SS-Discrete Modules

Burcu Nişancı Türkmen⁎, Figen Eryılmaz⁎

⁎Amasya University, Faculty of Art and Science, Department of Mathematics, İpêkköy, Amasya, Turkey
⁎Ondokuz Mayıs University, Faculty of Education, Department of Mathematics Education, Atakum, Samsun, Turkey

Abstract. In this paper, we define (strongly) ss–discrete, semi-ss–discrete and quasi-ss–discrete modules as a strongly notion of (strongly) discrete, semi-discrete and quasi-discrete modules with the help of ss–supplements in [3]. We examined the basic properties of these modules and included characterization of strongly ss–discrete modules over semi-perfect rings.

1. Introduction

In this study, R is used to show a ring which is associative and has an identity. All mentioned modules will be unital left R–modules. Let M be an R–module. The notation $A \subseteq M$ means that A is a submodule of M. Any submodule A of an R–module M is called small in M and showed by $A \ll M$ whenever $A + C \neq M$ for all proper submodule C of M. The Jacobson radical of M denoted by $Rad(M)$. Dually, a submodule A of a R–module M is called to be essential in M which is showed by $A \preceq M$ if $A \cap K \neq 0$ for each non-zero submodule K of M. The socle of M which is the sum of all simple submodules of M is denoted by $Soc(M)$. A non-zero module M is called hollow if every proper submodule of M is small in M and is called local providing that the sum of all proper submodules of M is also a proper submodule of M. A submodule N of M is called coclosed in M if whenever $\frac{N}{X} \ll \frac{M}{X}$ for a submodule K of M with $K \subseteq N, N = K$.

Let A and B be submodules of a module M. Then A is called a supplement of B in M when A is minimal with the property $M = A + B$; in other words, $M = A + B$ and $A \cap B \ll A$. M is said to be supplemented if every submodule of M has a supplement in M. Two submodules A and B of M are called mutual supplements in M if, $M = A + B, A \cap B \ll A$ and $A \cap B \ll B$ [1]. There are a lot of papers related with supplemented modules such as [7, 8]. If M is supplemented and self-projective, then M is called strongly discrete. The module M is called amply supplemented if for any submodules A and B of M with $M = A + B$, there exists a supplement X of A such that $X \subseteq B$.

In [7], a module M is called lifting if for every submodule A of M lies over a direct summand, that is, there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \ll A, A \cap M_2 \ll M_2$. By [8], M is lifting iff M is amply supplemented and every supplement submodule of M is a direct summand of it.

Following [9], the sum of all simple submodules of M which are small in M is named with $Soc_s(M)$, that is, $Soc_s(M) = \sum [A \ll M | A$ is simple]. Note that $Soc_s(M) \subseteq Rad(M)$ and $Soc_s(M) \subseteq Soc(M)$. In [3], a module M is called strongly local providing that M is local and $Rad(M) \subseteq Soc(M)$. In the same paper, a ring R is called left strongly local ring if R is a strongly local module.
According to [3], ss-supplemented modules was examined and founded as a strong notion of supplemented modules. Let \(M \) be a module and \(A, B \leq M \). If \(M = A + B \) and \(A \cap B \subseteq \text{soc}_c(B) \), then \(B \) is an ss-supplement of \(A \) in \(M \). Any module \(M \) is named ss-supplemented if each submodule \(A \) of \(M \) has a ss-supplement \(B \) in \(M \). As a result of this definition, any finitely generated module is ss-supplemented iff it is supplemented and \(\text{Rad}(M) \subseteq \text{soc}(M) \). In the same paper, amply ss-supplemented modules were defined. A submodule \(A \) of a module \(M \) has ample ss-supplements in \(M \) if \(A \) contains an ss-supplement of \(B \) in \(M \) with \(M = A + B \). \(M \) is called amply ss-supplemented if every submodule of \(M \) has ample ss-supplements in \(M \).

According to [2], a module \(M \) is called semisimple lifting or briefly ss-lifting if for every submodule \(A \) of \(M \), there is a decomposition \(M = M_1 \oplus M_2 \) such that \(M_1 \leq A, A \cap M_2 \ll M \) and \(A \cap M_2 \) is semisimple. Some new fundamental properties of ss-lifting modules will be examined in this paper.

Let \(c \) be a cardinal number. The module \(M \) is said to have the \(c \)-internal exchange property if every decomposition \(M = \bigoplus M_i \) with \(\text{card}(I) \leq c \) is exchangeable. A module \(M \) has the (finite) internal exchange property if it has the \(c \)-internal exchange property for every (finite) cardinal \(c \) [1, 11.34]. A lifting module with the finite internal exchange property is called a semi-discrete module. The module \(M \) is called discrete if \(M \) is lifting and satisfies the following condition:

\((D_2)\) : If \(N \subseteq M \) such that \(\frac{M}{N} \) is isomorphic to a direct summand of \(M \), then \(N \) is a direct summand of \(M \).

The module \(M \) is called quasi-discrete if \(M \) is lifting and satisfies the following condition;

\((D_3)\) : If \(N \) and \(K \) are direct summands of \(M \) such that \(M = N + K \), then \(N \cap K \) is a direct summand of \(M \) (See [7]).

By [7, Lemma 4.6], \((D_2)\) implies \((D_3)\). In [1, 4.29], the notion of \(\cap \)-direct projective modules is defined as an equivalent condition to the property \((D_3)\). By [1, 4.21], a module \(M \) is direct projective if and only if \(M \) has the property \((D_2)\).

In the first part of this study, we define semi-ss-discrete and quasi-ss-discrete modules based on the definition of ss-lifting module. We give examples of these modules. We show that every quasi-ss-discrete module is ss-lifting and amply ss-supplemented. The factor module of a quasi-ss-discrete module is showed to be quasi-ss-discrete again under special conditions. In addition, theorems related with the decomposition of quasi-ss-discrete modules are obtained. In the second part, we define (strongly) ss-discrete modules and determine their relationship with ss-supplemented modules.

2. Semi-SS-Discrete and Quasi-SS-Discrete Modules

In this section, semi-ss-discrete modules and quasi-ss-discrete modules are defined and some of the basic features of these modules are obtained.

Definition 2.1. If \(M \) is an ss-lifting module with finite internal exchange property, then \(M \) is called a semi-ss-discrete module. If \(M \) is both a \(\pi \)-projective and ss-supplemented module, then \(M \) is called a quasi-ss-discrete module. Let \(N \) be any submodule of \(M \). Any submodule \(K \) of \(M \) is called \(N \)-ss-lifting if every homomorphism \(M \rightarrow \frac{M}{N} \) where \(N \cap K \) is semisimple lifts to an endomorphism of \(M \). If \(K \) is a ss-supplement of \(N \) of \(M \), then \(K \) is called a \(N \)-lifting ss-supplement in \(M \).

Recall from [1] that a module \(K \) is said to be generalized \(M \)-projective if, for any epimorphism \(g : M \rightarrow X \) and homomorphism \(f : K \rightarrow X \), there exist decompositions \(K = K_1 \oplus K_2, M = M_1 \oplus M_2 \), a homomorphism \(h_1 : K_1 \rightarrow M_1 \) and an epimorphism \(h_2 : M_2 \rightarrow K_2 \), such that \(g \circ h_1 = f \), and \(f \circ h_2 = g \).

Proposition 2.2. The following statements are equivalent for \(M \):

1. \(M \) is semi-ss-discrete;
2. \(M \) is ss-supplemented, every ss-supplement in \(M \) is a direct summand and \(K \cap L \) are relatively generalized projective, for every decomposition \(M = K \oplus L \);
3. \(M \) is ss-lifting and \(K, L \) are relatively generalized projective, for every decomposition \(M = K \oplus L \).
Proof. (1) ⇒ (2) Since M is ss-lifting, it is ss-supplemented and every ss-supplement is a direct summand by [2, Theorem 1]. Let $M = N + K$. Then N contains an ss-supplement N' of K which is a direct summand of M. So, we have $M = N' \oplus L' \oplus K$ with $L' \subseteq L$ and $K' \subseteq K$ since M has the finite internal exchange property. Thus L is generalized K-projective by [1, 4.42]. Similarly, it is easy to see that K is generalized L-projective.

(2) ⇒ (3) It is enough to prove that M is ss-lifting. Let $N \subseteq M$. By the hypothesis, N has an ss-supplement K which is a direct summand of M, that is $M = L \oplus K$. Then L is generalized K-projective and so $M = N' \oplus L' \oplus K' = N' + K$, where $N' \subseteq N$, $K' \subseteq K$ and $L' \subseteq L$ by [1, 4.42] since $M = N + K$. From here $N = N' + (N \cap K)$. Since $N \cap K \leq K$ and $N \cap K$ is semisimple, we have M is an ss-lifting module.

(3) ⇒ (1) Suppose $M = K \oplus L$. It is obtained from [2, Theorem 3] that K and L are ss-lifting modules, and so K and L are relatively generalized projective. It follows from [1, 23.10] that M has the 2-internal exchange property.

Recall from [5] that a module M is called duo if for every submodule U of M is fully invariant, i.e. $f(U) \subseteq U$ for every $f \in \text{End}(M)$ and $U \subseteq M$.

Proposition 2.3. Let $M = M_1 \oplus \ldots \oplus M_n$ be a duo module where each M_i is semi-ss-discrete. Then the following statements are equivalent:

1. M is semi-ss-discrete;
2. M is ss-lifting and $M = M_1 \oplus \ldots \oplus M_n$ is an exchange decomposition;
3. For any direct summand K of $\bigoplus M_i$, and any direct summand L of $\bigoplus M_j$, K and L are relatively generalized projective where I, J non-empty disjoint subsets of $\{1, 2, \ldots, n\}$;
4. If M'_i is any direct summand of M_i and T is any direct summand of $\bigoplus M_j$, then M'_i and T are relatively generalized projective for any $1 \leq i \leq n$;

Proof. is clear by [1, 23.14] and [2, Theorem 10].

As an immediate consequence of Proposition 2.3, we have the following corollary.

Corollary 2.4. Let $M = M_1 \oplus \ldots \oplus M_n$ be a duo module where each M_i is a semi-ss-discrete module. If M_i and M_j are relatively generalized projective for each $i \neq j$, then M is semi-ss-discrete.

Recall from [1, 12.1] that an R-module M is said to be an LE-module if its endomorphism ring $\text{End}(M)$ is local.

Theorem 2.5. Let M be an ss-lifting module with an indecomposable decomposition $M = \bigoplus M_i$ is a duo module. Then M is a semi-ss-discrete module if one of the following statements is satisfied:

1. M_i is an LE-module for all $i \in I$;
2. every non-zero direct summand of M contains a non-zero indecomposable direct summand and the decomposition $M = \bigoplus_{i \in I} M_i$ complements maximal direct summands.

Proof. A module M with an indecomposable exchange decomposition has the internal exchange property. Hence we can apply [1, 24.13, 24.10] to [3, Theorem 30].

We can compare quasi-ss-discrete modules, ss-supplemented modules and ss-lifting modules in following lemmas.

Lemma 2.6. If M is a quasi-ss-discrete module, then M is ss-lifting.
Proof. Since M is π-projective, it is clear by [1, 20.9] and [2, Theorem 1] that ss-supplements are direct summands in M. So it is enough to prove that M is amply ss-supplemented. Suppose that $M = U + V$ and X is an ss-supplement of U in M. Then for any $f \in \text{End}(M)$ with $\text{Im}(f) \subseteq V$ and $\text{Im}(1 - f) \subseteq U$, we have $M = U + f(X)$ and $U \cap f(X) = f(U \cap X) \gg f(X)$. Since $U \cap X$ is semisimple, $U \cap f(X)$ is semisimple by [8, 20.3]. Thus $f(X)$ is an ss-supplement of U contained in V. □

By the help of [8, 41.15], it can be seen that if the intersection of any pair of mutual ss-supplements is zero in an ss-supplemented module, then ss-supplement submodules of M are direct summands.

Lemma 2.7. If M is an ss-lifting and π-projective module, then M is amply ss-supplemented and the intersection of any pair of mutual ss-supplements in M is zero.

Proof. Follows from [2, Theorem 1] and [1, 20.9]. □

Corollary 2.8. If M is a quasi-ss-discrete module, then M is amply ss-supplemented and the intersection of any pair of mutual ss-supplements in M is zero.

Proof. Clear by Lemmas 2.6 and 2.7. □

It is clear that every quasi-ss-discrete module is quasi-discrete by Definition 2.1. The following example shows that the converse is not need to be true. So the notion of quasi-ss-discrete module is a stronger than that of quasi-discrete module.

Example 2.9. For any prime integer p, consider the left \mathbb{Z}-module $M = \mathbb{Z}_{p^\infty}$. M is supplemented but not ss-supplemented by [3, Example 17]. Since M has the property (D_3), M is quasi-discrete but not quasi-ss-discrete.

The following corollary is obtained by automatically by Lemma 2.7.

Corollary 2.10. If M is an ss-lifting module and has the property (D_3), then M is a quasi-ss-discrete module.

Lemma 2.11. Let M be a quasi-ss-discrete module, K be a submodule of M and L be an ss-supplement of K. If N is an ss-supplement submodule of M contained in K, then $N \cap L = 0$ and $N \oplus L$ is a direct summand of M.

Proof. Since M is a quasi-ss-discrete module, M is ss-lifting by Lemma 2.6. If we use [2, Theorem 1], it can be concluded that L and N are direct summand of M. Therefore there exists a submodule N_1 of M such that $M = N \oplus N_1$. It is clear that $K = (K \cap N_1) \oplus N$ and so $M = N + L + (K \cap N_1)$. By [2, Theorem 1], $K \cap N_1$ contains an ss-supplement X of $N + L$, where X is a direct summand of M. Thus $X \oplus N$ is a direct summand of M due to $X \subseteq N$. However, we have that $(X \oplus N) \cap L$ is a direct summand of M by [4.14 (4)]. From here $(X \oplus N) \cap L \subseteq K \cap L \subseteq \text{Soc}_s(L)$. Finally we can get $(X \oplus N) \cap L = 0$ and so $M = X \oplus N \oplus L$. □

Proposition 2.12. If K, L are direct summand of a quasi-ss-discrete module M and L is hollow, then

(i) $K \cap L = 0$ and $K \oplus L$ is a direct summand of M or
(ii) $K + L = K \oplus S$ with $S \subseteq \text{Soc}_s(M)$ and L is isomorphic to a summand of K.

Proof. Suppose that T is an ss-supplement of $K + L$. Then we have $M = T + (K + L)$ and $T \cap (K + L) \subseteq \text{Soc}_s(T)$. By Lemma 2.11, $K \cap T = 0$. Let’s complete the proof by evaluating the following two situations.

(1) If $L \not\subseteq K \oplus T$, then $L \cap (K + T) = 0$ and so L is an ss-supplement of $K + T$. It follows that $K \cap L = 0$ and $K \oplus L$ is a direct summand of M by Lemma 2.11.

(2) Assume that $L \subseteq K \oplus T$. Since $M = K + T + L = K + T$ and $K \cap T = 0$, we have $M = K \oplus T$. If we intersect the equality $M = K + T$ with $K + L$, then we can write $K + L = K \oplus S$ where $S = (K + L) \cap T$. Moreover $S \subseteq \text{Soc}_s(M)$ by [2, Theorem 1]. Since L is a direct summand of M, there exists a submodule L_1 of M such that $M = L \oplus L_1$. It follows that $M = K + L + L_1 = K \oplus (K + L) \cap T + L_1 = K + L_1$ because $(K + L) \cap T \ll M$. Let N_1 be an ss-supplement of L_1 contained in K. Then, we get $M = [N_1 \oplus (K \cap L_1)] + L_1 = N_1 \oplus L_1$ and $L \not\subseteq N_1$. □

Theorem 2.13. If M is a quasi-ss-discrete module, then M is ss-lifting and for every decomposition $M = K \oplus L$, K and L are relatively projective.
Proof. We obtain by Lemmas 2.6 and 2.7 that \(M \) is amply \(ss \)-supplemented and the intersection of any pair of mutual \(ss \)-supplements in \(M \) is zero. Since \(M \) is \(ss \)-supplemented, \(ss \)-supplements are direct summands and so \(M \) is \(ss \)-lifting by [2, Theorem 1]. Suppose that \(M = U + V \) where \(U \) and \(V \) are direct summands of \(M \). Let \(X \) be an \(ss \)-supplement of \(V \) such that \(X \subseteq U \). Then \(M = X \oplus V \). As \(U = X \oplus (U \cap V) \), we get \(U \cap V \) is a direct summand of \(M \). Therefore \(M \) is \(\cap \)-direct projective. The rest follows from [1, 4.14(2)].

By the definition, every quasi \(ss \)-discrete module is semi-\(ss \)-discrete. But the converse is not always true as in the following example.

Example 2.14. Consider the \(\mathbb{Z} \)-module \(U = \mathbb{Z}/p\mathbb{Z} \) and \(V = \mathbb{Z}/q\mathbb{Z} \) where \(p \) is prime. Then \(U \) and \(V \) are relatively generalised projective but \(U \) is not \(V \)-projective. So \(M \) is not a quasi \(ss \)-discrete module although \(M \) is an \(ss \)-lifting module.

Now we can obtain properties of quasi \(ss \)-discrete modules.

Proposition 2.15. Let \(M \) be a quasi-\(ss \)-discrete module. Then every direct summand of \(M \) is quasi-\(ss \)-discrete and every \(ss \)-supplement submodule of it is a direct summand.

Proof. Let \(N \) be a direct summand of \(M \). Since \(M \) is \(ss \)-lifting and \(\pi \)-projective, every \(ss \)-supplement submodule of \(M \) is a direct summand by [2, Theorem 1]. Since every direct summand of a \(\pi \)-projective module is again \(\pi \)-projective, \(N \) is \(ss \)-supplemented by [3, Corollary 38]. Therefore \(N \) is quasi-\(ss \)-discrete module.

Since \(ss \)-supplemented modules are supplemented, proofs of the following facts are clear by [8, 41.16-(2,3)].

Lemma 2.16. Let \(M \) be a quasi-\(ss \)-discrete module and \(S = \text{End}(M) \). Let \(e \in S \) be an idempotent and \(N \) be a direct summand of \(M \). If \((1 - e)(N) \ll (1 - e)(M)\), then \(N \cap (1 - e)(M) = 0 \) and \(N \oplus (1 - e)(M) \) is a direct summand in \(M \).

Proposition 2.17. Let \(M \) be a quasi-\(ss \)-discrete module. If \(\{N_i \}_{i \in I} \) is a directed family of direct summands of \(M \) with respect to inclusion, then \(\bigcup_{i \in I} N_i \) is also a direct summand in \(M \).

Recall from [3, Proposition 16] that an \(ss \)-supplemented hollow module is strongly local.

Lemma 2.18. Let \(M \) be a quasi-\(ss \)-discrete module. Then for every \(0 \neq m \in M \), there is a decomposition \(M = M_1 \oplus M_2 \) such that \(m \notin M_1 \) and \(M_2 \) is strongly local.

Proof. Given \(0 \neq m \in M \). Let’s define the set \(S = \{ T \subset M \mid T \text{ is direct summand and } m \notin T \} \). This set is non-empty and inductive with respect to inclusion by Proposition 2.17 and has a maximal element \(M_1 \) by Zorn’s Lemma. Since \(M_1 \) is a direct summand, there exists a submodule \(M_2 \) of \(M \) such that \(M = M_1 \oplus M_2 \). By Proposition 2.15 and Lemma 2.6, \(M_2 \) is a quasi-\(ss \)-discrete module and \(M_2 \) is \(ss \)-lifting. Therefore \(M_2 \) must be strongly local. If \(M_2 \) is not hollow, then there is a proper non-supercuous submodule in \(M_2 \), say \(U \). It follows that there exists an nontrivial decomposition \(M_2 = V \oplus V_1 \) with \(V \subset U \) and \(U \cap V_1 \subseteq \text{Soc}(V_1) \) for some submodule \(V, V_1 \) of \(M_2 \). Then we can write \(M = M_1 \oplus M_2 = M_1 \oplus V \oplus V_1 \). By the maximality of \(M_1 \), we get \(m \in M_1 \oplus V \) and \(m \in M_1 \oplus V_1 \). But this means \(m \in M_1 \) contradicting the choice of \(M_1 \). Therefore all proper submodules in \(M_2 \) are superfluous, i.e. \(M_2 \) is hollow. By [3, Proposition 16], we deduce that \(M_2 \) is strongly local.

Observe from [3, Lemma 13] that an \(ss \)-supplemented and radical module is zero. Using this fact we prove that the following fact:

Theorem 2.19. Let \(M \) be a quasi-\(ss \)-discrete module. Then \(M \) has a decomposition \(M = \bigoplus_{i \in I} H_i \), where each \(H_i \) is strongly local. In particular, if \(N \) is a direct summand of \(M \), there exists a subset \(J \subset I \) such that \(M = \left(\bigoplus_{i \in J} H_i \right) \oplus N \).
Suppose that \(N \) is a direct summand of \(M \). Let’s define \(S = \{ \lambda \subset I \} N \cap \bigoplus_{\lambda} H_{\lambda} = \{ 0 \} \) and \(N \cap \bigoplus_{\lambda} H_{\lambda} \) is a direct summand in \(M \). By using Proposition 2.17 and Zorn’s Lemma, we can say that \(S \) has a maximal element \(I \). Assume that \(L = N \cap \bigoplus_{\lambda} H_{\lambda} \). We must prove that \(M = L \). Assume that \(L \neq M \). Therefore there exists an element \(a \in M \setminus L \). Then by Lemma 2.18, we have a decomposition \(M = K \oplus H \) with \(L \subset K \) and \(H \) is strongly local. If we show that \(H = \{ 0 \} \), then the proof is completed. Suppose that \(H \neq \{ 0 \} \). We consider the canonical projection \(p : M \to H \). It is clear that if \(p(H_{i}) = H \) holds for some \(j \in I \), then \(M = K + H_{j} \). If \(K \cap H_{j} = H_{j} \), then \(M = K \) and so \(H = \{ 0 \} \). Because of \(K \cap H_{j} \neq H_{j} \), we get that \(K \cap H_{j} \ll H_{j} \). Since \(M \) is \(\pi \)-projective, we have \(K \cap H_{j} = \{ 0 \} \), i.e. \(M = K \oplus H_{j} \). \(L \oplus H_{j} \) is a direct summand of \(M \) because \(L \) is a direct summand of \(M \). Since \(j \neq j' \), this is a contradiction to the maximality of \(I \). It follows from \(p(H_{i}) \neq H \) for every \(i \in I \). From here, if we say \(T = H_{i_{1}} \oplus H_{i_{2}} \oplus \ldots \oplus H_{i_{n}} \) for every finite \(i_{1}, i_{2}, \ldots, i_{n} \in I \), then \(p(T) = p(H_{i_{1}}) \oplus p(H_{i_{2}}) \oplus \ldots \oplus p(H_{i_{n}}) \ll H \). Moreover, for the canonical projection \(e : M \to K \), we get that \(p = l_{M} - e \) and \(p(T) = (l_{M} - e)(T) \ll H = (l_{M} - e)(M) \). Then we have \(T \cap H = \{ 0 \} \) by Lemma 2.16. This situation is valid for every finite \(i_{1}, i_{2}, \ldots, i_{n} \) we obtain \(\bigoplus_{j} H_{j} \cap N = \{ 0 \} \) and so \(H = M \cap H = \{ 0 \} \). It is a contradiction to the \(H \neq \{ 0 \} \). Hence \(H = \{ 0 \} \), this means \(M = L \). \(\square \)

Recall that a module \(M \) is called coatomic if every proper submodule of \(M \) is contained in a maximal submodule of \(M \). A ring \(R \) is called left max if every non-zero \(R \)-module has a maximal submodule. Note that if \(R \) is a left max ring, then every \(R \)-module is coatomic.

Corollary 2.20. Let \(M \) be a quasi-ss-discrete. Then \(M \) is coatomic and \(\text{Rad}(M) \) is semisimple.

Proof. It follows from Theorem 2.19 and [3, Theorem 27]. \(\square \)

Proposition 2.21. The following statements are equivalent for an amply ss-supplemented module \(M \).

1. \(M \) is quasi-ss-discrete;
2. \(M \) is \(\pi \)-projective.

Proof. Clear by [8, 41.15] and [3, Proposition 26]. \(\square \)

Recall from [1, 4.13] that any factor module \(\frac{M}{N} \) of a \(\pi \)-projective module \(M \) by a fully invariant submodule \(N \) is \(\pi \)-projective.

The following proposition can be proven by [3, Proposition 26].

Proposition 2.22. Let \(M \) be a quasi-ss-discrete module and \(N \) be a fully invariant submodule of \(M \). Then \(\frac{M}{N} \) is quasi-ss-discrete.

Proposition 2.23. The following statements are equivalent for any module \(M \).

Proof. We indicate by \(\Omega \) the set of all strongly local submodules in \(M \) and take into account \(\Phi = \{ \varphi \subset \Omega \mid \sum_{H \in \Phi} H \) is a direct sum and a direct summand in \(M \} \). Then, since \(M \) is a quasi-ss-discrete module, \(M \) has a strongly local submodule that is a direct summand of its by [3, Lemma 13] and Lemma 2.6. So this set is non-empty and inductive with respect to inclusion by Proposition 2.17 has a maximal element \(\varphi \) by Zorn’s Lemma. By indexing the elements in \(\varphi \) with \(i \), let \(L = \bigoplus_{i} H_{i} \). Since \(L \) is a direct summand, there exists a submodule \(K \) of \(M \) such that \(M = L \oplus K \). If we prove that \(K = \{ 0 \} \), then the proof will be completed. Suppose that \(K \neq \{ 0 \} \). Then, there is an element \(a \) of \(K \) with \(a \neq 0 \). Moreover, \(K \) is a quasi-ss-discrete module by Proposition 2.15. We get that a decomposition \(K = K_{1} \oplus K_{2} \) such that \(a \notin K_{1} \) and \(K_{2} \) is strongly local by Lemma 2.18. Then we have \(M = L \oplus K = L \oplus K_{1} \oplus K_{2} = (L \oplus K_{2}) \oplus K_{1} \) and so \(K_{2} \neq \{ 0 \} \) because of \(a \notin K_{1} \). Therefore, the direct summand \(L \oplus K_{2} \) of \(M \) is properly larger than \(L \). This contradicts the maximality of \(L \). Consequently, \(K = \{ 0 \} \) and we deduce that \(M = \bigoplus_{i} H_{i} \).
1. M is quasi-ss-discrete;
2. M is amply ss-supplemented and all ss-supplements of any coclosed submodule N of M are K-ss-lifting.

Proof. (1) \Rightarrow (2) It is clear that M is amply ss-supplemented by [3, Proposition 37]. Let N be a coclosed submodule of M and K be an ss-supplement of N in M. Then N and K are ss-supplements of each other and so $K \cap N = 0$ by [7, Proposition 4.11].

(2) \Rightarrow (1) It is enough to prove that M is π-projective. Let N and K be submodules of M with $M = N + K$. Since M is amply ss-supplemented, there exists a submodule K' of M such that $M = N + K'$, $N \cap K' \ll K'$, $N \cap K$ is semisimple, $K \subseteq K'$ and a submodule N' of M such that $M = K' + N'$, $K \cap N' \ll N'$, $K \cap N'$ is semisimple and $N' \subseteq N$. Therefore K' and N' are ss-supplements of each other. Define $\varphi : M \to K_{N'}$ by $\varphi(k + n') = k' + (K' \cap N')$ ($k' \in K'$, $n' \in N'$). By the hypothesis, there exists a homomorphism $\theta : M \to M$ where $\theta(M) \subseteq K'$ and $(1 - \theta)(M) \subseteq N'$. Hence M is π-projective. \square

Lemma 2.24. Let N be a submodule of M such that $\frac{M}{N} \cong \frac{M}{K}$ with N' is a coclosed submodule of M. If K is a N-lifting ss-supplement, then $M = N \oplus K$.

Proof. Suppose that K is an ss-supplement of N in M. Then we have $M = N + K$, $N \cap K \ll K$ and $N \cap K$ is semisimple, and every homomorphism $\psi : M \to M_{N'}$ lifts to a homomorphism of M. Since $\frac{M}{N} \cong \frac{M}{N'}$, then an isomorphism $\xi : \frac{M}{N} \to \frac{M}{N'}$. We can similarly obtain rest of the proof follows from [4, Lemma 2.2]. \square

Corollary 2.25. Let N be a coclosed submodule of M. If K is a N-lifting ss-supplement in M, then $M = N \oplus K$.

Proof. Clear by Lemma 2.24. \square

In the following theorem, we give a characterization of ss-lifting modules via coclosed submodule from renaissance of [4, Theorem 2.4].

Theorem 2.26. Let M be an amply ss-supplemented module. M is ss-lifting if and only if every coclosed submodule N of M has a N-lifting ss-supplement.

Proof. Follows from Corollary 2.25 and [2, Theorem 1]. \square

3. SS-Discrete Modules and Strongly SS-Discrete Modules

In this section, we define notions of ss-discrete modules and strongly ss-discrete modules, and we obtain some elementary characterizations of these notions.

Definition 3.1. Let M be a ss-supplemented module which is π-projective and direct projective, then M is called a ss-discrete module. If M is a ss-supplemented module which is self-projective, then M is called a strongly ss-discrete module.

By this definition, we can obtain that if a module M is ss-lifting and has the property (D2), then M is a ss-discrete module.

Lemma 3.2. Let N be an ss-supplement in M. N is a direct summand of M if and only if there exists an ss-supplement K of N in M such that K is a direct summand of M and every homomorphism $f : M \to \frac{M}{N_{K}}$ can be lifted to a homomorphism $\varphi : M \to M$.

Proof. (⇒) Clear.

(⇐) Let K be an ss-supplement of N in M with the stated property and $f : M \to \frac{M}{N_{K}}$ be the homomorphism defined by $f(a + b) = a + (N \cap K)$ for every $a \in N$ and $b \in K$. By the hypothesis, there exists a homomorphism $\varphi : M \to M$ such that f can be lifted to the homomorphism φ. We have $M = K \oplus K'$ for some submodule K' of M and $K \cap N \ll N$ and $K \cap N$ is semisimple. By [6, Lemma 2.1], we have $M = \varphi(K') \oplus K$. Since $\varphi(K') \leq N$, then $N = \varphi(K') \oplus (N \cap K)$. This implies that $N \cap K = 0$. Thus N is a direct summand of M. \square
Now we can characterize ss-lifting modules via the above lemma.

Corollary 3.3. Let M be an amply ss-supplemented module. M is ss-lifting if and only if for every ss-supplement N in M there is a direct summand ss-supplement K of N in M such that every homomorphism $f : M \rightarrow \frac{M}{N \cap K}$ can be lifted to a homomorphism $\phi : M \rightarrow M$.

Proposition 3.4. Let M be a module with $\text{Rad}(M) \subseteq \text{Soc}(M)$. If M is a (quasi-)discrete module, then M is a (quasi-)ss-discrete module.

Proof. Clear by [3, Theorem 20]. □

Proposition 3.5. Let M be an ss-discrete module. Then every direct summand of M is an ss-discrete module.

Proof. Let N be a direct summand of M. Since M is direct projective by [1, 4.22], we have N is direct projective, i.e. N has the property (D_2). Since M is ss-supplemented and π-projective, M is ss-lifting by [2, Theorem 2]. Thus N is ss-lifting by [2, Theorem 3] and so N is an ss-discrete module. □

Example 3.6. Consider the self-projective \mathbb{Z}-module $M = \mathbb{Z}_4 \mathbb{Z}_4$. Since M is ss-supplemented, M is strongly ss-discrete.

Proposition 3.7. Let M be a projective module. M is a strongly ss-discrete module if and only if M is a strongly discrete module and $\text{Rad}(M) \subseteq \text{Soc}(M)$.

Proof. Since M be a projective module, M is self-projective. The proof is obvious by [3, Theorem 20]. □

Proposition 3.8. Let M be a strongly ss-discrete module. Then every direct summand of M is a strongly ss-discrete module.

Proof. As self-projective modules are closed under direct summands, the proof clear by [2, Theorem 3]. □

Theorem 3.9. Let $\{M_i\}_{i \in I}$ be any finite family of R-modules and let $M = \bigoplus_{i \in I} M_i$. Suppose that for every $i \in I$, $\text{Rad}(M_i) \subseteq \text{Soc}(M_i)$. Then the following statements are equivalent.

1. M is strongly ss-discrete;
2. (a) each M_i is strongly discrete;
 (b) for each $i \in I$, M_i is M_j-projective for $j \neq i$.

Proof. The proof similar to these of [1, 27.16] and [3, Theorem 20]. □

In the following corollary, we prove that strongly ss-discrete rings thanks to semiperfect ring.

Corollary 3.10. The following statements are equivalent for a ring R:

1. R is ss-supplemented;
2. R is semiperfect and $\text{Rad}(R) \subseteq \text{Soc}(R)$;
3. for any finite set I and for each $i \in I$, every left R-module $M = \bigoplus_{i \in I} M_i$ where M_i is a strongly local M-projective module;
4. R is strongly ss-discrete.

Proof. Follows from [3, Theorem 41]. □

Finally we give the following hierarchy for any module:

strongly ss-discrete \Rightarrow ss-discrete \Rightarrow quasi-ss-discrete \Rightarrow semi-ss-discrete \Rightarrow ss-lifting
References