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Abstract. In this paper, we introduce the B-discrete spectrum of an unbounded closed operator and we
prove that a closed operator has a purely B-discrete spectrum if and only if it has a meromorphic resolvent.
After that, we study the stability of the B-discrete spectrum under several type of perturbations and we
establish that two closed invertible linear operators having quasisimilar totally paranormal inverses have
equal spectra and B-discrete spectra.

1. Introduction

Let C(X) be the set of linear closed operators defined from a Banach space X to X and L(X) be the Banach
algebra of bounded linear operators defined from X to X. We write D(T), N(T) and R(T) for the domain,
nullspace and range of an operator T ∈ C(X). An operator T ∈ C(X) is called a Fredholm operator [17] if
both the nullity n(T) = dim N(T) of T and the defect d(T) = codim R(T) of T are finite. The index i(T) of a
Fredholm operator T is defined by i(T) = n(T)− d(T). It is well known that if T is a Fredholm operator, then
R(T) is closed.

The class of bounded linear B-Fredholm operators, which is a natural extension of the class of Fredholm
operators was introduced in [1], and the class of unbounded linear closed B-Fredholm operators acting on
a Banach space was studied in [4].

Recall [9] that a bounded linear operator T is called a meromorphic operator if λ = 0 is the only possible
point of accumulation of its spectrum σ(T) and every non-zero isolated point of σ(T) is a pole of the resolvent
Rµ(T) = (T − µI)−1 of T, which is defined on the resolvent set ρ(T) of T. If we also require that each non-zero
eigenvalue of T has finite multiplicity, then T will be called a Riesz operator.

A first result linking bounded B-Fredholm operators to the class M of linear bounded meromorphics
operators comes from the following theorem, established in [2, Theorem 2.11].

Theorem 1.1. Let T ∈ L(X). Then T is a meromorphic operator if and only if

σBF(T) = {λ ∈ C | T − λI is not a B-Fredholm operator } ⊂ {0}.

Recall that for T ∈ C(X), its descent δ(T) and its ascent a(T) are defined by δ(T) = inf{n ∈ N : R(Tn) =
R(Tn+1)} and a(T) = inf{n ∈N : N(Tn) = N(Tn+1)}. We set formally inf ∅ = ∞.
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A closed linear operator T ∈ C(X) is said to be Drazin invertible if a(T) and δ(T) are both finite. In this case
and if the resolvent set ρ(T) of T is nonempty, then a(T) = δ(T),R(Ta(T)) is closed and X = R(Ta(T))⊕N(Ta(T)).

The Drazin spectrum of T is defined by: σD(T) = {λ ∈ C : T − λI not Drazin invertible}.
The set of Browder operators is defined by B(X) = {T ∈ Φ(X) | a(T) < ∞ and δ(T) < ∞} and the Browder

spectrum of T is defined by: σB(T) = {λ ∈ C : T − λI < B(X)}.
For a closed linear operator T ∈ C(X), the discrete spectrum σd(T) of T is defined as the set of all complex

numbers λ in σ(T) such that T − λI is a Browder operator, that is σd(T) = σ(T) \ σB(T), the complement of
the Browder spectrum in the spectrum.

Analogously, we define here the B-discrete spectrum for closed operators as a natural extension of the
discrete spectrum.

Definition 1.2. Let T ∈ C(X). Then the B-discrete spectrum σbd(T) of T is defined by σbd(T) = σ(T) \ σD(T), the
complement of the Drazin spectrum in the spectrum.

It’s clear that for T ∈ C(X), its discrete spectrum σd(T) is a subset of its B-Discrete spectrum σbd(T).

Definition 1.3. We will say that T has a purely B-discrete spectrum if σ(T) = σbd(T), and that T has a purely discrete
spectrum if σ(T) = σd(T).

Example 1.4. An illustrating example of an operator with purely B-discrete spectrum, is given by the
Schrödinger operator with a constant magnetic field B , 0 inR2 defined by SB = ( 1

i
∂
∂x1
−

Bx2
2 )2 + ( 1

i
∂
∂x2

+ Bx1
2 )2.

Then from [8, Example 4, p.134], σ(SB) = {(2k + 1) | B | |k ∈ N}. Its B-discrete spectrum coincides exactly
with the set of its Landau levels, ([8, p.136]), while its discrete spectrum is the empty set. Moreover, each
eigenvalue of SB has an infinite multiplicity. As SB is self-adjoint, we have σ(SB) = σbd(SB), (See Corollary
2.11). Thus L has a purely B-discrete spectrum, but its discrete spectrum is empty.

The discrete spectrum has important applications in the study of physical operators. However, as shown
by Example 1.4, the discrete spectrum may be empty while we have discrete energy levels! Moreover, as
shown by Example 2.6, the discrete spectrum does not give a clear idea on the nature of isolated points
of the spectrum: are there poles of infinite rank or essential singularities of the resolvent? But an isolated
point of the spectrum which is not in the B-discrete spectrum is always an essential singularity.

Definition 1.5. Let T ∈ C(X), with a non-empty resolvent set. We will say that T has a meromorphic (resp. Riesz
or compact) resolvent if there exists a scalar λ in the resolvent set ρ(T) of T such that (T − λI)−1 is a bounded linear
meromorphic (resp. Riesz or compact) operator.

Remark 1.6. It’s easily seen that if T has a meromorphic (resp. Riesz or compact) resolvent, then for all
scalar λ in the resolvent set ρ(T) of T, (T − λI)−1 is a bounded linear meromorphic (resp. Riesz or compact)
operator.

In the second section of this paper, we characterize closed invertible operators with non-empty resolvent
set having a purely B-discrete spectrum, by showing that this the case if and only if the operator considered
has a meromorphic resolvent and if and only if its B-Fredholm spectrum σBF(T) is empty. We show also that
if T ∈ C(X) has a nonempty resolvent set and λ is an isolated point of its spectrum, then λ is in its B-discrete
spectrum if and only if T − λI is a B-Fredholm operator. When T is an hereditarily normaloid operator
(Definition 2.8), then the B-discrete spectrum σbd(T) of T is the set of all isolated points of its spectrum σ(T).

In the third section, we study the stability of the B-discrete spectrum under several type of perturbations.
As an example of the results obtained, we show that if A and T are two commuting closed linear operators
with nonempty resolvent sets, and if for some λ ∈ ρ(A)∩ ρ(T) the operator (λI−A)−1

− (λI−T)−1 is of finite
rank, then A has a purely B-discrete spectrum if and only if T has a purely B-discrete spectrum. Moreover,
we prove two spectral mapping theorems for the B-discrete spectrum.

In the fourth section, we show that if S,T are two closed invertible linear operators having quasisimilar
totally paranormal inverses (Definition 2.9), then their spectra and their B-discrete spectra are equal.
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2. B-discrete spectrum

We begin this section by characterizing operators with purely B-discrete spectrum.

Theorem 2.1. Let T ∈ C(X) with a nonempty resolvent set. Then T has a purely B-discrete spectrum if and only if
T has a meromorphic resolvent.

Proof. Suppose that T has a purely B-discrete spectrum. So for all λ ∈ C, T−λI is Drazin invertible operator.
Since the resolvent set of T is non-empty, there exists µ ∈ C, such that T−µI is invertible. From [5, Theorem
3.6], (T−µI)−1

−
1
λ I is Drazin invertible for all λ , 0, and 1

λ is a pole of the resolvent of (T−µI)−1. So (T−µI)−1

is a meromorphic operator. Hence T has a meromorphic resolvent.
Conversely, if T has a meromorphic resolvent, we can assume without loss of generality that T is

invertible and that T−1 is a meromorphic operator. If λ < σ(T), then T − λI is invertible. If λ ∈ σ(T), then
λ , 0. Since T−1 is a meromorphic operator, then from [5, Theorem 3.6], 1

λ is a pole of T−1 and again from
[5, Theorem 3.6], λ is a pole of T. Therefore T − λI is Drazin invertible for all λ ∈ C and T has a purely
B-discrete spectrum.

Remark 2.2. Analogous result of Theorem 2.1 for the discrete spectrum can be deduced from [14, Theorem
2], that is T has a purely discrete spectrum if and only if T has a Riesz resolvent.

Corollary 2.3. Let T ∈ C(X) with a nonempty resolvent set. Then T has a purely B-discrete spectrum if and only if
σBF(T) = ∅.

Proof. Suppose that T has a purely B-discrete spectrum. Then for all λ ∈ C, T − λI is Drazin invertible.
From [4, Theorem 2.9], it follows that T − λI is a B-Fredholm operator. Hence σBF(T) = ∅.

Conversely assume that σBF(T) = ∅, and let µ be in the resolvent set of T. Then from [5, Theorem 3.6],
σBF((T−µI)−1) ⊂ {0} and from Theorem 1.1, (T−µI)−1 is a meromorphic operator. Hence T has a meromorphic
resolvent. From Theorem 2.1, it follows that T has purely B-discrete spectrum.

Example 2.4. Let A be the shift operators on the Hilbert space l2(N).

A : D(A) ⊂ l2(N) −→ l2(N)
x = (xn)n≥0 7−→ Ax = (0, x1, 2x2, 3x3, .......),

where D(A) = {x = (xn)n≥0 ∈ l2(N) :
∑
n≥0

n2
|xn|

2 < ∞}

It is easy to verify that the complex number i (i2 = −1) is in ρ(A). Moreover one can check easily that σ(A) = N
and that σBF(A) = ∅. Hence A has a purely B-discrete spectrum.

Corollary 2.5. Let T ∈ C(X), with a nonempty resolvent set. If T has a purely discrete spectrum, then T has a purely
B-discrete spectrum and σbd(T) = σd(T).

Proof. It follows from [14, Theorem 2], that if T has purely discrete spectrum, then T has a Riesz resolvent. So
T has a meromorphic resolvent. Thus T has a purely B-discrete spectrum. In this case, we have σ(T) = σd(T),
so σB(T) = ∅. Hence σD(T) = ∅ and σ(T) = σbd(T).

As shown by the example 1.4, the converse of the previous corollary is not true in general.

The following example shows that even the spectrum of an operator is discrete, its B-discrete spectrum
( and also its discrete spectrum) could be empty.

Example 2.6. Let Q be defined for each x = (ξi) ∈ `1 by

Q(ξ1, ξ2, ξ3, . . . , ξk, . . . ) = (0, α1ξ1, α2ξ2, . . . , αk−1ξk−1, . . . ),



M. Berkani / Filomat 34:8 (2020), 2541–2547 2544

where (αi) is a sequence of complex numbers such that 0 < |αi| ≤ 1 and
∑
∞

i=1 |αi| < ∞. We observe that

R(Qn) , R(Qn), n = 1, 2, . . .

Indeed, for a given n ∈N let x(n)
k = (1, . . . , 1, 0, 0, . . . ) (with n + k times 1). Then the limit y(n) = limk→∞Qnx(n)

k

exists and lies in R(Qn). However, there is no element x(n)
∈ `1 satisfying the equation Qnx(n) = y(n) as the

algebraic solution to this equation is (1, 1, 1, . . . ) < `1.
It is easy to see that σ(Q) = σD(Q) = {0} and so σd(T) = σbd(T) = ∅.

In the next theorem, we give a necessary and sufficient condition under which an isolated point in the
spectrum of a closed operator is in its B-discrete spectrum.

Theorem 2.7. Let T ∈ C(X), with a nonempty resolvent set and let λ be an isolated point of its spectrum. Then λ is
in its B-discrete spectrum if and only if T − λI is a B-Fredholm operator.

Proof. If λ ∈ σbd(T), then λ is a pole of its resolvent. From [15, Theorem 1.2], there exists an integer p such
that R((T − λI)p) is closed and X = N((T − λI)p) ⊕ R((T − λI)p). From [4, Theorem 2.4], it follows that T − λI
is a B-Fredholm operator.

Conversely assume that λ is isolated in σ(T) and that T − λI is a B-Fredholm operator. We can assume
without loss of generality that T is invertible, thus λ , 0 and from [5, Theorem 3.6], T−1

−
1
λ I is a B-Fredholm

operator. From [2, Theorem 2.3], it follows that 1
λ is a pole of T−1 and from [5, Theorem 3.6] it follows that

λ is a pole of T. So λ is in the B-discrete spectrum of T.

Definition 2.8. A bounded linear operator T acting on a Banach space is said to be normaloid if ρ(T) = ‖T‖, where
ρ(T) is the spectral radius of T or equivalently ‖Tn

‖ = ‖T‖n for every n ∈N. We say that T is hereditarily normaloid
if the restriction of T to any invariant subspace under T is again normaloid.

Definition 2.9. A bounded operator T on a Banach space is said to be paranormal if ‖Tx‖2 ≤ ‖T2x‖‖x‖ for all x ∈ X.
T is said to be totally paranormal if T − λI is paranormal for all λ ∈ C.

It is easy to see that every paranormal operator T is normaloid. Since the restriction of a paranormal
operator T to any closed invariant subspace under T is also paranormal, then a paranormal operator is
hereditarily normaloid.

A good example of totally paranormal operators is given by the class of hyponormal operators. Recall
that a bounded linear operator T acting on Hilbert space H is said to be hyponormal if ‖T∗x‖ ≤ ‖Tx‖, for
all x ∈ H, where T∗ is the adjoint of T. From [12], we know that Hyponormal ( Paranormal ( hereditarily
normaloid ( normaloid and the inclusions are all proper.

In the case of a closed invertible operator with a normaloid inverse, we can determine precisely its
B-discrete spectrum.

Theorem 2.10. Let T ∈ C(X) be a closed invertible operator having an hereditarily normaloid inverse. Then the
B-discrete spectrum σbd(T) of T is the set of all isolated points of the spectrum σ(T) of T.

Proof. If λ ∈ σbd(T), then λ is a pole of its resolvent and so λ is an isolated point of its spectrum. Conversely
assume that λ is an isolated point of the spectrum of T. As T−1 is hereditarily normaloid, then from [11,
Lemma 2.1] 1

λ is a pole of T−1 and from From [5, Theorem 3.6], λ is a pole of T. So λ is in σbd(T).

Corollary 2.11. Let T be a normal operator acting on a Hilbert space H. Then the B-discrete spectrum σbd(T) of T is
the set of all isolated points of the spectrum σ(T) of T.

Proof. Since the resolvent set ρ(T) of T is nonempty, we can assume without loss of generality that T is
invertible. Since T is normal, then from [19, Theorem 5.42], T−1 is a bounded normal operator. Since a
normal operator is normaloid, then from Theorem 2.10, σbd(T) is the set of all isolated points of the spectrum
σ(T) of T.

Corollary 2.11 applies in particular to the case of self-adjoint operators and in particular to self-adjoint
Schrödinger operators [19].
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3. Stability of the B-discrete spectrum

In this Section, we study the stability of the B-discrete spectrum of a closed linear operator acting
on a Banach space X, under the effect of several type of perturbations

Definition 3.1. [16] Let X be a Banach space, A : D(A) ⊂ X −→ X and
T : D(T) ⊂ X −→ X two linear operators. We say that A commutes with T and we denote AT = TA, if
(i) D(A) ⊂ D(T).
(ii) Tx ∈ D(A) whenever x ∈ D(A).
(iii) AT = TA on {x ∈ D(A), Ax ∈ D(T)}.

It is easily seen that if A and T are two commuting closed linear operators on a Banach space X and if
λ ∈ ρ(A) ∩ ρ(T), then (λI − A)−1(λI − T)−1 = (λI − T)−1(λI − A)−1.

Theorem 3.2. Let A and T be two closed linear operators with a nonempty resolvent sets. If AT = TA and
(λI − A)−1

− (λI − T)−1 is a nilpotent operator for some λ ∈ ρ(A) ∩ ρ(T), then σbd(A) = σbd(T).

Proof. Without loss of generality, we can assume that λ = 0. Let µ ∈ C\{0}. Since T−1
− A−1 is a nilpotent

operator commuting with A−1, then σ(A−1) = σ(A−1 + (T−1
−A−1)) = σ(T−1).Moreover and from [3, Theorem

3.2] we know that σD(A−1) = σD(A−1 + (T−1
− A−1)) = σD(T−1). Thus σ(A) = σ(T) and σD(A) = σD(T).

Consequently we have σbd(A) = σbd(T).

Corollary 3.3. Let A ∈ C(X) with a nonempty resolvent set and let Q ∈ L(X) be a nilpotent operator satisfying
AQ = QA. Then σbd(A + Q) = σbd(A).

Proof. Since AQ = QA and Q is a nilpotent operator, then (µI − A)−1Q is also a nilpotent operator for all
µ ∈ ρ(A). Then I − (µI − A)−1Q is an invertible operator and so µI − A − Q is also invertible. Moreover

(µI−A−Q)−1 = (µI−A)−1(I− (µI−A)−1Q)−1 = (µI−A)−1
n∑

k=0

((µI−A)−1Q)k = (µI−A)−1 + (µI−A)−1Q
n−1∑
k=1

((µI−

A)−1)kQk−1 where n is the nilpotent-index of (µI − A)−1Q. Hence, (µI − A − Q)−1
− (µI − A)−1 is nilpotent.

From Theorem 3.2, we deduce that σbd(A + Q) = σbd(A).

Theorem 3.4. Let A and T be two closed linear operators on a Banach space X. If AT = TA and for some λ ∈
ρ(A) ∩ ρ(T) the operator (λI −A)−1

− (λI − T)−1 has a power of finite rank, then A has a purely B-discrete spectrum
if and only if T has a purely B-discrete spectrum.

Proof. Without loss of generality we can assume that λ = 0. Let µ ∈ C\{0}. From [5, Theorem 3.6], we see
that µI − A is a B-Fredholm operator if and only if µ−1I − A−1 is a B-Fredholm operator. Since A−1

− T−1

has a power of finite rank, then from [18, Theorem 2.11], µ−1I − A−1 is a B-Fredholm operator if and only if
µ−1I − T−1 is a B-Fredholm operator. From [5, Theorem 3.6] this is true if and only if µI − T is a B-Fredholm
operator. This shows that σBF(A) = σBF(T). Therefore A has a purely B-discrete spectrum if and only if T has
a purely B-discrete spectrum.

We conclude this section with two spectral mapping theorems for the B-discrete spectrum.

Theorem 3.5. Let A ∈ C(X) be a densely defined closed operator such that ρ(A) , ∅. Let P(λ) be a polynomial with
complex coefficients. Then σBF(P(A)) = P(σBF(A)), and A has a purely B-discrete spectrum if and only if P(A) has a
purely B-discrete spectrum.

Proof. P(A) is well defined and is a closed operator. From [7, Theorem 3.2] we have σBF(P(A)) = P(σBF(A)).
Thus σBF(A) = ∅ if and only if σBF(P(A)) = ∅.
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For an unbounded closed operator A with non-empty resolvent set, and a complex-valued functions
f holomorphic on an open set containing σ(A) ∪ {∞}, f (A) may be defined by the operational calculus
introduced by Taylor in [17].

Theorem 3.6. Let A ∈ C(X) be a closed operator with non-empty resolvent set and let f be complex-valued function
holomorphic on an open set containing σ(A) ∪ {∞}. If f is an univalent function, then σbd( f (A)) = f (σbd(A)).

Proof. Let σ̃(A) = σ(A) ∪ {∞} and σ̃D(A) = σD(A) ∪ {∞} be the extended spectrum and the extended Drazin
spectrum of A. From [13, Theorem 7], we know that f (̃σ(A)) = σ( f (A)) and from [6, Theorem 4.1] f (σ̃D(A)) =
σD( f (A)). Therefore we have σbd( f (A)) = σ( f (A)) \ σD( f (A)) = f (̃σ(A)) \ f (σ̃D(A)) = f (̃σ(A) \ σ̃D(A)) =
f (σ(A)) \ σD(A)), because f is univalent. Hence σbd( f (A)) = f (σbd(A)).

4. B-discrete spectrum and quasi-similarity

A bounded linear operator A : X → Y from the Banach spaces X to the Banach space Y is said to be
quasi-invertible if it is injective and has dense range. Two bounded linear operators T ∈ L(X) and S ∈ L(Y)
are quasisimilar if there exists quasi-invertible operators A : X → Y and B : Y→ X such that AT = SA and
BS = TB.

As mentioned in [10, p.89], the same proof of [10, Theorem 1] proved for hyponormal operators holds
also for totally paranormal operators. Thus we formulate the following result without proof and we refer
the reader to [10].

Theorem 4.1. If two bounded linear operators T ∈ L(X) and S ∈ L(Y) are totally paranormal and quasisimilar, then
they have the same spectrum. This is in particular the case of two quasisimilar hyponormal operators.

Using this result, we prove now the equality of the B-discrete spectrum of two quasi-similar totally
paranormal operators.

Theorem 4.2. Let S and T be two totally paranormal and quasisimilar bounded linear operators acting on a Banach
space X, then σbd(S) = σbd(T). This is in particular the case of two quasisimilar hyponormal operators.

Proof. Since S and T are quasisimilar, there exists quasi-invertible operators A : X→ Y and B : Y→ X such
that AT = SA and BS = TB. In this case the operators S̃[n] : R(Sn)→ R(Sn) and T̃[n] : R(Tn)→ R(Tn) defined
as the restrictions of S and T respectively to the closure of the ranges R(Sn) and R(Tn), are also quasisimilar.
Indeed, if we consider P = A/R(Tn) : R(Tn) → R(Sn) and Q = B/R(Sn) : R(Sn) → R(Tn), then it is easily seen

that P(R(Tn)) = R(Sn),Q(R(Sn)) = R(Tn),P and Q are both injective, PT̃[n] = S̃[n]P and QS̃[n] = T̃[n]Q.
Let α ∈ σbd(T) be arbitrary. Then T − αI is Drazin invertible and a(T − αI) = δ(T − αI) = n < ∞. Since

we are dealing with totally paranormal operators, we may assume without loss of generality that α = 0.
Therefore R(Tn) is closed, and T̃[n] : R(Tn) → R(Tn) is invertible. On the other hand, T̃[n] : R(Tn) → R(Tn)
and S̃[n] : R(Sn) → R(Sn) are totally paranormal quasisimilar operators. Since T̃[n] is invertible, then from
Theorem 4.1, S̃[n] is invertible. So (S̃[n])n is invertible and R((S̃[n])n) = R(Sn). As R((S̃[n])n) ⊂ R(Sn), then
R(Sn) = R(Sn) and R(Sn) is closed. Therefore 0 < σD(S).As we know from Theorem 4.1 that σ(T) = σ(S), then
0 ∈ σbd(S). Similarly, we have σbd(S) ⊂ σbd(T) and so σbd(S) = σbd(T).

Theorem 4.3. Let S,T be two closed invertible linear operators having quasisimilar totally paranormal inverses, then
σ(S) = σ(T) and σbd(S) = σbd(T).

Proof. Let U = S−1, and V = T−1, then U and V are totally paranormal and quasi-similar. From Theorem
4.1 and Theorem 4.2, we have σ(U) = σ(V) and σbd(U) = σbd(V). Thus σ(S) = σ(T) and if λ ∈ σbd(T),
then 1

λ ∈ σbd(U). Thus 1
λ ∈ σbd(V) and so λ ∈ σbd(S). This implies that σbd(T) ⊂ σbd(S). Similarly we have

σbd(S) ⊂ σbd(T) and then σbd(T) = σbd(S).



M. Berkani / Filomat 34:8 (2020), 2541–2547 2547

References

[1] M. Berkani, On a class of quasi-Fredholm operators, Integr. Equ. Oper.Theory, 34 (1999), 244-249.
[2] M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. App. 272 (2002), 596-603.
[3] M. Berkani, M. Amouch, Preservation of property (1w) under perturbations, Acta. Sci. Math. (Szeged) 74 (2008), 769-781.
[4] M. Berkani, On the B-Fredholm Alternative , Mediterr. J. Math. , 10(3), 2013, 1487-1496.
[5] M. Berkani, N. Moalla, B-Fredholm properties of closed invertible operators, Mediterranean Journal of Mathematics, 2016, DO

10.1007/s00009-016-0738-0
[6] M. Berkani, M. Boudhief, N. Moalla Stability of essential B-spectra of unbounded linear operators and applications. Afrika Matematika

29 (7-8), 1189-1202, 2018.
[7] M. Berkani, M. Boudhief, N. Moalla, A characterization of unbounded generalized meromorphic operators. FILOMAT, 32 (15) 2018.
[8] B. Helffer, Spectral Theory and its Applications, Cambridge university Press, 2013.
[9] S.R. Caradus, Operators of Riesz type Pacific Journal of Mathematics, Vol.18, No.1, 1966.

[10] S. Clary, Equality of spectra of quasisimilar hyponormal operators, Proc. Amer. Math. Soc. 53 (1975), no. 1, 88-90.
[11] B.P. Duggal, S. V. Djordjevic, Generalized Weyl’s theorem for a class of operators satisfying a norm condition, Mathematical Proceedings

of the Royal Irish Academy, Vol. 104 A, No. 1 (2004), pp. 75-81
[12] T. Furuta On the Class of Paranormal Operators, Proc. Japan Acad., 43 (1967), pp. 594-598.
[13] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192, (1971), 17-32.
[14] M.A. Kaashoek, D.C. Lay, On Operators whose Fredholm set is the complex plane , Pacific Journal Of Mathematic, Vol. 21, No. 2,

1967, pp. 275-278.
[15] D.C. Lay, Spectral analysis using ascent, descent, nullity and defect, Math. Ann. 184, 197-214 (1970).
[16] J. T. Marti, Operational calculus for two commuting closed operators, Comment. Math. Helv 43, 1968,87-97.
[17] A.E. Taylor, D.C. Lay, Introduction to functional analysis Krieger publishing company, 1980.
[18] Q. Zeng, Q. Jiang, H. Zhong, Spectra originating from semi-B-Fredholm theory and commuting perturbations, Studia Mathematica,

Volume 219, 1,(2013), 1-18.
[19] J. Weidmann, Linear operators in Hilbert spaces, Springer Verlag, 1980


