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aDivision of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, Vietnam
bDepartment of Medical Research, China Medical University Hospital, China Medical University, Taichung∼40402, Taiwan.
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Abstract. In this paper, we introduce the notions of ZΓ−contractions and Suzuki ZΓ-contractions via
Γ−simulation functions. By using these new contractions, we extend and unify several existing fixed point
results in the corresponding literature. We also show that the recently defined notion of L−simulation
function is an special case of ZΓ−contraction. In addition, some notable examples are given to illustrate
and support the obtained results.

1. Introduction and Preliminaries

In 2000, Branciari [1] proposed to use the quadrilateral inequality instead of triangle inequality in the
axioms standard metric. In this way, Branciari [1] supposed that this new distance brought a generalization
of the standard metric that was why he called this new function as a ”generalized metric”. On the other
hand, this chance brings a new topological structure that is not compatible with the topology of standard
metric space [2]. In particular, it was noted that the observed distance is not necessarily continuous and
open ball is not need to be open set see e.g. [3–8]. Throughout the manuscript, this new notion will be
called Branciari distance space.

In [1], after defining this new structure, Branciari was able to get the analog of renowned fixed point
theorem of Banach [9] with some gaps that was noted and easily removed in [4]. Since then a significant
number of the authors have worked on this new abstract space and they have reported several interesting
results dealing with the topology of Branciari distance space and concerning new fixed point results by
using various contractions see e.g. [5–8, 16–18, 21, 24, 25, 27–29, 36, 38] and the related references therein.

For the sake of completeness, we recall necessary and fundamental definitions, notations as well as the
basic results that are effectively employed in the sequel. Henceforward, the symbols R,R+,N, R+

0 and N0
are reserved to indicate the real numbers, positive real numbers, natural numbers, non-negative reals, and
non-negative integers, respectively.

The following definition belongs to Branciari [1].
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Definition 1.1. [1] For a non-empty set X, if a distance function d : X × X→ [0,∞) satisfies

(R1) d(x, y) = 0 if and only if x = y;

(R2) d(x, y) = d(y, x) for each x, y ∈ X;

(R3) d(x, z) ≤ d(x,u) + d(u, v) + d(v, z) for all x, z ∈ X and all distinct points u, v ∈ X\{x, z},

then d is called a Branciari distance or a rectangular/generalized metric on X and (X, d) is called a Branciari distance
space or a rectangular/generalized metric space.

Khojasteh et al. [26] introduced an interesting notion, simulation function, in order to combine and unify
several existing results in the literature of fixed point theory.

Definition 1.2. A simulation function is a mapping ζ : [0,∞) × [0,∞) → R which satisfies in the following
conditions:

(ζ1) ζ(0, 0) = 0,

(ζ2) ζ(t, s) < s − t for all t, s > 0,

(ζ3) if {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0. (1)

From now onward, the letterZ denotes the family of simulation functions.

Definition 1.3. [26] A self-mapping T on a complete metric space (X, d) is called a Z−contraction with respect to
ζ ∈ Z if there exists a simulation function ζ : [0,∞) × [0,∞)→ R such that

ζ(d(Tx,Ty), d(x, y) ≥ 0 ∀x, y ∈ X.

Theorem 1.4. [26] If a self-mapping T on a complete metric space (X, d) forms a Z−contraction with respect to
ζ ∈ Z, then T has a unique fixed point.

Recently, the notion of the simulation function andZ−contractions have been extended and generalized in
various way, see e.g. [11–15, 19, 22, 30–34, 37]. Among them we consider the notion of Ψ-simulation function
[22] and we compare it with L−simulation function [37]. We investigate the relationship between these
concepts.

On the other hand, Jleli and Samet [23, 2014] introduced a notion of θ-contractions to generalize
certain fixed point results in the framework of Branciari distance spaces by using the auxiliary function
θ : (0,+∞)→ (1,+∞) with the following conditions:

(θ1) θ is nondecreasing,

(θ2) for all sequence {tn} ⊂ (0,+∞),

lim
n→∞

θ(tn) = 1 if and only if lim
n→∞

tn = 0+,

(θ3) there exists r ∈ (0, 1) and l ∈ (0,+∞) such that

lim
t→0+

θ(t) − 1
tr = l.

Herein after Θ represent the collection of all functions θ, and Θ0 be the collection of all functions θ :
(0,+∞) → (1,+∞) such that (θ1) and (θ2) are held. Furthermore, we shall use the letter Ω to denote the
collection of all continuous functions θ : (0,+∞) → (1,+∞) such that (θ1) and (θ2) are satisfied. We note
that Ahmad et al. [10] observed the analog of Jleli and Samet in the context of standard metric spaces by
considering the continuity of Θ instead of (θ3).
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Definition 1.5. Let (X, d) be a metric space, and let T : X → X be a mapping. T is called Θ−contraction, if there
exists θ ∈ Ω and a constant k ∈ (0, 1) such that

θ(d(Tx,Ty)) ≤ [θ(d(x, y))]k,

for all x, y ∈ X with Tx , Ty.

Theorem 1.6. Every Θ−contraction on a complete metric space has a unique fixed point.

Theorem 1.7. Let (X, d) be a metric space, and let T : X → X be a mapping. If there exists θ ∈ Ω and a constant
k ∈ (0, 1) such that for all x, y ∈ X,

1
2

d(x,Tx) ≤ d(x, y) implies θ(d(Tx,Ty)) ≤ [θ(d(x, y))]k,

then T has a unique fixed point.

Very recently, Cho [37] introduced the following class of functions as a new innovation and established a
new fixed point theorem for such contraction mappings in Branciari distance spaces.

Definition 1.8. [37] A mapping ϑ : [1,∞)× [1,∞)→ R is called L−simulation function if it satisfies the following
conditions:

(ϑ1) ϑ(1, 1) = 1;

(ϑ2) ϑ(t, s) < s
t for all t, s > 1;

(ϑ3) if {tn}, {sn} are sequences in (1,∞) such that lim
n→∞

tn = lim
n→∞

sn > 1, and tn < sn for all n ∈N, then

lim sup
n→∞

ϑ(tn, sn) < 1. (2)

Denote L as the collection of L−simulation functions ϑ : [1,∞) × [1,∞)→ R.

Definition 1.9. Let (X, d) be a Branciari distance space, and let T : X→ X be a mapping. T is called L−contraction
with respect to ϑ if there exists θ ∈ Θ and ϑ ∈ L such that,

ϑ(θ(d(Tx,Ty)), θ(d(x, y)) ≥ 0,

for all x, y ∈ X.

Theorem 1.10. [37, Theorem 4] Every L−contraction on a complete Branciari distance spaces has a unique fixed
point.

In this paper, we show that the proof of [37, Theorem 4] is wrong and the continuity condition of θ is
essential. In other words, we have to consider θ ∈ Ω.

Very recently, Heidary Joonaghany et al. [22] established a new generalization of simulation functions
called Ψ-simulation function. The following notations and definitions have been taken from [22].
Denote Ψ([0,+∞)), the set of all non-decreasing and continuous functions ψ : [0,+∞) → [0,+∞) such that
ψ(t) = 0 if and only if t = 0.

Definition 1.11. [22] A function η : [0,∞) × [0,∞) → R is called Ψ-simulation if there exists ψ ∈ Ψ([0,+∞))
such that

(η1) η(t, s) < ψ(s) − ψ(t) for all s, t > 0,
(η2) if {tn}, {sn} are sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
sn > 0, then

lim sup
n→∞

η(tn, sn) < 0.
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Example 1.12. [22] Let ψ ∈ Ψ([0,+∞)). The following models are some examples of Ψ − simulation functions:

(e1) For each s, t ≥ 0, let η(t, s) = αψ(s) − ψ(t), in which α ∈ [0, 1).

(e2) For each s, t ≥ 0, let η(t, s) = ϕ(ψ(s)) − ψ(t), in which ϕ : [0,+∞)→ [0,+∞) is a function such that ϕ(0) = 0
and 0 < ϕ(s) < s for each s > 0, and lim sup

t→s
ϕ(t) < s. (For example, ϕ(s) = αs in which 0 ≤ α < 1).

Denote ZΨ, the set of all Ψ-simulation functions. Note that every simulation function is obviously Ψ-
simulation because ψ can be considered as identity function on [0,∞). However, a Ψ-simulation function
is not necessary a simulation function (see [22, Example 2.4] for more detail).

The following results are acquired of [22]:

Theorem 1.13. [22, Theorem 2.6] Let (X, d) be a complete metric space and let T,S : X→ X be two mappings such
that for all x, y ∈ X,
1
2 min{d(x,Tx), d(y,Sy)} ≤ d(x, y) implies that

η(d(Tx,Sy),m(x, y)) ≥ 0, (3)

where η ∈ ZΨ and

m(x, y) = max
{

d(x, y), d(x,Tx), d(y,Sy),
d(x,Sy) + d(y,Tx)

2

}
.

Then T and S have a unique common fixed point.

Since the following lemma shorten the proofs of our result, we recollect it to here.

Lemma 1.14. [20] Let (X, d) be a metric space and let {xn} be a sequence in X such that limn→∞ d(xn, xn+1) = 0. If
{x2n} is not a Cauchy sequence then there exists ε > 0 and two sequences of positive integers {nk} and {mk} such that,
nk is the smallest index for which nk > mk > k and d(x2mk , x2nk ) > ε and

(1) limk→∞ d(x2mk , x2nk ) = ε,

(2) limk→∞ d(x2mk−1, x2nk ) = ε,

(3) limk→∞ d(x2mk , x2nk+1) = ε,

(4) limk→∞ d(x2mk−1, x2nk+1) = ε.

In this manuscript, we introduce new contractions that are based on the generalized simulation function,
Γ−simulation function. We investigate the corresponding fixed results for these contractions in the context
of complete metric spaces. We also bote that the L -contraction is a special case of the the contractions
generated by Ψ-simulation functions. The given results are supported with concrete examples.

2. Main Result

We, first, present a generalization of Ψ-simulation function that will be called Γ-simulation. Let
Γ([0,+∞)) denote the set of all non-decreasing functions γ : [0,+∞) → [0,+∞) such that γ(t) = 0 if
and only if t = 0.

Definition 2.1. A function ζ : [0,∞) × [0,∞)→ R is called Γ-simulation, if there exists γ ∈ Γ([0,+∞)) such that:

(ζ1) ζ(t, s) < γ(s) − γ(t) for all s, t > 0,
(ζ2) if {tn}, {sn} are sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0.
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A function ζ : [0,∞) × [0,∞) → R is called Γ0-simulation, if there exists γ ∈ Γ([0,+∞)) such that (ζ1) and the
following condition are satisfied:

(ζ
′

2) if {tn}, {sn} are sequences in (0,∞) such that for all n ∈N, tn ≤ sn and lim
n→∞

tn = lim
n→∞

sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0.

Let ZΓ and ZΓ0 denote the set of all Γ-simulation functions and Γ0-simulation functions respectively.
Every Γ-simulation function is a Γ0-simulation function. Also, every Ψ-simulation function is obviously
Γ-simulation function. But a Γ0-simulation function is neither necessary a Ψ-simulation function nor a
Γ-simulation function.

Example 2.2. Define γ : [0,+∞)→ [0,+∞) by

γ(t) =

{
2t if 0 ≤ t < 1
3t if 1 ≤ t.

Also, define ζ : [0,∞) × [0,∞)→ R as follows:

ζ(t, s) =
1
2
γ(s) − γ(t).

One can easily verify that γ ∈ Γ and ζ ∈ ZΓ with respect to γ. However, γ < Ψ and ζ < ZΨ with respect to γ.

Definition 2.3. Let (X, d) be a metric space. We say that the mapping T : X→ X is aZΓ-contraction, if there exists
ζ ∈ ZΓ such that for all x, y ∈ X,

ζ(d(Tx,Ty), d(x, y)) ≥ 0. (4)

Definition 2.4. Let (X, d) be a metric space. A mapping T : X→ X is said be a SuzukiZΓ-contraction if there exists
ζ ∈ ZΓ such that for all x, y ∈ X,

1
2

d(x,Tx) ≤ d(x, y) implies that ζ(d(Tx,Ty), d(x, y)) ≥ 0.

Definition 2.5. Let (X, d) be a metric space. A mapping T : X → X is said be aZΓ-weak contraction if there exists
ζ ∈ ZΓ such that for all x, y ∈ X,

ζ(d(Tx,Ty),mT(x, y)) ≥ 0, (5)

where

mT(x, y) = max
{

d(x, y), d(x,Tx), d(y,Ty),
d(x,Ty) + d(y,Tx)

2

}
.

Definition 2.6. Let (X, d) be a metric space. A mapping T : X→ X is said be a SuzukiZΓ-weak contraction if there
exists ζ ∈ ZΓ such that for all x, y ∈ X,

1
2

d(x,Tx) ≤ d(x, y) implies that ζ(d(Tx,Ty),mT(x, y)) ≥ 0.

in which

mT(x, y) = max
{

d(x, y), d(x,Tx), d(y,Ty),
d(x,Ty) + d(y,Tx)

2

}
.

Remark 2.7. It is clear that
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(1) Ψ([0,+∞)) ⊆ Γ([0,+∞)), and soZΨ ⊆ ZΓ,

(2) everyZΓ-contraction is a SuzukiZΓ-contraction,

(3) everyZΓ-weak contraction is a SuzukiZΓ-weak contraction.

The Example 2.2 shows that the converse of statement (1) is not true. Also, the following example shows that the
converse of statement (2) is not true.

Example 2.8. Let X = {0, 1, 3, 5} be endowed with the metric d defined by

d(x, y) = |x − y|.

Clearly (X, d) is a complete metric space. Let T : X→ X be defined as follows:

T(0) = 3 and T(1) = T(3) = T(5) = 5.

One can verify that T is not aZΓ-contraction. In fact, for any ζ ∈ ZΓ, the map T dose not satisfy the condition (4) of
Definition 2.3 at u = 0 and v = 1. Because, if ζ ∈ ZΓ be a Γ-simulation function with respect to the function γ ∈ Γ
then

ζ(d(Tu,Tv), d(u, v)) = ζ(2, 1)
< γ(1) − γ(2)
≤ 0.

On the other hand for u = 0 and v = 1 we have

1
2

d(u,Tu) =
1
2

d(0, 3) =
3
2
.

But d(u, v) = d(0, 1) = 1. So, we obtain that

1
2

d(u,Tu) � d(u, v).

Also

1
2

d(v,Tv) =
1
2

d(1, 5) = 2.

But d(u, v) = 1. So, we obtain that

1
2

d(v,Tv) � d(u, v).

By choosing ζ(t, s) = s
2 − t, it can be easily seen that, , for any u, v ∈ X,

1
2

d(u,Tu) ≤ d(u, v)⇒ ζ(d(Tu,Tv), d(u, v)) ≥ 0.

This means that T is a SuzukiZΓ-contraction.

The next example indicates that the converse of statement (3) is not true.

Example 2.9. Let X = {(1, 1), (1, 5), (1, 6), (5, 1), (6, 1), (5, 6), (6, 5)} be endowed with the metric d defined by

d((x1, x2), (y1, y2)) = |x1 − y1| + |x2 − y2| .

It is easy to see that (X, d) is a complete metric space.
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Suppose that T : X→ X is defined as follows:

T(x, y) =

{
(min{x, y} , 1) if x = 1 or y = 1 or x < y
(1 , min{x, y}) otherwise.

Now, we show that for any ζ ∈ ZΓ the map T dose not satisfy the condition (5) of Definition 2.5 at u = (5, 6) and
v = (6, 5).

For this purpose, let ζ ∈ ZΓ be a Γ-simulation function with respect to the function γ ∈ Γ. Note that,

d(Tu,Tv) = d((6, 1), (1, 5)) = 9.

Also

mT(u, v) = max{d(u, v), d(u,Tu), d(v,Tv), d(u,Tv)+d(v,Tu)
2 }

= max{d((5, 6), (6, 5)), d((5, 6), (5, 1)), d((6, 5), (1, 5)),

d((5,6),(1,5))+d((6,5),(6,1))
2 }

= max{2, 5, 5, 5+4
2 }

= 5.

So,

ζ(d(Tu,Tv),mT(u, v)) = ζ(9, 5)
< γ(5) − γ(9)
≤ 0.

Thus T does not satisfy the condition (5). However, choosing ζ(t, s) = 8
9 s− t, one can easily see that, for any u, v ∈ X,

1
2

d(u,Tu) ≤ d(u, v)⇒ ζ(d(Tu,Tv), d(u, v)) ≥ 0.

In fact, for u = (5, 6) and v = (6, 5) we have

1
2

d(u,Tu) =
1
2

d((5, 6), (6, 1)) = 3.

But d(u, v) = d((5, 6), (6, 5)) = 2, and

1
2

d(u,Tu) � d(u, v).

Also,

1
2

d(v,Tv) =
1
2

d((6, 5), (1, 5)) =
5
2
.

But d(u, v) = 2, so we obtain that

1
2

d(v,Tv) � d(u, v).

It is easily seen that for every two elements x, y ∈ X, if 1
2 d(x,Tx) ≤ d(x, y) then

ζ(d(Tu,Tv), d(u, v)) ≥ 0.
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For example, for u = (5, 6) and z = (1, 1), we have:

mT(u, z) = max{d(u, z), d(u,Tu), d(z,Tz), d(u,Tz)+d(z,Tu)
2 }

= max{d((5, 6), (1, 1)), d((5, 6), (6, 1)), d((1, 1), (1, 1)),

d((5,6),(1,1))+d((1,1),(6,1))
2 }

= max{9, 6, 0, 9+5
2 }

= 9.

Also, we have

d(Tu,Tz) = d((6, 1), (1, 1))) = 5.

So, we get

ζ(d(Tu,Tz),mT(u, v)) = ζ(5, 9)
= 8

9 9 − 5
= 3
> 0.

Again, for u = (6, 5) and z = (1, 1), we have:

mT(u, z) = max{d(u, z), d(u,Tu), d(z,Tz), d(u,Tz)+d(z,Tu)
2 }

= max{d((6, 5), (1, 1)), d((6, 5), (1, 5)), d((1, 1), (1, 1)),

d((6,5),(1,1))+d((1,1),(1,5))
2 }

= max{9, 5, 0, 9+4
2 }

= 9.

Also, we have

d(Tu,Tz) = d((1, 5), (1, 1))) = 4.

So, we get

ζ(d(Tu,Tz),mT(u, v)) = ζ(4, 9)
= 8

9 9 − 4
= 4
> 0.

The other cases can be verified analogously.
Consequently, T is a SuzukiZΓ-weak contraction, however it is not aZΓ-weak contraction.

Definition 2.10. Let (X, d) be a metric space. We say that the mapping
T : X→ X isZΓ0 -contraction, if there exists ζ ∈ ZΓ0 such that for all x, y ∈ X,

ζ(d(Tx,Ty), d(x, y)) ≥ 0.

Now, we present our first main result.
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Theorem 2.11. Let (X, d) be a complete metric space, and let T,S : X→ X be two mappings such that for all x, y ∈ X,

1
2

min{d(x,Tx), d(y,Sy)} ≤ d(x, y)⇒ η(d(Tx,Sy),m(x, y)) ≥ 0, (6)

in which ζ ∈ ZΓ and

m(x, y) = max
{

d(x, y), d(x,Tx), d(y,Sy),
d(x,Sy) + d(y,Tx)

2

}
.

Then T and S have a unique common fixed point.

Proof. Let x0 ∈ X be an arbitrary element. Define a sequence {xn}n≥0 by

x2n+1 = Tx2n, x2n+2 = Sx2n+1, for each n ≥ 0.

If there exists k ∈N such that xk = xk+1, then we claim that x j = xk for all j ≥ k. To see this, suppose that k is
an even number such that xk = xk+1. If m(xk, xk+1) = 0 then, by the definition of m(x, y), we have xk+1 = xk+2.
So, one can suppose that m(xk, xk+1) , 0. Furthermore, one has

1
2

min{d(xk,Txk), d(xk+1,Sxk+1)} =
1
2

min{d(xk, xk+1)

, d(xk+1, xk+2)}
≤ d(xk, xk+1).

Hence, for each even number k ∈N we get

1
2

min{d(xk,Txk), d(xk+1,Sxk+1)} ≤ d(xk, xk+1). (7)

Thus, from (6) and (ζ1) we have

γ(d(xk+1, xk+2)) < γ(m(xk, xk+1)).

So, since γ ∈ Γ([0,+∞)), we have

d(xk+1, xk+2) < m(xk, xk+1).

But,

m(xk, xk+1) = max
{
d(xk, xk+1), d(xk,Txk), d(xk+1,Sxk+1)

,
d(xk,Sxk+1) + d(xk+1,Txk)

2

}

= max
{

0, d(xk+1, xk+2),
d(xk, xk+2)

2

}

≤ max
{

d(xk+1, xk+2),
d(xk, xk+1) + d(xk+1, xk+2)

2

}

= max
{

d(xk+1, xk+2),
0 + d(xk+1, xk+2)

2

}

= d(xk+1, xk+2),
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which is a contradiction. So, d(xk+1, xk+2) = 0 or m(xk, xk+1) = 0, i.e., xk+1 = xk+2. Hence, xk = xk+1 = xk+2.
Similarly, if k = 2n + 1 for some n ≥ 0, we can prove that xk = xk+1 = xk+2. Therefore, xk is a common fixed
point of T and S. So, for all n ≥ 0, we suppose that d(xn, xn+1) > 0 and m(xn, xn+1) , 0.

Now, we intend to prove that lim
k→∞

d(xk, xk+1) = 0. To reach this goal, we claim that

d(xk+1, xk+2) ≤ m(xk, xk+1)
= d(xk, xk+1) ∀k ∈N. (8)

To prove the claim, at first, suppose that k is an even number. We have

1
2

min{d(xk,Txk), d(xk+1,Sxk+1)} =
1
2

min{d(xk, xk+1)

, d(xk+1, xk+2)}
≤ d(xk, xk+1).

So, from (6) and (ζ1) we have:

γ(d(xk+2, xk+1)) = γ(d(Sxk+1,Txk))
< γ(m(xk, xk+1)),

and by the fact that γ ∈ Γ([0,+∞)) we have

d(xk+1, xk+2) < m(xk, xk+1). (9)

On the other hand,

m(xk, xk+1) = max
{
d(xk, xk+1), d(xk,Txk)

, d(xk+1,Sxk+1),
d(xk,Sxk+1) + d(xk+1,Txk)

2

}
= max

{
d(xk, xk+1), d(xk+1, xk+2),

d(xk, xk+2)
2

}
≤ max

{
d(xk, xk+1), d(xk+1, xk+2)

,
d(xk, xk+1) + d(xk+1, xk+2)

2

}
≤ max {d(xk, xk+1), d(xk+1, xk+2)} .

So, if d(xk0+1, xk0+2) ≥ d(xk0 , xk0+1) for some even number k0 ∈N we get

m(xk0 , xk+1) ≤ d(xk0+1, xk0+2),

which is a contradiction by (9). Hence, for each even number k ∈N,

d(xk+1, xk+2) < d(xk, xk+1),

and so

m(xk, xk+1) ≤ d(xk, xk+1).

Consequently, (8) is proved when k ≥ 0 is an even number. By the same argument, one can verify that (8)
holds when k is an odd number. Thus, the sequence {d(xn, xn+1)}n≥1 is non increasing and bounded below,
so it converges to a real number ` ≥ 0. Hence,

lim
n→∞

d(xn, xn+1) = lim
n→∞

m(xn, xn+1) (10)

= `.
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We claim that ` = 0.
Indeed, combining (7) and (6), we have

ζ(d(Txk,Sxk+1),m(xk, xk+1)) ≥ 0,

for each even number k ∈N. So,

lim sup
n→∞

ζ(d(x2n+1, x2n+2),m(x2n, x2n+1)) ≥ 0. (11)

On the other hand, if we suppose that ` > 0 then (10) implies that

lim
n→∞

d(x2n+1, x2n+2) = lim
n→∞

m(x2n, x2n+1)

= `

> 0.

So, using (ζ2), it follows that

lim sup
n→∞

ζ(d(x2n+1, x2n+2),m(x2n, x2n+1)) < 0,

which (11) cause a contradiction. So, the claim is completed and we obtain that

lim
n→∞

d(xn, xn+1) ≤ lim
n→∞

m(xn, xn+1)

= lim
n→∞

m(xn, xn+1). (12)

Now we intend to prove that {xn} is a Cauchy sequence.
In order to show that {xn} is a Cauchy sequence, using (12), it is enough to show that the subsequence

{x2n} is a Cauchy sequence. On the contrary, suppose that {x2n} is not a Cauchy sequence. Then Lemma
(1.14) shows there exist ε0 > 0 and subsequences {x2mk } and {x2nk } of {xn} such that nk is the smallest index
for which nk > mk > k and d(x2mk , x2nk)) ≥ ε0 and

(l1) limk→∞ d(x2mk , x2nk ) = ε0,

(l2) limk→∞ d(x2mk−1, x2nk ) = ε0,

(l3) limk→∞ d(x2mk , x2nk+1) = ε0,

(l4) limk→∞ d(x2mk−1, x2nk+1) = ε0.

Therefore, from the definition of m(x, y), we have:

lim
k→∞

m(x2nk , x2mk−1) = lim
k→∞

max
{
d(x2nk , x2mk−1), d(x2nk , x2nk+1)

, d(x2mk−1, x2mk )

,
d(x2nk , x2mk ) + d(x2mk−1, x2nk+1)

2

}

= max
{
ε0, 0, 0,

ε0 + ε0

2

}
= ε0.
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So,

lim
k→∞

d(x2mk , x2nk+1) = lim
k→∞

m(x2mk−1,x2nk
)

= ε0

> 0.

Hence, (ζ2) implies that

lim sup
n→∞

ζ(d(x2mk , x2nk+1),m(x2mk−1,x2nk
)) < 0. (13)

On the other hand, we claim that for sufficiently large k ∈N, if nk > mk > k, then

1
2

min{d(x2nk ,Tx2nk ), d(x2mk−1,Sx2mk−1)} ≤ d(x2nk , x2mk−1). (14)

Indeed, since nk > mk and {d(xn, xn+1)} is non-increasing, we have

d(x2nk ,Tx2nk ) = d(x2nk , x2nk+1)
≤ d(x2mk+1, x2mk )
≤ d(x2mk , x2mk−1)
= d(x2mk−1,Sx2mk−1).

Hence, the left hand side of inequality (14) is equal to

1
2

d(x2nk ,Tx2nk ) =
1
2

d(x2nk , x2nk+1).

Therefore, we first need to show that for sufficiently large k ∈N,
if nk > mk > k then

d(x2nk , x2nk+1) ≤ d(x2nk , x2mk−1).

According to (12), there exists k1 ∈N such that for any k > k1,

d(x2nk , x2nk+1) <
1
2
ε0.

Also, there exists k2 ∈N such that for any k > k2,

d(x2mk−1, x2mk ) <
1
2
ε0.

Hence, for any k > max{k1, k2} and nk > mk > k, we have

ε0 ≤ d(x2nk , x2mk )
≤ d(x2nk , x2mk−1) + d(x2mk−1, x2mk )

≤ d(x2nk , x2mk−1) +
ε0

2
.

So, one concludes that

ε0

2
≤ d(x2nk , x2mk−1).
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Thus, for any k > max{k1, k2} and nk > mk > k, we have

d(x2nk , x2nk+1) ≤
ε0

2
≤ d(x2nk , x2mk−1).

So (14) is proved. Applying (14) and (6), we get

ζ(d(Tx2nk ,Sx2mk−1),m(x2nk , x2mk−1)) ≥ 0, (15)

for sufficiently large k ∈N.
Taking (upper)limit on both side of (15), we obtain that

lim sup
k→∞

ζ(d(x2nk+1, x2mk ),m(x2nk , x2mk−1)) ≥ 0, (16)

which is a contradiction by (13). So, {xn} is a Cauchy sequence and since X is complete, there exists u ∈ X
such that xn → u as n→∞.

Now, we are going to show that u is a common fixed point of T and S.
Firstly, we prove that

lim
n→∞

m(u, x2n) = d(Su,u). (17)

Note that

d(u,Su) ≤ m(x2n,u)

= max
{
d(x2n,u), d(x2n, x2n+1), d(u,Su)

, d(x2n,Su)+d(u,x2n+1)
2

}
.

(18)

Taking limit on both side of (18), we obtain that

d(u,Su) ≤ lim
n→∞

m(u, x2n)

≤ max
{

0, 0, d(u,Su),
d(u,Su) + 0

2

}
= d(u,Su).

Hence,

lim
n→∞

m(u, x2n) = d(Su,u).

This completes the proof of (17). In the same manner, one can show that

lim
n→∞

m(u, x2n+1) = d(Tu,u). (19)

Now, we claim that for each n ≥ 0, at least one of the following inequalities is true:

1
2

d(x2n, x2n+1) ≤ d(x2n,u), (20)

or

1
2

d(x2n+1, x2n+2) ≤ d(x2n,u). (21)
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On the contrary, if for some n0 ≥ 0 such that both of them be false, we get

d(x2n0 , x2n0+1) ≤ d(x2n0 ,u) + d(u, x2n0+1)

<
1
2

d(x2n0 , x2n0+1) +
1
2

d(x2n0+1, x2n0+2)

≤
1
2

d(x2n0 , x2n0+1) +
1
2

d(x2n0 , x2n0+1)

= d(x2n0 , x2n0+1),

which is a contradiction and the claim is proved. So, one can consider the following two cases:
Case (1): The relation (20) is established for infinitely many n ≥ 0.

In this case, for infinitely many n ≥ 0 we have

1
2

min{d(x2n,Tx2n), d(u,Su)} =
1
2

min{d(x2n, x2n+1), d(u,Su)}

≤
1
2

d(x2n, x2n+1)

≤ d(x2n,u).

Consequently, using (6), it follows that for infinitely many n ≥ 0,

ζ(d(Tx2n,Su),m(x2n,u)) ≥ 0.

Therefore,

lim sup
k→∞

ζ(d(x2n+1,Su),m(x2n,u)) ≥ 0. (22)

Now, we show that d(Su,u) = 0. Suppose that d(Su,u) > 0. Then, since

lim
n→∞

d(Tx2n,Su) = lim
n→∞

m(u, x2n)

= d(u,Su)
> 0,

from (ζ2) we have

lim sup
k→∞

ζ(d(x2n+1,Su),m(x2n,u)) < 0,

which contradicts (22). So, d(u,Su) = 0, i.e., Su = u. On the other hand, we have

m(u,u) = max
{

d(u,u), d(u,Tu), d(u,Su),
d(u,Su) + d(u,Tu)

2

}
= max

{
0, d(u,Tu), 0,

d(u,Tu)
2

}
= d(u,Tu).
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So,

m(u,u) = d(u,Tu). (23)

Furthermore,

1
2

min{d(u,Tu), d(u,Su)} =
1
2

min{d(u,Tu), 0}

= 0
≤ d(u,u).

Thus, if d(Tu,u) > 0 then (6) implies that

η(d(Tu,Su),m(u,u)) ≥ 0.

So, from (ζ1) one can observe that

d(Tu,Su) < m(u,u),

which contradicts (23). Hence, d(Tu,u) = 0, i.e., Tu = u. So Tu = Su = u.
Case (2): The relation (20) is established only for finitely many n ≥ 0.
In this case there exists n0 ≥ 0 such that (21) is true for any n ≥ n0. Similar to Case (1), one can prove

that, (21) leads us to a contradiction unless Su = Tu = u. So, in any case u is a common fixed point of T and
S.

Finally, we show that the common fixed point of T and S is unique.
Suppose that u and v are two common fixed points of T and S. We have

1
2

min{d(u,Tu), d(u,Su)} =
1
2

min{d(u,Tu), 0}

= 0
= d(u,u).

On contrary, if d(u, v) , 0 then m(u, v) , 0. So, (6) implies that

ζ(d(u, v),m(u, v)) = ζ(d(Tu,Sv),m(u, v))
≥ 0.

So, from (ζ1), one can conclude that

d(Tu,Sv) < m(u, v).

But

m(u, v) = max
{

d(u, v), d(u,Tu), d(v,Sv),
d(u,Sv) + d(v,Tu)

2

}
= d(u, v),

and it is a contradiction. So d(u, v) = 0 which completes the proof.

The next result is an obvious consequence of Theorem 2.11.

Corollary 2.12. [22, Theorem 2.6] Let (X, d) be a complete metric space, and let T,S : X→ X be two mappings such
that for all x, y ∈ X,

1
2

min{d(x,Tx), d(y,Sy)} ≤ d(x, y)⇒ η(d(Tx,Sy),m(x, y)) ≥ 0, (24)
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where η ∈ ZΨ and

m(x, y) = max
{

d(x, y), d(x,Tx), d(y,Sy),
d(x,Sy) + d(y,Tx)

2

}
.

Then T and S have a unique common fixed point.

Proof. Taking into account the fact thatZΨ ⊆ ZΓ, one can obtain desired result.

Putting S = T in the Theorem 2.11, we obtain:

Corollary 2.13. Every SuzukiZΓ-weak contraction on a complete metric space has a unique fixed point.

The following results are some immediate consequences of Corollary 2.13:

Corollary 2.14. EveryZΓ-weak contraction on a complete metric space has a unique fixed point.

Corollary 2.15. Every SuzukiZΓ-contraction on a complete metric space has a unique fixed point.

Corollary 2.16. EveryZΓ-contraction on a complete metric space has a unique fixed point.

Remark 2.17. With due attention to this that everyZΓ-weak contraction is a SuzukiZΓ-weak contraction, Corollary
2.13 is a generalization of the Corollary 2.14. The following example shows that Corollary 2.13 is a genuine
generalization of the Corollary 2.14.

Example 2.18. In view of the Example 2.9, the mapping T is not aZΓ-weak contraction. So T is not satisfied in the
Corollary 2.14. But T is a Suzuki ZΓ-weak contraction and we can easily see that T is satisfied in all conditions of
the Corollary 2.13, and (1, 1) is the unique fixed point of T.

Following the proof of Theorem 2.11, if we replace ”ZΓ-contraction” by ”ZΓ0 -contraction”, and metric space
by Branciari distance space respectively, we can obtain the following result:

Theorem 2.19. EveryZΓ0 -contraction on a complete Branciari distance space has a unique fixed point.

Proof. Let (X, d) be a complete Branciari distance space, and T : X → X be a ZΓ0 -contraction. Then, there
exists ζ ∈ ZΓ0 such that for all x, y ∈ X,

ζ(d(Tx,Ty), d(x, y)) ≥ 0. (25)

Since ζ ∈ ZΓ0 , there exists γ ∈ Γ0 such that (ζ1), (ζ2) and (ζ
′

2) of Definition 2.1 are satisfied.

Let x0 ∈ X be an arbitrary element. Define a sequence {xn}n≥0 by

xn+1 = Txn,

for each n ≥ 0.

If xn0+1 = xn0 for some n0 ∈ N0 then xn0 is a fixed point of T. So, we can assume that xn+1 , xn, for each
n ∈N0.

From (25) we have:

ζ(d(Txn,Txn+1), d(xn, xn+1)) ≥ 0.

So, it follows from (ζ1) that

γ(d(xn+1, xn+2)) = γ(d(Txn,Txn+1))
< γ(d(xn, xn+1)),
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and since ψ is a nondecreasing function, one conclude that

d(xn+1, xn+2) < d(xn, xn+1),

for each n ∈N.
Thus, the sequence {d(xn, xn+1)}n≥1 is non increasing and bounded below, so it converges to a real number
` ≥ 0. Hence

lim
n→∞

d(xn, xn+1) = `.

For that sake of convenience, suppose that an = d(xn, xn+1), for each n ≥ 0. Then an+1 ≤ an, for each n ≥ 0,
and we have

lim
n→∞

an = lim
n→∞

an+1 = `.

we divide the rest of proof into five steps.

Step (1): We prove that ` = 0.

Assume that ` , 0. Then, (ζ
′

2) implies that

lim sup
n→∞

η(d(xn+1, xn+2), d(xn, xn+1)) < 0.

But, (25) implies that for each n ≥ 0

ζ(d(xn+1, xn+2), d(xn, xn+1)) = ζ(d(Txn,Txn+1), d(xn, xn+1))
≥ 0,

which implies that

lim sup
n→∞

ζ(d(xn+1, xn+2), d(xn, xn+1)) ≥ 0,

and this is a contradiction. So,

lim
n→∞

an = lim
n→∞

an+1 = 0. (26)

Now, we claim that

lim
n→∞

d(xn−1, xn+1) = 0.

Indeed, using (25) and (ζ1), we obtain

γ(d(xn−1, xn+1)) − γ(d(xn, xn+2)) > ζ(d(xn+1, xn+2), d(xn, xn+1))
= ζ(d(Txn,Txn+1), d(xn, xn+1))
≥ 0,

and since γ is a nondecreasing function, one conclude that

d(xn, xn+2) < d(xn−1, xn+1),

for each n ∈N.
Thus, the sequence {d(xn−1, xn+1)}n≥1 is non increasing and bounded below. In the same manner to that
which proved (26), one can show that

lim
n→∞

d(xn−1, xn+1) = 0. (27)
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Step (2): We show that {xn} is a bounded sequence.

On contrary, assume that {xn} is not bounded. Then there exists a subsequences {xnk } of {xn} such
that for each k ∈ N, nk is the smallest index for which d(xnk+1 , xnk ) ≥ 1 and d(xm, xnk ) ≤ 1 for each
nk ≤ m ≤ n(k+1) − 1.
Then, we have

1 ≤ d(xnk+1 , xnk )
≤ d(xn(k+1) , xn(k+1)−2) + d(xn(k+1)−2, xn(k+1)−1 ) + d(xn(k+1)−1, xnk )
≤ d(xn(k+1) , xnk−2) + d(xn(k+1)−2, xn(k+1)−1 ) + 1.

Letting n→∞ and using (26) and (27), we have

lim
n→∞

d(xn(k+1) , xnk ) = 0. (28)

Now, using (26), (28) and R3, one can conclude that

lim
n→∞

d(xn(k+1)−1, xnk−1) = 0. (29)

On So, using (25), (ζ1) and the fact that γ is a nondecreasing function, one conclude that

d(xn(k+1) , xnk ) < d(xn(k+1)−1 , xnk−1),

for each n ∈N.
Consequently, (ζ

′

2) implies that

lim sup
n→∞

η(d(xn(k+1) , xnk ), d(xn(k+1)−1, xnk−1)) < 0.

But, it follows from (25) that, for each k ≥ 1

ζ(d(xn(k+1) , xnk ), d(xn(k+1)−1 , xnk−1)) = ζ(d(Txn(k+1)−1 ,Txnk−1), d(xn(k+1)−1 , xnk−1))

≥ 0,

which implies that

lim sup
n→∞

ζ(d(xn(k+1) , xnk ), d(xn(k+1)−1 , xnk−1)) ≥ 0,

and this is a contradiction. So, {xn} is a bounded sequence.

Step (3): We going to prove that {xn} is a Cauchy sequence.

For this purpose, let

Sn = sup d(xi, x j) : i. j ≥ n.

Since {xn} is a bounded sequence, Sn < ∞ for all n ∈N. Furthermore, it is clear that the sequence {Sn}

is nondecreasing and bounded below. So, it converges to a real number S ≥ 0. Assume that S > 0. It
follows from the definition of Sn that for any k ∈N there exists nk and mk such that mk > nk ≥ k and

Sk −
1
k
< d(xmk , xnk ) ≤ Sk.



E. Karapınar et al. / Filomat 35:1 (2021), 201–224 219

Thus,

lim
n→∞

d(xmk , xnk ) = S. (30)

On the other hand, using (25), (ζ1) and the fact that γ is a nondecreasing function, one conclude that

d(xmk , xnk ) < d(xmk−1, xnk−1),

for each k ∈N.
Hence, one has

d(xmk , xnk ) < d(xmk−1, xnk−1)
≤ d(xmk−1, xmk ) + d(xmk , xnk ) + d(xnk , xnk−1)

Letting n→∞ and using (26) and (30), we get

lim
n→∞

d(xmk−1, xnk−1) = S. (31)

Finally, (ζ
′

2) implies that

lim sup
n→∞

η(d(xmk , xnk ), d(xmk−1, xnk−1)) < 0,

which contradicts (25). Thus, {xn} is a Cauchy sequence and since X is complete, there exists u ∈ X
such that xn → u, as n→∞.

Step (4): We prove that u is a fixed point of T.
Without losing of generality, one can suppose that d(xn,u) , 0 for each n ≥ 0. Using (25), (ζ1) and the
fact that γ is a nondecreasing function, one conclude that

d(xn+1,Tu) < d(xn,u),

for each n ∈N.

So, for each n ∈N, one has

0 ≤ d(u,Tu)
≤ d(u, xn) + d(xn, xn+1) + d(xn+1,Tu)
≤ d(u, xn) + d(xn, xn+1) + d(xn,u).

Letting n→∞ and using (26), we get

d(u,Tu) = 0,

which implies that Tu = u.

Step (5): The fixed point of T is unique.
Suppose that u and v are two fixed points of T. We have d(u, v) = d(Tu,Tv). If d(u, v) , 0 then
d(Tu,Tv) , 0. So, (ζ

′

2) implies that

lim sup
n→∞

η(d(u, v), d(u, v) = lim sup
n→∞

η(d(u, v), d(Tu,Tv) < 0.

So, (ζ1) implies that

γ(d(u, v)) < γ(d(u, v)),

and this is a contradiction. So, d(u, v) , 0.

This completes the proof of theorem.
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3. Results In Θ−Contractions and L−Contractions In Metric Spaces

In the first part of this section we indicate that each Θ−contraction is really a ZΓ-contraction. We also
show that the Theorem 1.6 and Theorem 1.7 are consequences of Corollaries 2.16 and 2.15 respectively.

Corollary 3.1. (Theorem 1.6) Every Θ−contraction on a complete metric space has a unique fixed point.

Proof. Let T : X → X be a Θ−contraction on a metric space (X, d). Then there exists θ ∈ Ω and a constant
k ∈ (0, 1) such that for all x, y ∈ X,

θ(d(Tx,Ty)) ≤ [θ(d(x, y))]k. (32)

Let us define the function ζθ : [0,∞) × [0,∞)→ R as follows;

ζθ(t, s) =

{
0 t = 0 or s = 0,
kln(θ(s)) − ln(θ(t)) otherwise.

We prove that

(a1) The function ζθ is a Γ-simulation function with respect to the following function

γ(t) =

{
0 t = 0
ln(θ(t)) t > 0.

(a2) T is aZΓ-contraction with respect to the function ζθ.

It is clear that γ ∈ Γ([0,+∞)). Furthermore, since k < 1, for each s, t > 0 we have

ζθ(t, s) = kln(θ(s)) − ln(θ(t))
< ln(θ(s)) − ln(θ(t))
= γ(s) − γ(t),

which proves (ζ1) in Definition 2.3.
Now, let {tn}and{sn} be sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
sn = ` > 0, then since θ ∈ Ω, by (θ2)

we have

lim
n→∞

θ(tn) = lim
n→∞

θ(sn) = θ(`) > 1.

Therefore

lim supn→∞ ζθ(tn, sn) = lim supn→∞

(
kln(θ(sn)) − ln(θ(tn))

)
= lim supn→∞ ln (θ(sn))k

θ(tn)

= ln (θ(`))k

θ(`)
< 0.

This proves (ζ2) in Definition 2.3. So, (a2) is proved.
Finally, using (32), it follows that, for all x, y ∈ X with T(x) , T(y),

ζθ(d(Tx,Ty), d(x, y)) = kln(θ(d(x, y))) − ln(θ(d(Tx,Ty)))

= ln (θ(d(x,y)))k

θ(d(Tx,Ty))
≥ ln1
= 0,

which means that T is aZΓ-contraction, and then applying Corollary 2.16, we obtain desired result.
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Corollary 3.2. (Theorem 1.7) Let (X, d) be a metric space and T : X → X be A self- mapping. If there exists θ ∈ Ω
and a constant k ∈ (0, 1) such that for all x, y ∈ X, 1

2 d(x,Tx) ≤ d(x, y) implies that

θ(d(Tx,Ty)) ≤ [θ(d(x, y))]k,

then T has a unique fixed point.

Proof. In the same manner as proof of Corollaries 3.1 one can see that T is a SuzukiZΓ-contraction. So, by
Corollary 2.15, T has a unique fixed point.

We emphasize and underline that θ has not been assumed continuous in the [37, Theorem 4]. Under this
observation, when we seek the proof of this theorem, we see that it is doubtful. Indeed, in the proof of [37,
Theorem 4], the authors showed that

lim
k→∞

d(xn(k+1), xn(k)) = 1 and lim
k→∞

d(xn(k+1)−1, xn(k)−1) = 1,

and then they concluded that

lim
k→∞

θ(d(xn(k+1), xn(k))) > 1 and lim
k→∞

θ(d(xn(k+1)−1, xn(k)−1)) > 1,

and after that they named

tk = θ(d(xn(k+1), xn(k))) and sk = θ(d(xn(k+1)−1, xn(k)−1)),

and yielded immediately

lim
n→∞

tn = lim
n→∞

sn > 1!

It seems that the authors presumed the continuity of θ, although it is not assumed in their research.
According to this fact, the answer of a question ”why lim

n→∞
tn = lim

n→∞
sn?” is unclear.

Notice that the authors used this unclear logic in the relation (52) of their proof too.
This is one of the main motivation of us to write a new proof for this theorem. Broadly translated our

findings indicate that L−contractions are special cases ofZΓ-contractions which we defined in this paper.

Theorem 3.3. Every L−contraction with respect to ϑ : [1,∞) × [1,∞)→ [0,∞) and θ ∈ Ω, on a complete metric
space, is aZΓ0 -contraction.

Proof. Let (X, d) be a complete metric space and T : X → X be a L−contraction with respect to ϑ :
[1,∞) × [1,∞)→ [0,∞) and θ ∈ Ω. For each x, y ∈ X, we have

ϑ(θ(d(Tx,Ty)), θ(d(x, y)) ≥ 1. (33)

Now, we define a function ζθ : [0,∞) × [0,∞)→ R by

ζθ(t, s) =


0 t = 0 or s = 0

ln
(
ϑ(θ(t), θ(s))

)
otherwise,

and we prove that

(a1) The function ζθ is a Γ0-simulation function with respect to the following function

γ(t) =

{
0 t = 0
ln(θ(t)) t > 0.
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(a2) T is aZΓ0 -contraction with respect to the ζθ.

It is clear that γ ∈ Γ([0,+∞)). Furthermore, for each s, t > 0, using (ϑ2), we have

ζθ(t, s) = ln
(
ϑ(θ(t), θ(s))

)
< ln(θ(s)

θ(t) )
= γ(s) − γ(t).

Consequently (ζ1) is satisfied.
Now, let {tn}and{sn} be two sequences in (0,∞) such that for all n ∈ N, tn ≤ sn and lim

n→∞
tn = lim

n→∞
sn > 0,

then since θ ∈ Ω, by (θ2) one has θ(tn) ≤ θ(sn) and

lim
n→∞

θ(tn) = lim
n→∞

θ(sn) = θ(`) > 1.

Consequently (ϑ3) implies that

lim supn→∞ ζθ(tn, sn) = lim supn→∞ ln
(
ϑ(θ(tn), θ(sn))

)
= ln lim supn→∞

(
ϑ(θ(tn), θ(sn))

)
< ln 1
= 0.

This proves (ζ
′

2) in Definition 2.10. So, (a2) is proved which means that T is aZΓ0 -contraction.
Finally, using (33), it follows that, for all x, y ∈ X with T(x) , T(y), we have θ(d(Tx,Ty)) > 1 and

ζθ(d(Tx,Ty), d(x, y)) = ln
(
ϑ(θ(d(Tx,Ty)), θ(d(x, y)))

)
≥ ln 1
= 0,

which means that T is aZΓ0 -contraction, and then applying Theorem 2.19 , we obtain desired result.

Corollary 3.4. Every L−contraction with respect to ϑ : [1,∞) × [1,∞)→ [0,∞) and θ ∈ Ω on a complete metric
space has a unique fixed point.

Proof. By Theorem 3.3, T is aZΓ0 -contraction, and then applying Theorem 2.19 , we obtain desired result.

4. Conclusion and Future Directions

The purpose of the current study was to determine the Γ−simulation functions as a real generalization of
Ψ−simuation mappings by which several known contractions. Also, we characterized the L−contraction
as a special case of Γ−contractions induced by Γ−simulation functions. Ultimately, we demonstrate that
there is a gap in the proof of [37, Theorem ]. In other words, the author have applied the continuity of θ in
their results without assuming this fact and we change the assumption and present a new proof.

This research has thrown up many questions in need of further investigation. Taking into account
that the Γ−sumulation mappings are the greater collection of classical ones and are more applicable, one
can generalize the obtained results in metric-type spaces like b−metric space, ordered metric spaces and
etc. Moreover, further research regarding the other single-valued and multi-valued contractions would be
interesting, however working on multi-valued version of the current results seems to be more sophisticated.
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[31] A. Nastasi, P. Vetro and S. Radenović, Some fixed point results via R-functions, Fixed Point theory Appl., 2016, 2016:81.
[32] M. Olgun, O. Bicer and T. Alyildiz, A new aspect to Picard operators with simulation functions, Turk. J. Math. 40 (2016), pp. 832–837.
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