Sharp Z-Eigenvalue Inclusion Set-Based Method for Testing the Positive Definiteness of Multivariate Homogeneous Forms

Gang Wang¹, Linxuan Sun¹, Yiju Wang¹

¹School of Management Science, Qufu Normal University, Rizhao Shandong, 276800, China

Abstract. In this paper, we establish a sharp Z-eigenvalue inclusion set for even-order real tensors by Z-identity tensor and prove that new Z-eigenvalue inclusion set is sharper than existing results. We propose some sufficient conditions for testing the positive definiteness of multivariate homogeneous forms via new Z-eigenvalue inclusion set. Further, we establish upper bounds on the Z-spectral radius of weakly symmetric nonnegative tensors and estimate the convergence rate of the greedy rank-one algorithms. The given numerical experiments show the validity of our results.

1. Introduction

Consider the following multivariate homogeneous forms with spherical constraint:

\[f_\mathcal{A}(x) = \mathcal{A}x^m = \sum_{i_1,i_2,...,i_n=1}^n a_{i_1i_2...i_n}x_{i_1}x_{i_2}...x_{i_n} \]

s.t. \[x^\top x = 1, \]

where \(x \in \mathbb{R}^n, m, n \geq 2, f_\mathcal{A}(x) \) is a multivariate homogeneous form of degree \(m \) with \(n \) variables, and \(\mathcal{A} \in \mathbb{R}^{[m,n]} \) is an \(m \)-order \(n \)-dimensional real tensor with entries \(a_{i_1...i_n} \in \mathbb{R}, i_j \in \mathbb{N} = \{1, ..., n\}, j = 1, ..., m. \)

Clearly, the critical points of (1) satisfy the following equations for some \(\lambda \in \mathbb{R} : \)

\[\mathcal{A}x^{m-1} = \lambda x \text{ and } x^\top x = 1, \]

where \((\mathcal{A}x^{m-1})_i = \sum_{i_2,...,i_n \in \mathbb{N}} a_{i_1i_2...i_n}x_{i_2}...x_{i_n}. \) The real number \(\lambda \) and the real vector \(x \) satisfying with (2) are called Z-eigenvalue and Z-eigenvector, respectively.

The multivariate homogeneous form \(f_\mathcal{A}(x) \) is positive definite, which plays important roles in signal processing [15] and the stability study of nonlinear autonomous systems via Lyapunov’s direct method in

2010 Mathematics Subject Classification. 15A18; 15A42; 15A69
Keywords. Z-eigenvalue inclusion set; positive definiteness; Z-identity tensor
Received: 09 October 2019; Accepted: 26 January 2020
Communicated by Yimin Wei
Research supported by the Natural Science Foundation of China (11671228) and the Natural Science Foundation of Shandong Province (ZR2020MA025).
Email addresses: wgg1j19770163.com (Gang Wang), slxsx20190163.com (Linxuan Sun), wyijumail0163.com (Yiju Wang)
automatic control [3, 4, 13]. Note that $f_A(x)$ is positive definite if and only if tensor A is positive definite, and that an even-order real symmetric tensor is positive definite if and only if all of its Z-eigenvalues are positive [14]. Some effective algorithms for finding Z-eigenvalue and the corresponding eigenvector have been implemented [5–9, 11, 16, 18, 21–26], but it is difficult to compute all the Z-eigenvalues and judge the positive definiteness of an even-order real symmetric tensor. Very recently, Li et al. [10] proposed Gershgorin-type Z-eigenvalue inclusion set with parameters by Z-identity tensor, which can identify the positive-definiteness of an even-order real symmetric tensor. It is remarkable that Brauer-type inclusion set is tighter than Gershgorin-type inclusion set [20]. As a continuation of the article [20], we shall establish the positive definiteness of an even-order real symmetric tensor.

To end this section, we introduce Z-identity tensor in [8, 10] and important results proposed in [10].

Definition 1.1. Assume that m is even. We call I_Z a Z-identity tensor if

$$I_Z x^{m-1} = x, \quad x^T x = 1, \quad \forall x \in \mathbb{R}^n.$$

It is worth noting that the even-order n dimension Z-identity tensor is not unique in general. For instance, each even tensor in the following is a Z-identity tensor:

Case I: $(I_Z)_{|i_1|\leq \ldots \leq |i_m|} = 1, \forall k \in \mathbb{N}$ and $m = 2k$;

Case II (Property 2.4 of [8]): $(I_Z)_{|i_1|\leq \ldots \leq |i_m|} = \frac{1}{m!} \sum_{p \in \mathbb{P}_m} \delta_{p(1)} \delta_{p(2)} \ldots \delta_{p(m-1)} \delta_{p(m)}$, where δ is the standard Kronecker, i.e.,

$$\delta_{ij} = \begin{cases}
1, & \text{if } i = j, \\
0, & \text{otherwise}.
\end{cases}$$

Lemma 1.2. (Theorem 2 of [10]) Let $A = (a_{i_1\ldots i_m}) \in \mathbb{R}^{[m,n]}$ and $I_Z \in \mathbb{R}^{[m,n]}$ be a Z-identity tensor with m being even. Let $\sigma_Z(A)$ be the set of all Z-eigenvalues of A. For any real vector $\alpha = (\alpha_1, \ldots, \alpha_n)^T \in \mathbb{R}^n$, then

$$\sigma_Z(A) \subseteq \mathcal{G}_1(A, \alpha) = \bigcup_{i \in \mathbb{N}} \mathcal{G}_i(A, \alpha) = \{ z \in \mathbb{R} : |z - \alpha_j| \leq R_i(A, \alpha_i) \},$$

where $R_i(A, \alpha_i) = \sum_{|i_1|\leq \ldots \leq |i_m|} |a_{i_1\ldots i_m} - \alpha_i(I_Z)_{i_1\ldots i_m}|$. Furthermore, $\sigma_Z(A) \subseteq \bigcap_{\alpha \in \mathbb{R}^n} \mathcal{G}(A, \alpha)$.

2. A sharp Z-eigenvalue inclusion set for even-order real tensors

In this section, we establish new Z-eigenvalue inclusion set for even-order tensors. To this end, we define

$$\Theta = \{ (i_2, i_3, \ldots, i_m) : i_k = j \text{ for some } k \in \{2, \ldots, m\}, \text{where } j, i_2, \ldots, i_m \in \mathbb{N} \},$$

$$\overline{\Theta} = \{ (i_2, i_3, \ldots, i_m) : i_k \neq j \text{ all any } k \in \{2, \ldots, m\}, \text{where } j, i_2, \ldots, i_m \in \mathbb{N} \},$$

$$r_j^\Theta(A, \alpha) = \sum_{(i_2, \ldots, i_m) \in \overline{\Theta}} |a_{i_1\ldots i_m} - \alpha_i(I_Z)_{i_1\ldots i_m}|, \quad r_j^\overline{\Theta}(A, \alpha) = \sum_{(i_2, \ldots, i_m) \in \overline{\Theta}} |a_{i_1\ldots i_m} - \alpha_i(I_Z)_{i_1\ldots i_m}|.$$

Obviously, $R_i(A, \alpha_i) = r_j^\Theta(A, \alpha_i) + r_j^\overline{\Theta}(A, \alpha_i)$.

Theorem 2.1. Let $A = (a_{i_1\ldots i_m}) \in \mathbb{R}^{[m,n]}$ and $I_Z \in \mathbb{R}^{[m,n]}$ be a Z-identity tensor with m being even. For any real vector $\alpha = (\alpha_1, \ldots, \alpha_n)^T \in \mathbb{R}^n$, then

$$\sigma_Z(A) \subseteq \mathcal{U}_j(A, \alpha) = \bigcup_{i \in \mathbb{N}} \bigcap_{j \in \mathbb{N}, j \neq i} \mathcal{U}_j(A, \alpha),$$

where $U_{ij}(A, \alpha) = \{ z \in \mathbb{R} : |z - \alpha_j| - r_j^\overline{\Theta}(A, \alpha_i)|z - \alpha_i| \leq r_j^\Theta(A, \alpha_i)R_i(A, \alpha_i) \}$. Furthermore, $\sigma_Z(A) \subseteq \bigcap_{\alpha \in \mathbb{R}^n} \mathcal{U}(A, \alpha)$.

G. Wang et al. / Filomat 34:9 (2020), 3131–3139
Proof. Let \((\lambda, x)\) be a \(Z\)-eigenpair of \(\mathcal{A}\) and \(I_Z \in \mathbb{R}^{[m,n]}\) be a \(Z\)-identity tensor, i.e.,
\[
\mathcal{A}x^{m-1} = \lambda x = \lambda I_Z x^{m-1}, \quad x^T x = 1.
\]
Assume \(|x_i| = \max_{i \in \mathbb{N}} |x_i|\), then \(0 < |x_i|^{m-1} \leq |x_i| \leq 1\).

On one hand, taking the \(t\)-th equation from (3), for any \(j \in \mathbb{N}, j \neq t\), we have
\[
\sum_{i_2, \ldots, i_m \in \mathbb{N}} \lambda(I_Z)_{i_2 \ldots i_m} x_{i_2} \cdots x_{i_m} = \sum_{i_2, \ldots, i_m \in \mathbb{N}} a_{i_2 \ldots i_m} x_{i_2} \cdots x_{i_m}.
\]
Hence, for any real number \(a_t\), it follows that
\[
(\lambda - a_t)x_t = \sum_{i_2, \ldots, i_m \in \mathbb{N}} (\lambda - a_t)(I_Z)_{i_2 \ldots i_m} x_{i_2} \cdots x_{i_m} = \sum_{i_2, \ldots, i_m \in \mathbb{N}} (a_{i_2 \ldots i_m} - a_t(I_Z)_{i_2 \ldots i_m}) x_{i_2} \cdots x_{i_m}
\]
\[
= \sum_{i_2, \ldots, i_m \in \mathbb{E}_j} (a_{i_2 \ldots i_m} - a_t(I_Z)_{i_2 \ldots i_m}) x_{i_2} \cdots x_{i_m} + \sum_{i_2, \ldots, i_m \in \mathbb{E}_j} (a_{i_2 \ldots i_m} - a_t(I_Z)_{i_2 \ldots i_m}) x_{i_2} \cdots x_{i_m}
\]
Taking modulus in (5) and using the triangle inequality give
\[
|\lambda - a_t||x_t| \leq \sum_{i_2, \ldots, i_m \in \mathbb{E}_j} |a_{i_2 \ldots i_m} - a_t(I_Z)_{i_2 \ldots i_m}||x_{i_2}| \cdots |x_{i_m}| + \sum_{i_2, \ldots, i_m \in \mathbb{E}_j} |a_{i_2 \ldots i_m} - a_t(I_Z)_{i_2 \ldots i_m}||x_{i_2}| \cdots |x_{i_m}|
\]
\[
\leq r_j^\Theta(\mathcal{A}, a_t)|x_t| + r_j^\Theta(\mathcal{A}, a_t)|x_t|
\]
i.e.,
\[
\left(|\lambda - a_t| - r_j^\Theta(\mathcal{A}, a_t)\right)|x_t| \leq r_j^\Theta(\mathcal{A}, a_t)|x_t|.
\]
On the other hand, for \(t \neq j \in \mathbb{N}\), taking the \(j\)-th equation from (3), we obtain
\[
(\lambda - a_t)x_j = \sum_{i_2, \ldots, i_m \in \mathbb{N}} (\lambda - a_t)(I_Z)_{i_2 \ldots i_m} x_{i_2} \cdots x_{i_m} = \sum_{i_2, \ldots, i_m \in \mathbb{N}} (a_{i_2 \ldots i_m} - a_t(I_Z)_{i_2 \ldots i_m}) x_{i_2} \cdots x_{i_m}.
\]
Taking modulus in (8) and using the triangle inequality, one has
\[
|\lambda - a_t||x_j| \leq R_j(\mathcal{A}, a_t)|x_j|.
\]
If \(|x_j| = 0\), by (7), we obtain
\[
|\lambda - a_t| \leq r_j^\Theta(\mathcal{A}, a_t).
\]
Thus, \(\lambda \in \mathcal{U}_{ij}(\mathcal{A}, a) \subseteq \mathcal{U}(\mathcal{A}, a)\).

Otherwise, \(|x_j| > 0\). Multiplying (9) yields
\[
\left(|\lambda - a_t| - r_j^\Theta(\mathcal{A}, a_t)\right)|x_j||x_j| \leq r_j^\Theta(\mathcal{A}, a_t)R_j(\mathcal{A}, a_t)||x||x||x|,
\]
equivalently,
\[
\left(|\lambda - a_t| - r_j^\Theta(\mathcal{A}, a_t)\right)|\lambda - a_t||x||x| \leq r_j^\Theta(\mathcal{A}, a_t)R_j(\mathcal{A}, a_t),
\]
which implies \(\lambda \in \mathcal{U}_{ij}(\mathcal{A}, a)\). From the arbitrariness of \(j\), we have \(\lambda \in \bigcup_{i \in \mathbb{N}} \cap_{j \in \mathbb{N}, j \neq i} \mathcal{U}_{ij}(\mathcal{A}, a)\). Further, \(\sigma_Z(\mathcal{A}) \subseteq \bigcap_{a \in \mathbb{R}^n} \mathcal{U}(\mathcal{A}, a)\) by the arbitrariness of \(a\). \(\square\)

Corollary 2.2. Let \(\mathcal{A} = (a_{i_2 \ldots i_m}) \in \mathbb{R}^{[m,n]}\) with \(m\) being even. For any real vector \(\alpha = (a_1, \ldots, a_n)^T \in \mathbb{R}^n\), then \(\mathcal{U}(\mathcal{A}, \alpha) \subseteq \mathcal{G}(\mathcal{A}, \alpha)\).
Proof. For any \(\lambda \in \mathcal{U}(\mathcal{A}, a) \), without loss of generality, there exists \(t \in \mathbb{N} \) such that \(\lambda \in \mathcal{U}_{t,s}(\mathcal{A}) \), that is,

\[
(\lambda - a_{t}) - r_{t}^{\Theta}(\mathcal{A}, a_{s}) \leq r_{t}^{\Theta}(\mathcal{A}, a_{s})R_{t}(\mathcal{A}, a_{s}), \; \forall s \neq t.
\]

(10)

Next, the following argument is divided into two cases.

Case I: \(r_{t}^{\Theta}(\mathcal{A}, a_{s})R_{t}(\mathcal{A}, a_{s}) = 0 \). Since \(|\lambda - a_{t}| \geq 0 \), from (10), we deduce \(|\lambda - a_{t}| - r_{t}^{\Theta}(\mathcal{A}, a_{s}) \leq 0 \). Further, it holds that

\[
|\lambda - a_{t}| \leq r_{t}^{\Theta}(\mathcal{A}, a_{s}) \leq R_{t}(\mathcal{A}, a_{s}),
\]

i.e., \(\lambda \in \mathcal{G}_{t}(\mathcal{A}, a) \). So, we have \(\mathcal{U}_{t,s}(\mathcal{A}, a) \subseteq \mathcal{G}_{t}(\mathcal{A}, a) \).

Case II: \(r_{t}^{\Theta}(\mathcal{A}, a_{s})R_{t}(\mathcal{A}, a_{s}) > 0 \). Then dividing both sides by \(r_{t}^{\Theta}(\mathcal{A}, a_{s})R_{t}(\mathcal{A}, a_{s}) \) in (10), we obtain

\[
\frac{|\lambda - a_{t}| - r_{t}^{\Theta}(\mathcal{A}, a_{s})}{r_{t}^{\Theta}(\mathcal{A}, a_{s})} \cdot \frac{|\lambda - a_{t}|}{R_{t}(\mathcal{A}, a_{s})} \leq 1,
\]

which implies

\[
\frac{|\lambda - a_{t}| - r_{t}^{\Theta}(\mathcal{A}, a_{s})}{r_{t}^{\Theta}(\mathcal{A}, a_{s})} \leq 1
\]

(12)

or

\[
\frac{|\lambda - a_{t}|}{R_{t}(\mathcal{A}, a_{s})} \leq 1.
\]

(13)

If (12) holds, then we have \(|\lambda - a_{t}| - r_{t}^{\Theta}(\mathcal{A}, a_{s}) \leq r_{t}^{\Theta}(\mathcal{A}, a_{s}) \), i.e,

\[
|\lambda - a_{t}| \leq r_{t}^{\Theta}(\mathcal{A}, a_{s}) + r_{t}^{\Theta}(\mathcal{A}, a_{s}) = R_{t}(\mathcal{A}, a_{s}).
\]

So, \(\lambda \in \mathcal{G}_{t}(\mathcal{A}, a) \). Otherwise, (13) holds, we can verify \(\lambda \in \mathcal{G}_{t}(\mathcal{A}, a) \).

From the above two cases, we can get \(\mathcal{U}_{t,s}(\mathcal{A}, a) \subseteq \mathcal{G}_{t}(\mathcal{A}, a) \cup \mathcal{G}_{s}(\mathcal{A}, a) \). Thus, \(\mathcal{U}(\mathcal{A}, a) \subseteq \mathcal{G}(\mathcal{A}, a) \) for a given parameter \(a \).

Next, we give a numerical comparison between Theorem 2.1 and Theorem 2 of [10].

Example 2.3. Consider \(\mathcal{A} = (a_{ijkl}) \in \mathbb{R}^{4 \times 2} \) defined by

\[
a_{ijkl} = \begin{cases}
10; & a_{1111} = 10; a_{1122} = 9; a_{1211} = a_{2121} = -1; \\
5; & a_{2222} = 5; a_{2211} = 6; a_{2122} = a_{2221} = -1; \\
0, & a_{ijkl} = 0, \; \text{otherwise}.
\end{cases}
\]

All Z-eigenvalues of \(\mathcal{A} \) are 5.0000 and 10.0000. We choose different parameters \(a_{1} = [3, 8]^T, a_{2} = [10, 7]^T, a_{3} = [9, 5]^T \) and \(a_{4} = [9, 5, 5]^T \) respectively. Set \(a_{1} = [3, 8]^T \) and \(I_{Z} = (i_{ijkl}) \) as Case I of Definition 1.1

\[
i_{ijkl} = \begin{cases}
1; & i_{1111} = i_{1122} = i_{2211} = i_{2222} = 1; \\
0, & \text{otherwise}.
\end{cases}
\]

Accordingly to Theorem 2.1, we obtain

\[
\mathcal{U}(\mathcal{A}, a_{1} = (3, 8)) = [-7.5917, 16.5498] \cup [-3.8102, 15.7178] = [-7.5917, 16.5498];
\]

Similarly, we can obtain the following table:

<table>
<thead>
<tr>
<th>(a)</th>
<th>(a = [3, 8]^T)</th>
<th>(a = [10, 7]^T)</th>
<th>(a = [9, 5]^T)</th>
<th>(a = [9, 5, 5]^T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{U}(\mathcal{A}, a))</td>
<td>([-7.5917, 16.5498])</td>
<td>([-3.5949, 12.6533])</td>
<td>([-3.6277, 11])</td>
<td>([-3.6088, 10.6225])</td>
</tr>
<tr>
<td>(\mathcal{G}(\mathcal{A}, a))</td>
<td>([-12, 18])</td>
<td>([2, 13])</td>
<td>([2, 12])</td>
<td>([2.5, 12])</td>
</tr>
</tbody>
</table>

Numerical results show that the bound of Theorem 2.1 is tighter than that of Theorem 2 of [10] and the suitable parameter \(a \) has a great influence on the numerical effect.
3. Positive definiteness of multivariate homogeneous forms

In this section, based on the inclusion set $\Omega(\mathcal{A}, \alpha)$ in Theorem 2.1, we propose a sufficient condition for the positive definiteness of even-order tensors. Before proceeding further, we introduce the results of [1, 10].

Definition 3.1. (i) We say that \mathcal{A} is symmetric if

$$a_{i_1 \ldots i_m} = a_{i_{\pi(i_1) \ldots i_{\pi(m)}}}, \forall \pi \in \Gamma_m,$$

where Γ_m is the permutation group of m indices.

(ii) We say that \mathcal{A} is weakly symmetric if the associated homogeneous polynomial $f_\mathcal{A}(x)$ satisfies

$$\nabla f_\mathcal{A}(x) = m\mathcal{A}x^{m-1}.$$

Obviously, if tensor \mathcal{A} is symmetric, then \mathcal{A} weakly symmetric. However, the converse result may not hold.

Lemma 3.2. (Theorem 3 of [10]) Let λ be a Z-eigenvalue of $\mathcal{A} = (a_{i_1 \ldots i_m}) \in \mathbb{R}^{[m,n]}$ and $I_2 \in \mathbb{R}^{[m,n]}$ be a Z-identity tensor with m being even. If there exists a positive real vector $\alpha = (\alpha_1, \ldots, \alpha_n)^T$ such that

$$\alpha_j > R_j(\mathcal{A}, \alpha_i), \forall j \in N,$$

then $\lambda > 0$. Further, if \mathcal{A} is symmetric, then \mathcal{A} is positive definite and $f_\mathcal{A}(x)$ defined in (1) is positive definite.

Theorem 3.3. Let λ be a Z-eigenvalue of $\mathcal{A} = (a_{i_1 \ldots i_m}) \in \mathbb{R}^{[m,n]}$ and $I_2 \in \mathbb{R}^{[m,n]}$ be a Z-identity tensor with m being even. For $i \in N$, if there exist a positive real vector $\alpha = (\alpha_1, \ldots, \alpha_n)^T$ and $j \neq i$ such that

$$(\alpha_i - r_i^\Theta(\mathcal{A}, \alpha_i))\alpha_j > r_i^\Theta(\mathcal{A}, \alpha_i)R_j(\mathcal{A}, \alpha_j),$$

(14)

then $\lambda > 0$. Further, if \mathcal{A} is symmetric, then \mathcal{A} is positive definite and $f_\mathcal{A}(x)$ defined in (1) is positive definite.

Proof. Suppose on the contrary that $\lambda \leq 0$. From Theorem 2.1, there exists $t \in N$ with $\lambda \in U_{t_i}(\mathcal{A}, \alpha_i)$, i.e.,

$$|\lambda - \alpha_i| - r_i^\Theta(\mathcal{A}, \alpha_i)|\lambda - \alpha_j| \leq r_i^\Theta(\mathcal{A}, \alpha_i)R_j(\mathcal{A}, \alpha_j), \forall j \neq t.$$

Further, it follows from $\alpha_i > 0$ and $\lambda \leq 0$ that

$$(\alpha_i - r_i^\Theta(\mathcal{A}, \alpha_i))\alpha_j \leq r_i^\Theta(\mathcal{A}, \alpha_i)R_j(\mathcal{A}, \alpha_j), \forall j \neq t,$$

which contradicts (14). Thus, $\lambda > 0$. When \mathcal{A} is a symmetric tensor and all Z-eigenvalues are positive, \mathcal{A} is positive definite and $f_\mathcal{A}(x)$ defined in (1) is positive definite. \(\square\)

The following example shows the validity of Theorem 3.3.

Example 3.4. Consider $f_\mathcal{A}(x) = \mathcal{A}x^m$ deduced by symmetric tensor $\mathcal{A} = (a_{ijkl}) \in \mathbb{R}^{[4,3]}$ as follows

$$a_{1111} = 1.4; a_{2222} = 3.2; a_{3333} = 2.6; a_{1112} = a_{1211} = a_{2112} = a_{2121} = a_{2211} = -0.1;$$
$$a_{1122} = a_{1212} = a_{1221} = a_{2112} = a_{2121} = a_{2212} = a_{2221} = 0.8;$$
$$a_{1133} = a_{1313} = a_{1331} = a_{3113} = a_{3131} = a_{3311} = 1.1;$$
$$a_{1233} = a_{1323} = a_{2133} = a_{2313} = a_{2331} = a_{3213} = a_{3231} = a_{3321} = -0.1;$$
$$a_{1312} = a_{1322} = a_{1332} = a_{1213} = a_{1231} = a_{1312} = a_{1321} = a_{1332} = 0.1;$$
$$a_{2233} = a_{2323} = a_{2332} = a_{3223} = a_{3232} = a_{3322} = 0.1;$$
$$a_{2333} = a_{2332} = a_{3233} = a_{3332} = a_{3322} = 1.0; a_{ijkl} = 0, otherwise.$$
Taking I_Z as Case II (Case I) of Definition 1.1, by simple computations, we cannot find positive real number α_1 such that

$$\alpha_1 > R_3(\mathcal{A}, \alpha_1),$$

which shows that Theorem 3 of [10] cannot check the positive definiteness of \mathcal{A} and $f_\mathcal{A}(x)$.

Set $\alpha = (2.85, 3.0, 2.7)$ and let $I_Z = (i_{ij})$ be Case II of Definition 1.1

$$I_{ij} = \begin{cases}
I_{1111} = I_{2222} = I_{3333} = 1; \\
I_{1122} = I_{1212} = I_{1133} = I_{1313} = I_{3113} = I_{3333} = \frac{1}{3}; \\
I_{2132} = I_{2221} = I_{3223} = I_{2323} = I_{3323} = \frac{1}{3}; \\
0, \text{ otherwise.}
\end{cases}$$

From Theorem 3.3, we can calculate the following corresponding values

<table>
<thead>
<tr>
<th>$i = 1, j = 2$</th>
<th>$\frac{\alpha_i - r_f^\Theta(\mathcal{A}, \alpha_i))}{\alpha_j}$</th>
<th>$r_f^\Theta(\mathcal{A}, \alpha_i)R_f(\mathcal{A}, \alpha_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = 1, j = 3$</td>
<td>2.85</td>
<td>1.575</td>
</tr>
<tr>
<td>$i = 2, j = 1$</td>
<td>1.755</td>
<td>1.275</td>
</tr>
<tr>
<td>$i = 2, j = 3$</td>
<td>4.56</td>
<td>2.065</td>
</tr>
<tr>
<td>$i = 3, j = 1$</td>
<td>6.21</td>
<td>2.55</td>
</tr>
<tr>
<td>$i = 3, j = 2$</td>
<td>6.27</td>
<td>3.54</td>
</tr>
</tbody>
</table>

From the above table, we verify

$$(\alpha_i - r_f^\Theta(\mathcal{A}, \alpha_i))\alpha_j > r_f^\Theta(\mathcal{A}, \alpha_i)R_f(\mathcal{A}, \alpha_i), \forall i \neq j \in N,$$

which implies that \mathcal{A} is positive definite and $f_\mathcal{A}(x)$ is positive definite.

4. Estimations of Z-spectral radius and convergence rate on the greedy rank-one algorithms

As we know, the best rank-one approximation which has numerous applications in wireless communication systems, image processing, data analysis [7, 15–17, 21]. The best rank-one approximation of $\mathcal{A} = (d_{i_1 i_2 ... i_n})$ is to find a rank-one tensor $kx^m = (x_{i_1} x_{i_2} ... x_{i_n})$ such that

$$\min_{x \in \mathbb{R}^n} \|\mathcal{A} - kx^m\|_f : x^T x = 1,$$

where $\|\mathcal{A}\|_f := \sqrt{\sum_{i_1, i_2, ..., i_n \in N} a_{i_1 i_2 ... i_n}^2}$. When \mathcal{A} is nonnegative and weakly symmetric, $\rho(\mathcal{A})x_0^m$ is a best rank-one approximation of \mathcal{A}, i.e.,

$$\min_{x \in \mathbb{R}^n, x^T x = 1} \|\mathcal{A} - kx^m\|_f = \|\mathcal{A} - \rho(\mathcal{A})x_0^m\|_f = \sqrt{\|\mathcal{A}\|_f^2 - \rho(\mathcal{A})^2}.$$

Further, Qi [17] defined the quotient on the residual of the best rank-one approximation of tensor \mathcal{A} as follows:

$$\omega = \frac{\|\mathcal{A} - \rho(\mathcal{A})x_0^m\|_f}{\|\mathcal{A}\|_f} = \sqrt{1 - \frac{\rho(\mathcal{A})^2}{\|\mathcal{A}\|_f^2}},$$

which can estimate the convergence rate of the greedy rank-one algorithm [2, 17, 18, 25]. Hence, we shall devote to finding sharp upper bounds of the Z-spectral radius of weakly symmetric nonnegative tensors to estimate the convergence rate of the greedy rank-one algorithms. We recall some fundamental results of nonnegative tensors [1].
Thus, the conclusion holds.

\[\Lambda \]

where

Solving for (16), we obtain

Since

Lemma 4.2. (Corollary 4.10 of [1]) Assume \(\mathcal{A} \) is a weakly symmetric nonnegative tensor. Then,

\[\rho(\mathcal{A}) \geq \max_{i \in \mathbb{N}} a_{i,i} \]

Theorem 4.3. Let \(\mathcal{A} = (a_{i_1, i_2, \ldots, i_n}) \in \mathbb{R}^{[m,n]} \) be a weakly symmetric nonnegative tensor and \(I_{\mathbb{Z}} \in \mathbb{R}^{[m,n]} \) be a Z-identity tensor (Case I or Case II) with \(m \) being even. For real vector \(\alpha = (\alpha_1, \ldots, \alpha_n)^T \in \mathbb{R}^n \) with \(\alpha_i \leq \max_{i \in \mathbb{N}} a_{i,i} \), then

\[\rho(\mathcal{A}) \leq \max_{i \in \mathbb{N}} \left\{ \min_{p \in \mathbb{N}, t \in \mathbb{R}^n} \frac{1}{2} (\alpha_j + \alpha_i + r_i^\Theta (\mathcal{A}, a_i)) + \Lambda_{i,j}(\mathcal{A}, a_i) \right\} \]

where \(\Lambda_{i,j}(\mathcal{A}) = (\alpha_i - \alpha_j + r_i^\Theta (\mathcal{A}, a_i))^2 + 4r_i^\Theta (\mathcal{A}, a_i)R_i(\mathcal{A}, a_j) \).

Proof. From Lemma 4.1, we assume that \(\rho(\mathcal{A}) = \lambda^* \) is the largest Z-eigenvalue. It follows from Theorem 2.1 that there exists \(t \in \mathbb{N} \) such that

\[(|\rho(\mathcal{A}) - \alpha_i| - r_i^\Theta (\mathcal{A}, a_i))|\rho(\mathcal{A}) - \alpha_i| \leq r_i^\Theta (\mathcal{A}, a_i)R_i(\mathcal{A}, a_j), \forall j \neq t. \] \tag{15}

Since \(\mathcal{A} \) is nonnegative and Lemma 4.2 holds, for \(\alpha_i \leq \max_{i \in \mathbb{N}} a_{i,i} \), we have

\[\rho(\mathcal{A}) \geq \alpha_i \text{ and } \rho(\mathcal{A}) \geq \alpha_j. \]

Thus, (15) is equivalent to

\[(\rho(\mathcal{A}) - \alpha_i - r_i^\Theta (\mathcal{A}, a_i))(\rho(\mathcal{A}) - \alpha_j) \leq r_i^\Theta (\mathcal{A}, a_i)R_i(\mathcal{A}, a_j), \forall j \neq t. \] \tag{16}

Solving for (16), we obtain

\[\rho(\mathcal{A}) \leq \rho(\mathcal{A}) \leq \max_{i \in \mathbb{N}} \left\{ \min_{p \in \mathbb{N}, t \in \mathbb{R}^n} \frac{1}{2} (\alpha_j + \alpha_i + r_i^\Theta (\mathcal{A}, a_i)) + \Lambda_{i,j}(\mathcal{A}, a_i) \right\} \]

\[\text{and} \]

Consequently,

\[\rho(\mathcal{A}) \leq \max_{i \in \mathbb{N}} \left\{ \min_{p \in \mathbb{N}, t \in \mathbb{R}^n} \frac{1}{2} (\alpha_j + \alpha_i + r_i^\Theta (\mathcal{A}, a_i)) + \Lambda_{i,j}(\mathcal{A}, a_i) \right\} \]

Thus, the conclusion holds. \(\Box \)

The following numerical experiment shows validity of Theorem 4.3 and gives an estimation for the convergence rate of the greedy rank-one algorithms.

Example 4.4. Consider tensor \(\mathcal{A} = (a_{i,j,k}) \in \mathbb{R}^{[1,2]} \) defined by

\[
\begin{align*}
a_{i,j,k} = \begin{cases}
 a_{111} = 1; a_{222} = 3; a_{112} = a_{121} = a_{212} = a_{212} = a_{121} = a_{221} = 1; \\
a_{112} = a_{121} = a_{212} = a_{211} = 1; a_{j,k} = 0, \text{ otherwise.}
\end{cases}
\end{align*}
\]

By simple computation, we obtain \((\rho(\mathcal{A}), \lambda) = (3, (0, 1)) \) and \(\|\mathcal{A}\|_F = 3.3166 \). For this tensor, set \(\alpha = (1, 1) \) and let \(I_{\mathbb{Z}} = (I_{\mathbb{Z}}) \) be Case II of Definition 1.1. The bounds via different estimations given in the literature are shown in the following table:
From the table above, it is easy to see that only the upper bound obtained by Theorem 4.1 is smaller than \|A\|_F. Consequently, we have

$$\min_{\kappa \in \mathbb{R}^n, \kappa \neq 0} \|A - \kappa x_m\|_F = \sqrt{\|A\|^2_F - \rho(A)^2} \geq 1.3559.$$

Further, we obtain that the quotient on the residual of the best rank-one approximation of \(A\) is

$$\omega = \frac{\|A - \rho(A) x_m\|_F}{\|A\|_F} = \sqrt{1 - \frac{\rho(A)^2}{\|A\|^2_F}} \geq 0.3511,$$

which implies the convergence rate of the greedy rank-one algorithm [2, 17, 18, 24, 25].

5. Conclusions

In this paper, we established a Brauer-type \(Z\)-eigenvalue inclusion set for even-order real tensors by \(Z\)-identity tensor and proposed some sufficient conditions for the positive definiteness of multivariate homogeneous forms. Note that the suitable parameter \(\alpha\) has a great influence on the numerical effects and positive definiteness of \(f_A(\alpha)\). Therefore, how to select the suitable parameter \(\alpha\) is our further research.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

We would like to express our sincere thanks to the anonymous reviewers for their valuable suggestions and constructive comments which greatly improved the presentation of this paper.

References

