a(A) = \Pi_0(\sigma(A)) \)). Hence all Weyl’s theorems (listed above) are equivalent for \(A \) and :

Theorem 3.8. \(A \in a - gWt \)

Normal A. For the operator \(A = B_1 \oplus B_0 \) to have any chance of being a normal operator, it is necessary that (either \(B_1 \) is missing, or) \(B_0 = 0 \) is, however, in no way sufficient to ensure the normality of \(A. \) Additional hypotheses are required. An operator \(S \in B(H) \) is said to be dominant (resp., class \(A(1, 1) \)) if to every complex \(\lambda \) there corresponds a real number \(M_1 > 0 \) such that \(\|S - \lambda x\| \leq M_1 \|S - \lambda x\| \) for all \(x \in H \) (resp., \(|S^2| \leq |S^2| \)) ([19], [15]). Recall from [10, Lemma 2.1] that if a dominant or class \(A(1, 1) \) operator \(A \in B(H) \) is a square root of a normal operator, then \(A \) is normal. The following theorem, which uses an argument different from that used in [10], proves that this result extends to \(n \)th roots of \(A. \)

Theorem 3.9. Dominant or \(A(1, 1) \) \(n \)th roots of a normal operator in \(B(H) \) are normal.

Proof. Recall that the eigenvalues of a dominant operator are normal (i.e., they are simple and the corresponding eigenspace is reducing). Hence if our \(n \)th root of \(A = B_1 \oplus B_0 \) is dominant, then \(A = B_1 \oplus 0 \) is a dominant operator which satisfies

\[
A \left(Y \oplus I \mid_{H_1} \right) = \left(Y \oplus I \mid_{H_1} \right) (N \oplus 0).
\]
The operator $N \oplus 0$ being normal and the operator $Y \oplus I \mid_{\mathcal{H}_1}$ being a quasi-affinity it follows from [19], [8] that A is normal (and unitarily equivalent to $N \oplus 0$). We consider next $A \in \mathcal{A}(1, 1)$.

It is well known that $\mathcal{A}(1, 1)$ operators have ascent less than or equal to one. (Indeed, operators $S \in \mathcal{A}(1, 1)$ are paranormal: $\|Sx\| \leq \|S^2x\|\|x\|$ for all $x \in \mathcal{H}$, hence $\text{asc}(S) \leq 1$.) Hence if $A = B_1 \oplus B_0 \in \mathcal{A}(1, 1)$, then $B_0 = 0$ and $A \in B \left(A^{-1}(0) \oplus A^{-1}(0) \right)^*$ has an upper triangular matrix representation

$$A = \begin{pmatrix} 0 & A_{12} \\ 0 & A_{22} \end{pmatrix}.$$

Let $N_1 = N \oplus 0 \mid_{\mathcal{H}_1}$ have the representation

$$N_1 = 0 \oplus N_{22} \in B \left(N_1^{-1}(0) \oplus N_1^{-1}(0) \right)^*,$$

and let $Y_1 = Y \oplus I \mid_{\mathcal{H}_1} \in B \left(N_1^{-1}(0) \oplus N_1^{-1}(0) \right)^*$. Applying Proposition 2.5 and Lemma 2.2 of [10], it follows that $A_{22}Y_2 = Y_{22}N_{22}$ implies that A_{22} is quasi-affinity. Hence, since $A^{-n}Y_1 = Y_1N_1^{-n}$, it follows that $A^{-n}N_{22} = A^{-n}N_1^{-n}$, and hence $Y_{12}N_{22} = 0$. Since the normal operator N_{22} has a dense range, $Y_{12} = 0$ (which than implies that Y_{11} and Y_{22} are quasi-affinities). But then $A_{22}Y_2 = Y_{22}N_{22}$ and $A_{22}Y_2 = Y_{22}N_{22}$ imply that A_{22} is quasi-affinity. Hence, since $A^{-n}Y_1 = Y_1N_1^{-n}$ implies also that $A_{12}A_{22}^{-1}Y_{12} = 0$, $A_{12} = 0$. Thus $A = 0 \oplus A_{22}$, where $A_{22} \in \mathcal{A}(1, 1)$. Hence, if $A = 0 \oplus A_{22}$, applying Proposition 2.5 and Lemma 2.2 of [10], it follows that A_{22} and N_{22} are (unitarily equivalent) normal operators. Conclusion: $A = 0 \oplus A_{22}$ is a normal nth root.

References