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Available at: http://www.pmf.ni.ac.rs/filomat
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Abstract. With the main objective that it can be consulted by all researchers, mainly young people,
interested in the study of the Kac-Moody algebras and their applications, this paper aims to present the
past and present state-of-the-art developments and results on these algebras at various levels of analysis
and fields of application in different disciplines. Indeed, lot of references in the literature on these algebras
are analyzed and a study of the most relevant topics regarding them is shown.

Introduction

In 1968, Victor Kac and Robert Moody published in an independent way each papers about the later so-
called Kac-Moody algebras (see [139] and [187], respectively). Therefore, these algebras have already turned
fifty years. More than to show new results on them, this paper is written with the intention of summarizing
the main results on this topic published in different journals, from that year 1968 to 2018 (up to December
of this last year, there are 754 publications referenced in MathSciNet with the words Kac-Moody algebras in
the title. The first of them is due to J. Morita in 1980 [190]), so that they can be known all together by a
wide mathematical audience, particularly by young people who are interested in researching as many these
algebras as on their applications to disciplines other than purely Mathematics, such as Physics, for example
and in a lesser extent Engineering. In this way, the authors contribute to celebrate the fifty anniversary of
the introduction of Kac-Moody algebras (note that a similar survey paper was published by R.V. Moody
and A. Pianzola in 1996, with the occasion of the thirsty anniversary of these algebras [189]).

However, it is not understandable the study of these algebras if one does not firstly know the historical
evolution of nilpotent Lie algebras. Note that Kac-Mody algebras were firstly introduced as a tool to classify
nilpotent Lie algebras of maximal rank. Therefore, the first part of this paper is devoted to show how the
evolution of nilpotent Lie algebras has occurred.

Moreover, we would like to comment that at the best of our knowledge, the problem of classifying all
the different types of Lie algebras is still unsolved. As it is already well known, there exist three different
types of Lie algebras: the semi-simple, the solvable and those which are neither semi-simple nor solvable.
So, to know the classification of Lie algebras, in general, is equivalent to know the classification of each of
these three types.
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However, by the Levi-Maltsev theorem, which groups together the results formulated in the first place
by E.E. Levi [171], in 1905, and later, by A.I. Maltsev [178] (it can be also written Malcev), in 1945, any finite-
dimensional Lie algebra over a field of characteristic zero can be expressed, according to the Levi-Maltsev
Decomposition, as a semidirect sum of a semi-simple subalgebra (called the Levi factor) and its radical (its
maximal solvable ideal). It reduces the task of classifying all Lie algebras to obtain the classification of
semi-simple and of solvable Lie algebras.

With respect to the first problem, the classification of semi-simple Lie algebras, it is completely solved
by the well-known Cartan theorem: any semi-simple complex or real Lie algebra can be decomposed
into a direct sum of ideals which are simple subalgebras being mutually orthogonal with respect to the
Cartan-Killing form. So, the problem of classifying semi-simple Lie algebras is then equivalent to that of
classifying all non-isomorphic simple Lie algebras and since the classification of simple Lie algebras was
already obtained by Killing, Cartan and others in the last decade of the 19th century, it can be admitted that
the problem of the classification of semi-simple Lie algebras is, at present, totally solved.

With respect to the classification of solvable Lie algebras, several authors have tried to obtain it, since J.
Dozias [83], who was the first researcher in dealing with that problem, to recent ones, such as W. de Graaf,
for instance.

However, the previously cited Malcev had already reduced in 1945 the classification of complex solvable
Lie algebras to the classification of one of its subsets, the nilpotent Lie algebras (see [178]). To do it, Malcev
defined in the first place a particular type of algebra, which he called splittable algebra, whose structure is
completely determined from its maximal nilpotent ideal and proved that an arbitrary solvable Lie algebra is
contained in a uniquely minimal splittable algebra. The relation between an algebra and its splittings leads
him to the construction of all solvable Lie algebras with a given splitting. So, in this way, the classification
of all solvable Lie algebras is reduced to the classification of the nilpotent Lie algebras. However, at present,
this last problem continues unsolved, in spite of the efforts made by many researchers to tackle it.

The structure of this survey article is as follows: Section 1 is devoted to briefly show the evolution
of the classification of finite-nilpotent Lie algebras in general. Certain paragraphs dedicated to show the
contributions which some authors have got on partial classifications concerning other particular properties
of nilpotent Lie algebras are also included.

Section 2 constitutes a comprehensive survey on Kac-Moody algebras, which is the main goal of this
paper. To this end, four subsections dealing with classifications, other concept related, physical applications
of these algebras and books existing on them, respectively, are considered. Comments on certain open
problems and possible steps to solve them in each case are also included. In any case, logical reasons
of length and of progress imply that papers published in the current century are preferably commented
instead of those appeared earlier.

Particularly, Subsection 2.4 is devoted to show the physical applications of Kac-Moody algebras. Indeed,
since their introduction in 1967, in an independent way, by Victor Kac (at present in MIT, although working
first in Moscow) [138] and Robert Moody (University of Alberta) [186], Kac-Moody algebras, which enlarge
the paradigm of classical Lie algebras, have resulted in many and varied applications in the world of
Physics and have been widely used as tools by numerous physicists in the theoretical development of their
research. Particularly, the representation theory of a subclass of them, the affine Kac-Moody algebras, has also
developed into a mature Mathematics.

Indeed, since 1980, these algebras had been used by physicists working in the areas of elementary particle
theory, gravity, and two-dimensional phase transitions as an obvious framework from which to consider
descriptions of non-perturbative solutions of gauge theory, vertex emission operators in string theory on
compactified space, integrability in two-dimensional quantum field theory and conformal field theory,
among many other physical theories (see [82] and the references therein). Particularly, at present, Kac-
Moody algebras have an important application in Physics in the Sugawara construction [253], the Virasoro
algebra and the coset construction, which are fundamental to string theory and the basic constructions of
two-dimensional conformal field theory.

Moreover, and apart from their applications in Mathematics, where Kac-Moody algebras are also rele-
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vant to number theory and modular forms, and for their links with other different types of algebras (see
[203] for instance), they have been recently shown to serve as duality symmetries of non-perturbative strings
appearing to relate all superstrings to a single theory. Particularly, the infinite-dimensional Lie algebras
and groups have been suggested as candidates for a unified symmetry of superstring theory.

Related to the concept of symmetry, this mathematical concept appears for the first time when the Greek
discover the five regular solids, which are remarkably symmetrical. In the 19th century, this property was
codified in the mathematical concept of a group invented by Galois and then that of a continuous group by
Sophus Lie.

It is in Physics where the symmetries of a theory provide significant information about the general
solution of the system. For instance, for a spherical conductor, limited to the case where U is U(r, θ),
the solution can be expressed in terms of specific functions of r and the Legendre polynomials Pn(θ). In
Quantum Field Theories, useful applications of symmetry include also the invariance imposed on the
regularization of an approximation scheme, symmetry transformations among different specific solutions,
and Noether constants of the motion used to label them. Moreover, familiar symmetries, such as rotations or
translation or the electromagnetic gauge symmetry, reflect not only spacetime invariance, but also internal
gauge invariance [82].

Then, related with this concept, Kac-Moody algebras constitute a certain class of symmetries. In contrast
to the symmetries of the Standard Model and gravity, they are infinite and appear in the context of M-theory,
an as of yet unknown theory that might both describe the Standard Model and gravity. At present, these
algebras unify all the low-energy limits of M-theory, which are known as supergravities. Moreover, they
contain information that corresponds exactly to all the known gauge deformations of these supergravities
(see [201], for instance).

Therefore, all of these stunning results of mathematical Physics suggested that infinite-dimensional
algebras as well as the finite-parameter symmetry algebras might be important for physical theories. And
let us not forget that among infinite dimensional algebras, the Kac-Moody algebras play a relevant role.

Finally, an extensive list of references on this topic is included.

1. Nilpotent Lie algebras: classification

Many attempts related to the classification of nilpotent Lie algebra have been made, and lots of lists of
algebras have been published with bigger or less fortune. The earliest one was given by an Engel’s pupil,
K.A. Umlauf (see [261]), who classified in 1891 all nilpotent Lie algebras up to dimension 6 over the field of
complex numbers. Long after him, several authors dealt with these algebras trying to get its classification.
So, it can be cited, for instance, Vranceanu, Morosov, Dixmier, Vergne, Safiullina, Favre, Magnin, Romdhani
and Seeley.

Other contributions to this subject were made by M. Goze and J.M. Ancochea, who classified nilpotent
Lie algebras of dimension 7 [8], G. Tsagas [3, 258], who classified in 1999 the real nilpotent Lie algebras
of dimension 8, and by that same author, together with A. Kobotis and T. Koukouvinos [260], who dealt
with those real nilpotent Lie algebras of dimension 9 which have a maximum abelian ideal of dimension
7. Since then, the classifications of both real or complex nilpotent Lie algebras of dimension greater than
or equal to 8 have not been obtained yet, in spite of the frequent attempts made by several authors to get
them. The problem is so unsolved at present and it has made that other subjects related with these algebras
are being now considered before it. To that respect, it is quite significative the opinion of some experts, like
Shalev and Zelmanov (Efim I. Zelmanov, URSS 1955, Fields Medal 1994), who think that it is already no
possible to obtain in an explicit way the classification of nilpotent Lie algebras of bigger dimensions (see
[232]). Another opinion in this sense is due to Kac, who affirms that this is a wild problem and the general
classification of nilpotent Lie algebras is believed to be impossible, if not very difficult (see on page 4 of [142]).

In any case, it is really obvious that nowadays it is totally necessary to use the computer and a systematic
approach to study the problem of classifying Lie algebras, in general, and that the more the computer is
involved, the more systematic the methods have to be. So, in the last few years of the current century,
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several symbolic computational packages have been being specially constructed with the finality of being
used to deal with Lie algebras, like MAGMA, GAP or ACTION, for instance. Apart from that, nilpotent
Lie algebras over fields different from R or C are now being considered.

So, in the first years of the current century, C. Schneider adapted the p-group generation algorithm
to classify small-dimensional nilpotent Lie algebras over small fields. Using the implementation of his
algorithm, he listed in 2005 the nilpotent Lie algebras of dimension up to 9 over F2 and those of dimension
up to 7 over F3 and F5, where F denotes either the real or the complex number field (see [228]).

By using the new packages, de Graaf has also got significative advances in the classification of nilpotent
Lie algebras. Indeed, he got in 2005 the classification of 6-dimensional nilpotent Lie algebras over fields
of characteristic different from 2. To do this, de Graaf used a essentially constructive method, based
on a previous method by Skjelbred and Sund, along with another one based on Gröbner bases to find
isomorphisms (see [114]). Moreover, this author has recently also obtained the classification of small-
dimensional solvable Lie algebras by using a simple method which allowed him to classify three- and
four-dimensional solvable Lie algebras, over fields of any characteristic (recall that nilpotent Lie algebras
are a subset of solvable Lie algebras) [113].

C. Bartolone, A. di Bartolo and G. Falcone (see [16]) published a paper devoted to the classification of
nilpotent Lie algebras over an arbitrary field with a 2-dimensional commutator ideal. They extended some
results by M.A. Gauger ([104]) for the 2-step nilpotent case to the cases where the commutator is not abelian
and where the field is not necessarily algebraically closed but has sufficiently many elements.

Finally, in 2012, S. Cicalò, W. de Graaf and C. Schneider [64] have presented a uniform classification
of six-dimensional nilpotent Lie algebras over an arbitrary ground field F of any characteristic. They
distinguished two cases depending on the characteristic was 2 or different from 2. This last case had been
solved in a previous paper by de Graaf (see [114]) and the authors improved and simplified in [64] some
of the arguments there. In characteristic 2 (see [64]), the authors agreed with the results obtained by M.P.
Gong in his Ph.D. Thesis [111], correcting an inaccuracy there.

Apart from all facts just mentioned, one of the authors of this contribution dealt in his Ph.D. Thesis,
in 1991, with filiform Lie algebras, that is, with that special class of n-dimensional nilpotent Lie algebras
whose characteristic sequence (concept introduced by J.M. Ancochea and M. Goze in [7]) is (n − 1, 1). Let us
recall that these algebras had been introduced by M. Vergne in the late 1960’s (in her Ph. D. Thesis, later
published in 1970 (see [266])), although before that, N. Blackburn [29] had already studied the analogous
class of finite Lie p-groups and used the term maximal class to call them, which is also now used for Lie
algebras. In fact, both terms filiform and maximal class are synonymous. In her Ph.D. Thesis ([265], Vergne
showed that within the variety of nilpotent Lie multiplications on a fixed vector space, non-filiform ones
can be relegated to small-dimensional components; thus, from some intuitive point of view, it is possible
to consider that quite a lot nilpotent Lie algebras are filiform. Moreover, filiform Lie algebras are the most
structured subset of nilpotent Lie algebras, which allows them to be studied and classified easier than the
set of nilpotent Lie algebras.

With respect to the classifications of these algebras, several works following the seminal paper by Vergne
can be cited. Indeed, Ancochea and Goze [7] already reached in 1988 the classification of complex filiform
Lie algebras of dimension 8. However, this list of algebras was incomplete and the authors rectified it
themselves in 1992 [9], almost at the same time as C. Seeley [230] did it in an independent way.

In 1991, J.R. Gómez classified those of dimension 9 in his Ph. D. Thesis, later published by F.J. Echarte
and himself in [84], and L. Boza, F.J. Echarte and J. Núñez [39] those of dimension 10 in 1994. Later,
J.R. Gómez, A. Jiménez and Y.B. Khakimdjanov [110], in 1996, gave the classification of these algebras on
dimension 11 as well as some corrections of previous classifications. J.C. Benjumea et al. [21] also tried to
tackle bigger dimensions by obtaining in 1996 the laws of the filiform Lie algebras of dimension 13 and 14.

Regarding the explicit lists, L. Boza, E.M. Fedriani and J. Núñez [40] got in 1998 the classification of
complex filiform Lie algebras of dimension 12, and also showed in 2003 ([42]) an explicit classification of
such algebras of dimension 11, in a different way as the one used in [110]. Although [41] supplied a method
valid for every dimension over the complex field, the involved computations are too hard to be nowadays
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tacked successfully.

Moreover, some subsets of filiform Lie algebras have also been studied. In this sense, as a recent
illustration, L.R. Bosko computed in [37] all the filiform Lie algebras (called in the paper as of maximal
class) for the Schur multiplier t(g) ≤ 16, in both the complex and real fields. This type of algebras does not
exist for dimension 14, 15 and 16. Remember that in mathematical group theory, the Schur multiplier (or
Schur multiplicator) is the second homology group H2(G) of a group G. And notice that the Schur multiplier
of the Lie algebra has also been used in [199] to classify nilpotent Lie algebras in general.

So, as a summary of this section, it can be affirmed that up to isomorphism the classification of nilpotent
Lie algebras of dimension less than or equal to 5 is well known and does not depend on the ground field,
in the sense that the tables of structure constants of the algebras can be chosen with integer entries. The
classification of six-dimensional nilpotent Lie algebras goes back to the Ph.D. Thesis of K.A. Umlauf and
then, Morozov published a classification of such Lie algebras over fields of characteristic 0. Recently several
classifications have appeared, over various ground fields, e.g., over algebraically closed fields, over various
finite fields, and over fields of characteristic different from 2. However, in spite of there is indeed lot of
works devoted to classification of nilpotent Lie algebras of low dimension (those cited above and many
more), with numerous mistakes and omissions. Even worse, all they are using different nomenclature and
invariants to classify the algebras, and it is a non-trivial task to compare different lists. Luckily, W. de
Graaf undertook a painstaking task to make an order out of this somewhat messy situation in [114]. Even
better, he provided an algorithm for identifying any given nilpotent Lie algebra with one in his list, and
the corresponding code is available as a part of GAP package. He built on earlier work of Skjelbred-Sund
cited above and his own method of identification of Lie algebras by means of Groebner bases. In this
way, he might have detected the previously mentioned mistake in the Thesis of Gong [111], in which he
classified all algebras up to dimension 7 over algebraically closed fields of any characteristics except 2, and
also over reals and he checked and revised previous classifications. Indeed, de Graaf claims that Gong lost
a one-parameter family of 6-dimensional algebras. If this is true, then his results on 7-dimensional algebras
may be also incomplete, unfortunately.

To conclude this section we would also like to cite some authors who have got partial classifications
concerning other particular properties of nilpotent Lie algebras, like J. Scheuneman in 1967 [227], M.A.
Gauger in 1973 [104], P. Revoy in 1980 [217] and D. Fernández-Ternero and J. Núñez, in 2001, who classified
two-step nilpotent Lie algebras or those dealing with characteristically nilpotent Lie algebras [93]. These
last algebras were introduced in the first place by J. Dixmier and W.G. Lister in 1957 [78], being G. Leger
and S. Togo who first published a paper about them in 1959 (see [168]). Later, F.J. Castro and J. Núñez
dealt with these algebras in the particular case of being also filiform (see [53, 54], for instance). A very
interesting monograph on these characteristically nilpotent Lie algebras, in which its historical evolution is
commented, was published by Ancochea and Campoamor (see [5]).

In that same line, different subclasses of nilpotent Lie algebras have also been classified. For instance,
recently, B. Ren and L.S. Zhu gave in 2011 a complete classification of 2-step nilpotent Lie algebras N
(over the field of complex numbers C) of dimension 8 which have a 2-dimensional center. They showed a
description of five algebras with those characteristic which are mutually non-isomorphic, and showed that
they are the only ones that may occur. However, as themselves indicate, the descriptions of those algebras
were too complicated to be presented in their paper (see [215]).

In 2014, A.Kh. Khudoyberdyev and Z.Kh. Shermatova classified five-dimensional solvable Leibniz
algebras with a four-dimensional non-Lie nilradical [156] and S. Benayadi and A. Elduque, quadratic Lie
algebras of low dimension [20].

In 2015, J.M. Ancochea and R. Campoamor-Stursberg [6] classified solvable real rigid Lie algebras with
a nilradical of dimension n = 6, and a year later, in 2016, several authors published on the classifications of
Lie algebras. Indeed, R.M. Navarro classified filiform Lie algebras of order 3, [195], Falcón, Falcón, Núñez,
Pacheco and Villar the filiform Lie algebras up to dimension 7 over finite fields [86], and I. Darijani and H.
Usefi [74] the 5-dimensional p-nilpotent restricted Lie algebras over perfect fields.

In he same year, 2016, Schneider and Usefi classified p-nilpotent restricted Lie algebras of dimension at
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most 4 [229] and L. Cagliero and F. Szechtman the linked indecomposable modules of a family of solvable
Lie algebras over an arbitrary field of characteristic 0 [48]. Besides, in [73], H. Darabi, F. Saeedi and M.
Eshrati dealt with capable n-Lie algebras and the classification of nilpotent n-Lie algebras with s(A) = 3
and A.S. Hegazi, H. Abdelwahab and A.J. Calderon Martin classified the n-dimensional non-Lie Malcev
algebras with (n − 4)-dimensional annihilator [121].

In 2017, M. Ceballos, J. Núñez and A.F. Tenorio obtained new results on the classification of filiform
Lie algebras [55], Ren and Zhu classified 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional
center [216] and K. Furutani and I. Markina, gave a complete classification of pseudo H-type Lie algebras
[100].

Finally, in 2018, D.S. Shirokov classified Lie algebras of specific type in complexified Clifford algebras
[238] and E. Khamseh and S.A. Niri gave in [153] the classification of pair of nilpotent Lie algebras by their
Schur multipliers.

2. Kac-Moody algebras

In this section, an overview of the evolution of the study of different aspects concerning Kac-Moody
algebras is considered.

2.1. Kac-Moody algebras: General aspects and classifications

As it was mentioned in the introduction, Victor Kac and Robert Moody published in 1968 in an inde-
pendent way each papers about the later so-called Kac-Moody algebras (see [139] and [187], respectively). It
produced a different way of research in the study of the classification of nilpotent Lie algebras due to these
Kac-Moody algebras are of infinite dimension, in general, and constitute a generalization of the semi-simple
Lie algebras.

D.H. Peterson and V.G. Kac (see [207]) gave in 1983 a great step forward to advance in the completion
of the classification of Kac-Moody algebras with a demonstration of the isomorphism theorem which
claims that two isomorphic Kac-Moody algebras must have, up to permutations of the indices, the same
generalized Cartan matrix, or equivalently, their root systems isomorphic to each other.

However, a year earlier, in 1982, L. Santharoubane, by using the system of weights previously introduced
by F. Bratzlavsky [43] in 1972 and G. Favre [87] in 1973, had canonically associated a Kac-Moody algebra
g(A) to each finite nilpotent Lie algebra of maximal rank L (it is said then that L is of the type A) and used
this fact to reduce the problem of classifying these nilpotent Lie algebras to obtain for each type A some
ideals of the positive part of the Kac-Moody algebra g(A) up to the action of the automorphism group of
the Dynkin diagram of A, S̃`(A) (see [222]).

There exist three families of generalized Cartan matrices: finite, affine and indefinite. Various authors,
such as Tsagas, Agrafiotou, Favre, Santharoubane and the authors of this contribution have studied the
nilpotent Lie algebras of maximal rank and of type A, when A is of finite or affine type.

Indeed, Santharoubane proved that the problem of finding all nilpotent Lie algebras of maximal rank
and of type A is equivalent to the concrete problem of finding some ideals of the positive part of the
Kac-Moody algebra g(A) up to the action of S̃`(A).

So, by using this technique, the previously mentioned authors have studied the nilpotent Lie algebras
of maximal rank and of type A, when A is of finite or affine type (they published their papers between 1996
and the first decade of the current century).

Regarding the first family of Kac-Moody algebras, i.e. the simple Lie algebras, the nilpotent Lie algebras
of maximal rank corresponding to the types Al, Bl, Cl and Dl, with l ≥ 1, l ≥ 2, l ≥ 3, and l ≥ 4, respectively,
were dealt by G. Favre and L.J. Santharoubane in [88]. Later, other authors have made research on these
algebras for other finite types. So, the types E6, E7 and E8 were studied by Agrafiotou and Tsagas in [3] and
the type F4 by G. Favre and G. Tsagas [89]. There also exist several results on this family of algebras, in the
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case of being defined over algebraically closed fields of non-null characteristic. The main contributions are
cited at the end of this subsection.

The second family of Kac-Moody algebras are the affine Lie algebras. Santharoubane studied in 1982
(see [222]) the affine types A(1)

1 and A(2)
2 . He proved that there are exactly (up to isomorphism), 3 infinite

series and 10 infinite series, respectively, of nilpotent Lie algebras of maximal rank such that A(1)
1 and A(2)

2
are associated Cartan matrices.

S. Kanagavel considered in [143] the non-twisted affine type of rank 3 and of types A(1)
2 , B(1)

2 and G(1)
2 .

He proved that there are exactly n(X) infinite series and a continuous family of nilpotent Lie algebras of
maximal rank and of type X, where n(A(1)

2 ) = 9, n(B(1)
2 ) = 18 and n(G(1)

2 ) = 39.

Next, the types D(1)
4 and D(1)

5 were studied by X. Agrafiotou in [1] and [2], respectively. This author found
that there are exactly 81 infinite series (up to isomorphism) with discrete parameters and 8 infinite series
with continuous parameters of nilpotent Lie algebras of maximal rank and of type D(1)

4 and 217 infinite
series (up to isomorphism) with discrete parameters and 18 infinite series with continuous parameters of
these algebras of type D(1)

5 .
Later, the authors of this contribution studied nilpotent Lie algebras of maximal rank of non-twisted

and twisted affine types, in 2001 and 2002. With respect the non-twisted affine types F(1)
4 and E(1)

6 (see [94]
and [95]) they proved that up to isomorphism there are 1095 infinite series with discrete parameters and 28
infinite series with continuous parameters of nilpotent Lie algebras of maximal rank and of type F(1)

4 and
2087 infinite series with discrete parameters and 126 infinite series with continuous parameters of nilpotent
Lie algebras of maximal rank and of type E(1)

6 .
Later, D. Fernández-Ternero studied the nilpotent Lie algebras associated with the twisted affine Kac-

Moody algebra. She found that there are 88 infinite series (up to isomorphism) with discrete parameters
and 1 infinite series with continuous parameter of nilpotent Lie algebras of Kac-Moody type D(3)

4 (see [92]).
In 2006, Santharoubane studied in [223] the nilpotent Lie algebras of maximal rank and general non-

twisted affine type X(1)
` by the previous technique in addition to the study of grassmanians. For rank 2 he

showed the explicit list of the series with discrete and continuous parameters of nilpotent Lie algebras of
Kac-Moody types A(1)

1 , A(1)
2 , C(1)

2 and G(1)
2 . Fernández-Ternero and Núñez also considered a fixed (and low)

nilpotent index instead of a fixed Kac-Moody type. So, with respect to the classification of metabelian Lie
algebras (nilpotent Lie algebras with nilpotent index 2), the main results obtained can be checked in [93].

Regarding these classifications, authors would like to point out certain reflections with respect to the
problems still unsolved. So, we consider that in view of the research on nilpotent Lie algebras of maximal
rank previously exposed, the following natural steps should be to complete the study of the twisted affine
case and to begin with the indefinite one.

Regarding the twisted affine type, as it has been commented before, there exist some works dealing
with certain Cartan matrices: Santharoubane studied in [222] the algebras of Kac-Moody type A(2)

2 and
Fernández-Ternero studied in [92] those of Kac-Moody type D(3)

4 . Although in both cases the considered
technique is the same as the one used for the non-twisted type, it occurs that in the twisted affine case the
complexity is greater when the roots system of the Kac-Moody algebras are dealt. We think that to obtain
the ideals of ∆+ included in ∆++ could be useful to consider the digraph associated with n+ in a similar way
as it was done in [75] for the non-twisted case.

With respect to the indefinite Kac-Moody algebras, they are scarcely known nowadays. It could be a
good idea to begin this study by continuing the study of the hyperbolic type since there are recent studies
about the roots system and other aspects of the Kac-Moody algebras of this type (see [248], for instance).

Apart from all of this information just mentioned on classifications of Kac-Moody algebras, it is con-
venient to note that there exist in the literature many other classifications of other concepts related to
Kac-Moody algebras. Indeed, in 1987 (later published in 1988), J.B. Zuber gave in [280] the classification
of modular invariants made of characters of the Virasoro or Kac-Moody algebras. He also showed their



D. Fernández-Ternero, J. Núñez-Valdés / Filomat 35:10 (2021), 3445–3474 3452

physical implications for the classification of universality classes of 2D critical phenomena.

In 1988, F. Levstein [172] classified the conjugacy classes of involutive automorphisms of affine Kac-
Moody Lie algebra. Fix a triangular decomposition of an affine Lie algebra, he considered two types of
automorphisms and he gave a complete non-redundant list of involutive automorphisms of the first kind,
together with the corresponding fixed point sets. He next used a result of Kac and Peterson to describe
the involutions of the second kind. However, he was unable to write down the fixed point sets in this
case and so could not check if the list was redundant. At this respect, J. Bausch [17] studied and classified
automorphisms of finite order and the first kind of affine Kac-Moody algebras in 1989. A year later, V.K.
Dobrev and A.H. Ganchev [79] gave the classification of modular invariant partition functions for the
twisted N = 2 superconformal algebra, twisted SU(2) Kac-Moody algebra and D2K parafermions.

In 1990, K.C. Pati and K.C. Tripathy [204] dealt with super Kac-Moody algebras and extended the simple
root system of a super Lie algebra of rank r by adding the negative of the highest root of this super Lie
algebra. Then an (r + 1) × (r + 1) matrix can be constructed by the extended simple root system. It was
called the extended Cartan matrix, and the corresponding Dynkin diagram was called the extended Dynkin
diagram. These extended simple root systems and extended Dynkin diagrams yield the untwisted super
Kac-Moody algebras. They obtained twisted super Kac-Moody algebras from the outer automorphisms of
super Lie algebras and gave the Chevalley basis and canonical basis. The central extension problem was
also discussed.

Bennett in 1993 [26] got the the complete classification of the indecomposable symmetrizable generalized
Cartan matrices M of indefinite type, admitting special roots and also showed the determination of the set
of special roots in such cases. That same year and in the next one, J. Fröhlich and E. Thiran (see [98]) studied
integral quadratic forms, Kac-Moody algebras, and fractional quantum Hall effect and they gave an ADE−O
classification (remember that the ADE classification scheme is encountered in many areas of mathematics,
most notably in the study of Lie algebras). Also in 1994, D. Casperson gave a complete characterization of
those Kac-Moody algebras which have the property that all of their imaginary roots are strictly imaginary
(recall that an imaginary root τ is defined to be a strictly imaginary root if for every real root α either τ+α or
τ − α is a root). After deriving a simple test for whether or not a given imaginary root is strictly imaginary,
Casperson gave a complete classification of the strictly imaginary roots of 2×2 Kac-Moody algebras and he
proved that a minimal non-strictly imaginary root must necessarily be a minimal imaginary root (see [51]).

In 1995, V. Back-Valente, N. Bardy-Panse, H. Ben Messaoud and G. Rousseau [12] classified almost split
forms of Kac-Moody algebras, thus generalizing results by J. Tits about the semi-simple finite-dimensional
case. In particular, their paper contained a complete list of all the real split forms of affine Kac-Moody
algebras, and of their relative root systems.

As we have previously mentioned, the completion of the classification of Kac-Moody algebras was
done by Peterson and Kac in 1983 [207]. However, the corresponding classification for Kac-Moody groups
remains unsolved before 2000. That year, Y. Chen [59], used one of his previous works on isomorphisms of
adjoint Chevalley groups over integral domains (see [58]) to carry it out for non-twisted affine Kac-Moody
groups over algebraically closed fields of characteristic 0 and for the corresponding loop groups (which are
closely related): two groups of this kind are (abstractly) isomorphic to each other if and only if the root
systems and the fields are isomorphic to each other.

V.A. Gritsenko and V.V. Nikulin dealt with the classification of Lorentzian Kac-Moody algebras in 2002
[116]. These algebras are the next important class of (generalized) Kac-Moody algebras after semi-simple
and affine algebras and play the decisive role in the solution of the Moonshine Conjecture on representations of
the Monster, due to R. E. Borcherds. Starting from Borcherds’ example, they defined the class of Lorentzian
algebras and finally proved that there are 29 such algebras.

Ben Messaoud and Rousseau gave in 2003 (see [18, 19]) the classification of almost compact real forms
of affine Kac-Moody algebras, and this same year, V. Bouchard and H. Skarke dealt with the link between
affine Kac-Moody algebras and tops [38]. By a top the authors meant a 3-dimensional convex lattice
polytope with one facet containing the origin and the other facets at the distance one from the origin. Such
polytopes sometimes appear as halves of the reflexive polytopes that have a hyperplane section which is
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also a reflexive polytope. To every top the authors associated an affine Kac-Moody algebra by relating it via
a generic hypersurface in a toric variety kind of construction to an elliptic fibration, as studied by K. Kodaira
in 1966. All possible tops were then classified, for each of the 16 possible base polygons. It turns out that
there are finitely many series of tops. Besides listing them, the authors calculated the corresponding affine
Kac-Moody algebras and finally discussed the string theory motivation and connections.

In 2006, N.R. Scheithauer worked on the classification of automorphic products and generalized Kac-
Moody algebras [226] and a year later, C. Hoyt and V. Serganova classified finite-growth general Kac-
Moody superalgebras [126]. As it was known, a classical result by V. G. Kac established that a contra-
gredient (sic) Lie algebra of finite growth corresponding to an indecomposable Cartan matrix is either
simple finite-dimensional or affine (finite growth in this context means that the dimension of the graded
components, in the natural grading, depends polynomially on the degree). Then, if A is a Cartan matrix
and 1(A) the corresponding contragredient Lie superalgebra (it should be noted that, unlike in the case of
Kac-Moody Lie algebras, the Cartan matrix of a Lie superalgebra is not unique), both authors classified
algebras 1(A) of finite growth without imposing any conditions on A. Their main result stated that if A is
indecomposable and has no zero rows then A either is symmetrizable or is of one of the following types:
D(2, 1, 0), D̂(2, 1, 0),S(1, 2, 0),S(1, 2, a), a , Z or q(n)(2). The authors also considered the case when A has a
row of zeroes. In this case the algebra 1(A) is not simple and is obtained by extending a finite-dimensional
algebra by a Heisenberg algebra. They emphasized that a crucial role in the classification is played by the
odd reflections.

Finally, it is also convenient to note that as it was well-known, the theory of a generalized Kac-Moody
algebra associated to a generalized Cartan matrix was initiated by R. E. Borcherds in 1988, as part of his
proof of the Conway-Norton conjectures on the representation theory of the Monster simple group (see
[32]). In 2007, N. Sthanumoorthy and P.L. Lilly [246] completed the classifications of this type of algebras
possessing special imaginary roots and strictly imaginary property. To this end, he used the classifications
of Kac-Moody algebras which possess special imaginary roots and satisfy the (so-called) SIM property, given
by C. Bennett [26] and D. Casperson [51] to give a complete classifications in the generalized Kac-Moody
case by discussing whether or not the matrix A is an extension of a generalized Cartan matrix.

In the years 2013, 14 and 15, there are lots of references dealing with generalized Kac-Moody algebras
in the main data base. Some of the most significative are the following:

In 2013, S.J. Kang, M. Kashiwara and S.J. Oh studied categorification of highest weight modules over
quantum generalized Kac-Moody algebras [144] and M. Ishii dealt with a path model for representations
of generalized Kac-Moody algebras [128, 129, 144].

A year later, G. Höhn and N. R. Scheithauer [123] introduced a generalized Kac-Moody algebra of
rank 14 and finally, in 2015, H. Gan and Y. Tan dealt with a class of generalized Kac-Moody algebras
arising from 2-fold affinizations [103], Ishii [129] studied Demazure character formulas for generalized Kac-
Moody algebras and J. Chen and Z. Zhao proposed a fundamental representation of quantum generalized
Kac-Moody algebras with one imaginary simple root [57].

Continuing with this subsection and as we previously indicated, we show at this point some results
obtained on algebras defined over algebraically closed fields of non-null characteristic. Indeed, the research
on finite-dimensional simple Lie algebras over algebraically closed fields of characteristic p > 0 was begun
by N. Jacobson [131, 132] and H. Zassenhaus [278] in the 30s. In these papers, Jacobson noted certain
identities which connected addition, scalar multiplication, commutation and pth powers in an arbitrary
associative algebra of characteristic p , 0. These lead naturally to the definition of a class of abstract algebras
called restricted Lie algebras which in many respects bear a closer relation to Lie algebras of characteristic 0
than ordinary Lie algebras of characteristic p.

Later, in 1966, A.I. Kostrikin and I.R. Safarevic [159] conjectured that each finite-dimensional restricted
simple Lie algebra over an algebraically closed field of characteristic p > 5 is either of classical or Cartan type
and they made substantial progress towards establishing it. The conjecture was proved for characteristic
p > 7 by R.E. Block and R.L. Wilson in 1988 [31]. But it was necessary to reformulate the statement due
to the fact that G.M. Melikyan [183] discovered in p = 5 a new class of simple Lie algebras neither of
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classical nor of Cartan type. During the last half-century, many authors contributed to different aspects of
this classification. Indeed, different recognition results were obtained first by Wilson [270] for filtered Lie
algebras and by Kostrikin and Safarevic [160] and later by V. G. Kac [140] for graded Lie algebras.

Other important classification results about subfamilies of finite simple Lie algebras were obtained by
Kostrikin [158] when the dimension of the algebra is less than or equal to the characteristic of the field and
by B.Y. Veisfeiler and V.G. Kac [263] for p > 7 and contragredient Lie algebras. These two last authors gave
an uncomplete classification result. Other authors, like I. Kaplansky [152], R.L. Wilson [271], G. Benkart
and J.M. Osborn [25], and A. Premet [210] studied finite simple Lie algebras containing a subalgebra of
Cartan type with additional properties. Concretely, Premet proved that if L is a finite dimensional simple
Lie algebra over an algebraically closed field of characteristic p > 3 of absolute toral rank 2 and T is a 2-
dimensional torus in the semisimple p-envelope of L, then L is either classical or a Block algebra or contains
sandwich elements which are homogeneous with respect to T or a conjugate to T. He also gave several
dimension estimates.

In the last twenty eight years this last author and H. Strade obtained great advances in the resolution
of the problem and finally proved the Classification Theorem for p > 3, that is, they showed that any
finite-dimensional simple Lie algebra over an algebraically closed field of characteristic p > 3 is of classical,
Cartan type or Melikyan type. Using heavily an important intermediate result of the paper of R.E. Block
and R.L. Wilson and many ideas for solutions to problems arising in particular cases, Strade completed the
proof in the case p > 7 in 1998 [249]. The proof of the Classification Theorem in the case p = 5 was given
by Premet and Strade [211]. Some papers about characteristic two or three, for mentioning some, are those
by S.M. Skryabin [242], who showed an example not found in the classification by B.Y. Veisfeiler and V.G.
Kac, G. Brown [45], who dealt with families of simple Lie algebras of characteristic two, and G. Benkart,
A.I. Kostrikin and M.I. Kuznetsov [24]. In this last paper, the authors determined all finite-dimensional
simple graded Lie algebras L over an algebraically closed field of characteristic 3 with a classical reductive
component L0 and a nonrestricted representation on L−1.

At this respect, Strade has been collecting the most important results published on this topic [250–252].

2.2. Kac-Moody algebras: other related topics

There are more than 175 references in the literature which have the words Kac-Moody algebras during the
period between 1980 and 1990. The first of them is a paper by L. Dolan, entitled Kac-Moody algebra is hidden
symmetry of chiral models, published in Physical Review Letters in 1981 (see [80]). In the paper, according
to the recension by D.B. Creamer, the author studies the relationship between the infinite set of non-local
currents in two-dimensional chiral models and Kac-Moody algebras (affine Lie algebras).

In order to construct groups naturally associated with a Kac-Moody Lie algebra L, J. Tits had emphasized
the use of amalgamated products of groups coming from certain subalgebras of L (see [257]). For example,
the sum L+ of positive root spaces should yield a prounipotent group; roughly speaking, one exponentiates
and then passes to the closure in the completion of the universal enveloping algebra relative to the natural
grading. But when L is permitted to have a radical (maximal graded ideal meeting the Cartan subalgebra
trivially), the procedure is more subtle. O. Mathieu, at this respect, takes advantage of this fact to characterize
in 1984 the unique largest prounipotent group which meets the requirements of Tits’s construction (see
[180]).

Next, some of the most relevant references which one can find in the literature over Kac-Moody algebras
among the more than 266 which exist between 1990 and 2000 are the following. In 1990, S. Kumar [162]
dealt with the Bernstein-Gelfand-Gelfand resolution for arbitrary Kac-Moody algebras and E. Neher and D.
Nguyen studied finite gradings of these algebras (see [197]). In 1991, N. Andruskiewitsch introduced the
representation theory of inner almost compact forms of Kac-Moody algebras [10] and Borcherds considered
central extensions of generalized Kac-Moody algebras [33]. S. Naito dealt in 1992 and 1993 with the
Kostant’s formula and homology vanishing theorems for generalized Kac-Moody algebras (see [192, 193],
respectively).
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In 1994, G. Benkart, S.K. Kang and K.C. Misra studied indefinite Kac-Moody algebras of special linear
type [22] and the same authors published two years later a paper on weight multiplicity polynomials for
affine Kac-Moody algebras of type A(1)

r (see [23]). Borcherds gave a characterization of generalized Kac-
Moody algebras in 1995 [35] and Mathieu, in 1996 [182] dealt with some modular representations of affine
Kac-Moody algebras at the critical level. Shalev studied one year later the relation among the subgroup
structure, the fractal dimension and Kac-Moody algebras, in a paper later published in 1998 [231] and
M.V. Zaitsev in 1997 dealt with varieties of affine Kac-Moody algebras [277]. Y. Barnea, A. Shalev and
E. Zelmanov considered graded subalgebras of affine Kac-Moody algebras in 1998 [14] and to finish the
century, E. Poroshenko [209] studied Gröbner-Shirshov bases for Kac-Moody algebras A(1)

n and B(1)
n and two

papers on hyperbolic Kac-Moody algebras appeared in 1999, by D.V. Lagno and by Tsagas and Agrafiotou
(see [165, 259], respectively).

With the initiation of the current century, papers on Kac-Moody algebras deeply increased. Indeed,
starting from 2000, the studies on these algebras were very extended. That year, Q. Zhang and Z.X. Xia
studied (see [279]) special imaginary roots of a class of generalized Kac-Moody algebras and Poroshenko
(see [209]) considered the Gröbner-Shirshov bases for Kac-Moody algebras A(1)

n and B(1)
n . A year later, D.Y.

Wang [268] made progress in the study of the overalgebras of Borel subalgebras in Kac-Moody algebras, and
Nikulin, who is an author well known for his study of Lorentzian Kac-Moody algebras [198], presented a
summary of the current theory. His starting point was a list of five abstract data that served to define a class
of Lorentzian generalized Kac-Moody superalgebras. There, generalized meant in the Borcherds sense, and
superalgebras were Z2-graded. His main concern was when the abstract data define a finite or essentially
finite (infinite but well-controlled) collection of algebras. He was particularly interested in determining
automorphic forms for the data and constructing their product formulas. In this same year, U. Ray [214]
reviewed the theory of generalized Kac-Moody algebras focusing on Borcherds proof of the celebrated
Moonshine conjecture relating representations of the Monster group and elliptic modular functions.

In 2002, the previously cited Nikulin, joint Gritsenko (see [116]), published a paper devoted to the
classification of Lorentzian Kac-Moody algebras, which are, as it is known, the next important class of
(generalized) Kac-Moody algebras after semi-simple and affine algebras. These algebras play the decisive
role in the solution of the Moonshine Conjecture on representations of certain type of algebras (a further study
on these topics is by J.H. Yang [276] in 2006, where the author dealt with Kac-Moody algebras, the monstrous
moonshine, Jacobi forms and infinite product). M. Rausch de Traubenberg and M.K. Slupinski [213] studied
the problem of representing any Kac-Moody Lie algebra 1(A) associated with an r × r indecomposable
generalized Cartan matrix A as vector fields on the torus C∗r. They constructed certain discrete families
of representations for these algebras, generalizing the well-known discrete families of representations of
sl(2,C) on C∗.

Later, many other papers on Kac-Moody algebras appeared. In one of them, in 2003, Scheithauer [225]
attempted to generalize some of this machinery used by R. E. Borcherds in the proof of his celebrated
Moonshine conjecture (see [34]), which involved constructing the Monster algebra upon which the Monster
group acts, calculating its twisted denominator identities, and using these identities to verify that the
Thompson series are in fact haupt-modules. As a consequence, these twisted denominator identities could
also be thought of as modular forms in two variables. To this end, Scheithauer considered the natural
action of certain automorphism groups of the Leech lattice, on the fake Monster algebra and he conjectured
that the corresponding twisted denominator identities are in fact automorphic forms of singular weight,
and he was able to prove this conjecture for those elements with square-free level and with non-trivial
fixed-point lattices. Among many computations and observations, the author noted that those elements
of square-free order corresponding to the Mathieu group corresponded to a family of nice generalized
Kac-Moody algebras. This same year, C. Lu and H. Xu [173] got a sufficient condition for pairing problem
of generators in symmetrizable Kac-Moody algebras.

In 2004, E.M. Souidi and M. Zaoui [244] dealt with the classical problem of the classification of maximal
Lie subalgebras of a finite-dimensional Lie algebra, which had been previously treated by many authors.
They investigated when a subalgebra is maximal, or when it is maximal among the reductive Lie sub-
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algebras, recovering some classical results in an alternate way. In this same year, A.J. Feingold and H.
Nicolai [90] studied (isomorphism classes of) subalgebras of Lorentzian Kac-Moody algebras. In the case
of the unique hyperbolic Kac-Moody algebra of rank three that contains both finite and affine Kac-Moody
subalgebras, they found all simply laced rank two hyperbolic Lie algebras and an infinite series of indef-
inite Kac-Moody subalgebras of rank 3. Later, in 2005, T. Damour studied the structure of the general,
inhomogeneous solution of (bosonic) Einstein-matter systems in the vicinity of a cosmological singularity.
He reviewed the proof (based on ideas of Belinskifii-Khalatnikov-Lifshits and technically simplified by the
use of the ArnowittDeser-Misner Hamiltonian formalism) that the asymptotic behavior, as one approaches
the singularity, of the general solution is describable, at each (generic) spatial point, as a billiard motion in
an auxiliary Lorentzian space (see [70]).

In 2006, Z. Wu [273] associated to a generalized Kac-Moody algebra a collection of associative algebras
indexed by the positive integers. These algebras were modeled on the quantized enveloping algebra of
a generalized Kac-Moody algebra. They had a Hopf subalgebra isomorphic to the quantized enveloping
algebra, and a particular case had already been studied by J.H. Yang for semi-simple Lie algebras a year ear-
lier. P. Fiebig [96] generalized an important result about the structure of category O for a finite-dimensional
semi-simple Lie algebra, which was Soergels combinatorial description of the projective modules in O. He
studied the case of a symmetrizable Kac-Moody Lie algebra outside the critical hyperplanes. In particular,
he showed that the structure of a block of category O in that case depended only on the corresponding
integral Weyl group and its action on the parameters of Verma modules. That same year, K. Jeong, S.J.
Kang and M. Kashiwara (see [134]) developed a crystal basis theory for quantum generalized Kac-Moody
algebras.

In 2008, S. Gaussent and G. Rousseau gave in [105] the definition of a kind of building for a symmetrizable
Kac-Moody group over a field endowed with a discrete valuation and with a residue field containing the
complex numbers, which they call a hovel, due to its pathological behaviour. This concept allowed them to
generalize some previous results by themselves, separately, and joint Littelmann, and by using that concept
they got good generalizations of Gaussent-Littelmann’s results and obtained a new result which is analogue
of some previous ones in the semi-simple case.

In 2009, Z.X. Chen and Y.N. Lin [60] dealt with tubular algebras by constructing quotient algebras
of complex degenerate composition Lie algebras by some ideals, starting from Hall algebras of tubular
algebras, and they proved that the quotient algebras are isomorphic to the corresponding affine Kac-
Moody algebras. Moreover, they showed that the Lie algebra generated by A-modules with a real root
coincides with the degenerate composition Lie algebra generated by simple A-modules.

Taking into consideration that Borcherds had introduced in 1988 the notion of generalized Kac-Moody
algebras, Sthanumoorthy and Lilly proved in different contributions some properties of these algebras.
Indeed, they extended the notion of purely imaginary roots of Kac-Moody algebras to them and classified
all of generalized Kac-Moody algebras having purely imaginary property. They also found among these
last algebras those whose purely imaginary roots are strictly imaginary, giving also complete classifications
of generalized Kac-Moody algebras which have special imaginary roots and strictly imaginary property.
Later, in 2007 (see [247]), both authors continued with this research by determining explicitly the root
multiplicities of all roots of generalized Kac-Moody algebras associated with Borcherds-Cartan matrices (of
order 3) which are extensions of finite A3, affine A(1)

2 and hyperbolic HA1, and they also computed the root
multiplicities of some generalized Kac-Moody algebras with more than one imaginary simple root.

Starting from 2010 lots of papers on these algebras have been published. Among them, the most relevant
are now indicated.

A. Wassermann published in 2010 the notes which he used for a Part III course given in the University
of Cambridge in autumn 1998 (see [269]). They contain an exposition of the representation theory of
the Lie algebras of compact matrix groups, affine Kac-Moody algebras and the Virasoro algebra from a
unitary point of view. The treatment uses many of the methods of conformal field theory, in particular
the Goddard-Kent-Olive construction and the Kazami-Suzuki supercharge operator, a generalization of the
Dirac operator. The proof of the Weyl character formula is taken from unpublished notes of P. Goddard.
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The supersymmetric proof of the Kac character formula for affine Kac-Moody algebras was also found
independently at roughly the same time by Greg Landweber in his Harvard Ph.D. dissertation. One of the
main novelties of this approach is a very rapid proof of the Feigin-Fuchs character formula for the discrete
series representations of the Virasoro algebra.

The same year, T. Bliem [30] introduced the notion of a chopped and sliced cone in combinatorial
geometry and proved two structure theorems for the number of integral points in the individual slices
of such a cone. He observed that this notion applied to weight multiplicities of Kac-Moody algebras
and Littlewood-Richardson coefficients of semi-simple Lie algebras, where he obtained the corresponding
results.

H. Glöckner, R. Gramlich and T. Hartnick [108] studied final group topologies and their relations to
compactness properties. In particular, they were interested in situations where a colimit or direct limit is
locally compact, a kω-space, or locally kω. They also showed, as a first application, that unitary forms of
complex Kac-Moody groups can be described as the colimit of an amalgam of subgroups (in the category
of Hausdorff topological groups, and the category of kω-groups). Their second application concerned
Pontryagin duality theory for the classes of almost metrizable topological abelian groups, resp., locally kω
topological abelian groups, which are dual to each other. In particular, they explored the relations between
countable projective limits of almost metrizable abelian groups and countable direct limits of locally kω
abelian groups.

That same year 2010, Laamara, Belhaj, Boya, Medari and Segui [164] discussed quiver gauge models
with bi-fundamental and fundamental matter obtained from F-theory compactified on ALE spaces over
a four-dimensional base space. They focussed on the base geometry which consists of intersecting F0 =
CP1
×CP1 Hirzebruch complex surfaces arranged as Dynkin graphs classified by three kinds of Kac-Moody

algebras: ordinary, i.e finite dimensional, affine and indefinite, in particular hyperbolic. They interpreted
the equations defining these three classes of generalized Lie algebras as the anomaly cancelation condition
of the corresponding N = 1 F-theory quivers in four dimensions.

In 2011 S.J. Kang, S.J. Oh and E. Park [150] introduced the notion of perfect bases for integrable modules
over generalized Kac-Moody algebras and showed that the colored oriented graphs arising from perfect
bases were isomorphic to the highest weight crystals Bλ over quantum generalized Kac-Moody algebras.
This same year, A.K. Singh dealt with Dynkin diagrams associated with Kac-Moody algebras in his Thesis
(see [241]). Indeed, he introduced the definition of the extended Dynkin diagrams for affinization of
Kac-Moody algebras and the Dynkin Diagrams associated with the affine Kac-Moody algebras.

S.J. Kang, D.I. Lee, E. Park and H. Park [148] also introduced and generalized in 2011 the notion of
Castelnuovo-Mumford regularity for representations of non-commutative algebras, effectively establishing
a measure of complexity for such objects. The Gröbner-Shirshov basis theory for modules over non-
commutative algebras is developed, by which a non-commutative analogue of Schreyer’s Theorem is
proved for computing syzygies. By a repeated application of this theorem, they constructed free resolutions
for representations of non-commutative algebras and include some interesting examples. In particular,
using the Bernstein-Gelfand-Gelfand resolutions for integrable highest weight modules over Kac-Moody
algebras, they computed the projective dimensions and regularities explicitly for the cases of finite type
and affine type.

Also, M. Gorelik and V. Kac [112] have studied the complete reducibility of representations of infinite-
dimensional Lie algebras from the perspective of representation theory of vertex algebras. Indeed, they
proved, in the first place a general result on complete reducibility of a category of modules over an
associative algebra U, satisfying certain conditions, and introduced the notions of highest weight modules,
Jantzen-type filtrations and Shapovalov-type determinants in this general setup, with the objective of using
them to find the conditions under which any extension between two isomorphic (resp. non-isomorphic)
highest weight modules over U splits. They also classified admissible modules for the Virasoro and the
Neveu-Schwarz algebra, and after recalling some background material on vertex algebras, they have studied
the admissible modules over minimal W-algebras. In particular, they classified the admissible irreducible
vacuum modules over those W-algebras and described all admissible weights vs KW-admissible highest
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weights via the quantum Hamiltonian reduction. As a conclusion, they finally have stated a conjecture,
which is supposed to imply that all simple W-algebras Wk(1, f ) satisfying a certain condition (the C2-
condition), are regular.

A. Felikson and P. Tumarkin [91] classified in 2012 regular subalgebras of Kac-Moody algebras in terms
of their root systems. In the process, they established that a root system of a subalgebra is always an
intersection of the root system of the algebra with a sublattice of its root lattice. They also discussed
applications to investigations of regular subalgebras of hyperbolic Kac-Moody algebras and conformally
invariant subalgebras of affine Kac-Moody algebras. In particular, they provided explicit formulae for
determining all Virasoro charges in coset constructions that involve regular subalgebras.

Also in 2012, A. Braverman and M. Finkelberg [44] have recently proposed a conjectural analogue of
the geometric Satake isomorphism for untwisted affine Kac-Moody groups. As part of their model, they
conjecture that (at dominant weights) Lusztig’s q-analog of weight multiplicity is equal to the Poincare
series of the principal nilpotent filtration of the weight space, as occurs in the finite-dimensional case. At
this respect, W. Slofstra shows in [243] that the conjectured equality holds for all affine Kac-Moody algebras
if the principal nilpotent filtration is replaced by the principal Heisenberg filtration. The main body of his
proof is a Lie algebra cohomology vanishing result. He also gives an example to show that the Poincare
series of the principal nilpotent filtration is not always equal to the q-analog of weight multiplicity, and
finally, he we gives some partial results for indefinite Kac-Moody algebras.

S.S. Sharma and S. Viswanath have studied in [234, 235] Lusztig’s t-analog of weight multiplicities
associated to level one representations of twisted affine Kac-Moody algebras. They obtained an explicit
closed form expression for the corresponding t-string function using constant term identities of Macdonald
and Cherednik. This extends previous work on level 1 t-string functions for the untwisted simply-laced
affine Kac-Moody algebras.

Continuing in 2012, A.U. Maheswari has defined in [177] fuzzy sets on the Cartesian product of the
simple roots of some of the affine type of Kac-Moody algebras. The fundamental fuzzy properties like
normality, convexity and cardinality have been studied for these affine Kac-Moody algebras. The α-level,
strong α-level sets and α-cut decomposition for these fuzzy sets, associated with the affine Kac-Moody
algebras have also been computed.

In the last years, there are more than seventy references on Kac-Moody algebras in the main data base.
Some of the most significative are the following:

In 2013, J, Xiao and F. Xu gave a a refinement (meanwhile, a new proof) of one result by L. Peng and J. Xiao
[205], who had proved in 2000 a theorem for constructing Hall type Lie algebras associated to 2-periodic
triangulated categories. This theorem gave a global realization of symmetrizable Kac-Moody algebras. In
their new proof, Xiao and Xu applied the approach of derived Hall algebras arising in homologically finite
triangulated categories, previously dealt with by themselves in 2008 [274].

In that same year, C. Lu and H. Zhang [174] gave the isomorphic realization of nondegenerate solvable
Lie algebras of maximal rank, which in turn showed the closed connections between nondegenerate solvable
Lie algebras and Kac-Moody algebras, resulting in some new worthy topics in this area.

In 2014, L. Carbone, W. Freyn and K.H. Lee introduced root multiplicities of Kac-Moody algebras and
gave various formulas for these multiplicities. They mainly summarized the known results and methods
for determining root multiplicities for hyperbolic Kac-Moody algebras and posed some open problems for
further study [49]. J. Kübel dealt with a Jantzen sum formula for restricted Verma modules over affine
Kac-Moody algebras at the critical level, [161] and P. Shan, M. Varagnolo and E. Vasserot set a Koszul
duality of affine Kac-Moody algebras and cyclotomic rational double affine Hecke algebras [233].

In 2015, lots of references have gone appearing regarding this topic. Among them, B. Hou and S. Yang
dealt with generalized McKay quivers, root system and Kac-Moody algebras [124], R. Lv and Y. Tan studied
the link between some gim algebras and the associated indefinite Kac-Moody algebras [176] and D. Allcock
[4] found root systems for Lorentzian Kac-Moody algebras in rank 3.

In 2016, S. Eswara Rao, V. Futorny and S.S. Sharma dealt with global and local Weyl modules, already
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introduced via generators and relations in the context of affine Lie algebras in [56]. They continued
that research to study the representations of an affine Lie algebra over a finitely generated commutative
associative unital algebra [85]. M.K. Chuah and R. Fioresi studied admissible positive systems of affine
nontwisted Kac-Moody Lie algebras and their Hermitian real forms and proved that for one of those
algebras, the existence of Hermitian real forms is equivalent to having admissible positive systems. They
also classified Hermitian real forms for affine non-twisted Kac-Moody Lie algebras using Vogan diagrams
[62]. Besides, J. Brundan [46] proved that the 2-categories defined by R. Rouquier [219] and by M. Khovanov
and A. Lauda [154] are the same.

In 2017, M.I. Dillon [77] constructed graded affine Lie algebras of rank n+1 from representations of semi-
simple algebras of rank n. Indeed, he set the connection between the grading determined by a simple root
of an existing affine Lie algebra and certain modules over an underlying semi-simple Lie algebra. He also
constructed an algorithm that either generates the homogeneous components of a graded affine Lie algebra
or determines that the module is inadmissible. That algorithm produced both twisted and non-twisted
affine Lie algebras, identifying no distinction between both types, which was illustrated in the paper by
him showing an example of each of them. Let us recall that after its introduction more than four decades
ago, Kac-Moody theory has become a standard generalization of classical Lie theory. However, very little
is known beyond the affine case. The first difficulty in the hyperbolic case stems from the wild behavior
of root multiplicities. At this respect, S.J. Kang, K.H.Lee and K. Lee took a new approach to the study of
root multiplicities for hyperbolic Kac-Moody algebras [149]. And G. Pezzini, under the conditions of being
G a complex connected reductive algebraic group, B a Borel subgroup and X a normal irreducible variety
with an algebraic action of G, constructed an homogenous spherical datum for spherical subgroups H of G
and showed that these objects satisfy the critical combinatorial axioms of the homogenous spherical datum
for finite-dimensional spherical homogenous spaces G/H. He also proved that the (abstract) homogenous
spherical datum for H is invariant under conjugation [208].

Finally, other papers on this topic have been published recently, in 2018. Among them, Gritsenko and
Nikulin studied Lorentzian Kac-Moody algebras corresponding to 2-reflexive hyperbolic lattices with a
lattice Weyl vector. Particularly, they constructed and classified some Lorentzian Kac-Moody algebras for
rank at least 3, mainly algebras with Weyl groups of 2-reflections [117]. V. Futorny and I. Kashuba [102]
dealt with the structure of parabolically induced modules for affine Kac-Moody algebras and B. Mühlherr
and K. Struyve prove that the so-called extremal elements in a Coxeter system (W,S) only exist in Coxeter
systems which are spherical and affine. They showed that for a pair of buildings of irreducible type (W,S),
the existence of two distinct twinnings at finite distance between them implies the existence of an extremal
element in (W,S) (two twinnings are said to be at finite distance if their sets of opposite chamber pairs are at
finite Hausdorff distance from each other). They applied their results to the study of metric commensurators
[191].

To finish this subsection, the authors think that brief comments on Kac-Moody superalgebras and 2-Kac-
Moody algebras should not be omitted in this survey, due to their natural importance, although a long space
cannot be used for it.

Indeed, the study of Kac-Moody superalgebras is, at present, very extend. At this respect, Hoyt provided
in [125] a classification of Kac-Moody superalgebras using integrable modules. The main interest of this
research is to be the major part of the proof for the classification of contragredient Lie superalgebras, and,
in particular, for the classification of finite-growth Kac-Moody superalgebras. In the paper, the author
introduced the concept of regular Kac-Moody superalgebras and classified them using integrable modules,
giving also conditions for irreducible highest weight modules of regular Kac-Moody superalgebras to be
integrable. To do this, the author classified connected subfinite regular Kac-Moody diagrams and also dealt
with the Lie superalgebra Q±(m,n, t) and with integrable modules and finally, extends regular Kac-Moody
diagrams that are not of finite type.

Later, in 2010, C. Daboul, J. Daboul and Montigny defined the concepts of open Lie superalgebras
and their closure and studied their embedding into affine Kac-Moody superalgebras. They distinguished
between two types of open algebras, whose closures typically yield twisted or untwisted Kac-Moody
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superalgebras. They showed that the open dynamical symmetry superalgebra δ0 of the Dirac theory of
the Taub–NUT model, studied by Cotaescu and Visinescu in 2007, could not be embedded into a twisted
Kac-Moody superalgebra, in contrast to their claim. Their analysis of the above relativistic model revealed
the deeper reason of why the hydrogen algebras N, studied by J. Daboul, P. Slodowy and C. Daboul, must
be twisted-like (genuinely and not-genuinely twisted) Kac-Moody subalgebras (see [67]). A recent paper
on superalgebras, in 2012, is by K. Iohara and Y. Koga, who dealt with Enright functors for these algebras
(see [127]).

In 2015, B. Ransingh dealt with Vogan diagrams of untwisted affine Kac-Moody superalgebras [212], S.
Nayak and K.C. Pati studied the embedding of simply laced hyperbolic Kac-Moody superalgebras [196],
D. Hill and W. Wang dealt with the categorification of quantum Kac-Moody superalgebras [122] and S.J.
Cheng, J.H. Kwon and W. Wang researched on irreducible characters of Kac-Moody Lie superalgebras [61]

Finally, in 2017, S. Azam [11] gave a new characterization of Kac-Moody-Malcev superalgebras.
With respect to the topic of 2-Kac-Moody algebras, Rouquier wrote in 2008 (see [219]) that over the past

ten years, authors have advocated the idea that there should exist monoidal categories (or 2-categories) with interesting
“representation theory” and he proposed to call 2-representation theory this higher version of representation
theory and to call 2-algebras those interesting monoidal additive categories. The difficulty in pinning down
what is a 2-algebra (or a Hopf version) should be compared with the difficulty in defining precisely the
meaning of quantum groups (or quantum algebras). The analogy is actually expected to be meaningful:
while quantization turns certain algebras into quantum algebras, categorification should turn those algebras
into 2-algebras. Dequantization is specialization q 7→ 1, while decategorification is the Grothendieck group
construction in the presence of gradings. It leaded to a quantum object.

The starting point of the study of 2-representation theory of Lie algebras was the construction in 2003 of
the theory of sl2-categorifications by J. Chuang and R. Rouquier [63]. A large part of geometric representation
theory should, and can, be viewed as a construction of irreducible 2-representations as categories of sheaves.

The main results of the paper, in which Rouquier defined a 2-category Ag associated with a Kac-Moody
algebra g, were announced at seminars in Orsay, Paris and Kyoto in the Spring 2007. Certain specializations
of the Hecke algebras associated with quivers and the resulting monoidal categories associated with half
Kac-Moody algebras were introduced independently by Khovanov and Lauda [155].

2.3. Kac-Moody algebras: Graphs associated
Regarding Graph Theory, the study of its properties and applications is currently running in a high level

due to its very widespread use as a tool to solve many important problems in other disciplines. Indeed,
graphs (and more particularly, trees) have been essential previously to study several properties on different
types of algebras (the first ones were semisimple Lie algebras) due to its role in determining the Dynkin
diagrams associated to such algebras.

There exist in the literature several and interesting papers dealing with the association between Kac-
Moody algebras and graphs. A sample of some of them are the following. One of the first papers dealing
with this link is by M.B. Halpern and N.A. Obers in 1991 [118]. In that paper, the announced an isomorphism
between a set of generically irrational affine-Virasoro constructions on SO(n) and the unlabelled graphs of
order n. On the one hand, they classified the conformal constructions by the graphs, while, conversely,
obtained a group-theoretic and conformal field-theoretic identification for every graph of graph theory.

Two years later, P.E. Singer gave a talk entitled “A digraph and a product of subspaces of a Kac-Moody
algebra” in a Conference held on the occasion of Albert John Coleman’s 75th birthday, in Kingston (Ontario,
Canada) [239]. In it he presented several results on products of weight subspaces of Kac-Moody algebras,
by himself, which had appeared previously in- [240].

In 2007 and motivated by affine Schubert calculus, T.F. Lam and M. Shimozono [166] constructed a family
of dual graded graphs (Γs,Γw) for an arbitrary Kac-Moody algebra g. These graded graphs have the Weyl
group W of g as vertex set and are labeled versions of the strong and weak orders of (Γs,Γw), respectively.
By using a construction of G. Lusztig for quivers with an admissible automorphism, they defined folded
insertion for a Kac-Moody algebra and obtained Sagan-Worley shifted insertion from Robinson-Schensted
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insertion as a special case. Moreover, drawing on work of Proctor and Stembridge, they analyzed the
induced subgraphs of (Γs,Γw) which are distributive posets.

In 2008, C. Lenart and A. Postnikov presented a simple combinatorial model for the characters of the
irreducible integrable highest modules for complex symmetrizable Kac-moody algebras. The model can
viewed as a discrete counterpart to the Littlemann path model. We describe crystal graphs and give
a Littlewood-Richardson rule for decomposing tensor products of irreducible representations. The new
model is based on the notion of λ-chain, which is a chain of positive roots defined by certain interlacing
conditions [169].

In 2012, T.A. Terlep and J. Williford constructed new families of graphs whose automorphism groups
are transitive on 3-paths. These graphs are constructed from certain Lie algebras related to generalized
Kac-Moody algebras of rank two. They showed that one particular subfamily gives new lower bounds on
the number of edges in extremal graphs with no cycles of length fourteen [255].

In 2015, R. Venkatesh and S. Viswanath dealt in [264] with the connections between properties of root
systems of Kac-Moody algebras and the chromatic polynomials of their associated Dynkin diagrams. They
gave two interesting results. The first of them relates the chromatic polynomial of the graph G associated
to the Dynkin diagram of a Kac-Moody algebra g to root multiplicities of g in a very nice way. They also
showed two relevant examples for a tree and a cycle graph. The second main result gives another realization
of the chromatic polynomial of G, this time as a summation over the paths in G ending at b0, the unique
minimal element of the bond lattice corresponding to the singleton partition. Note that this paper gives an
interesting application of root systems to graph theory (namely the chromatic polynomial of a graph) for
readers familiar with the theory of Kac-Moody algebras.

Finally, also in 2015, M. Lanini gave a categorical version of a previous result by Lusztig in 1980 (see
[175]), which proved a stabilisation property of the affine Kazhdan-Lusztig polynomials by using the theory
of sheaves on moment graphs. In this way she associated any Kac-Moody algebra with its stable moment
graph [167]. Previously, Fiebig [97] had dealt with a conjecture by the own Lusztig as a moment graph
problem. After this paper and until the end of 2018 there are no more publications linking Kac-Moody
algebras and graphs in the literature.

2.4. Kac-Moody algebras: Physical applications

This subsection is devoted to show references regarding the applications of Kac-Moody algebras to
Physics. These applications have contributed in decisive manner to the development of several physical
concepts. Although we cannot extend a lot, due to reasons of length, we consider that showing some of
them is strictly necessary to understand the great importance of these algebras. Indeed, the Norwegian
Academy of Science and Letters (Det Norske Videnskaps-Akademi), founded in Christiania in 1857, which
is responsible for the administration of the Abel Prize and the Kavli Prize, decided to award the Abel Prize
for 2008 to John Griggs Thompson, University of Florida and Jacques Tits, Collège de France. Tits was
honored due to his research on which is at present called Tits’s construction which allows an amazing variety
of physical application, widely used by theoretical physics, in which these algebras play an important role.

It is a fact that since the 1980s, these algebras had been taken up by physicists which work in the areas of
elementary particle theory, gravity, and two-dimensional phase transitions as an obvious framework from
which to consider descriptions of non-perturbative solutions of gauge theory, vertex emission operators in
string theory on compactified space, integrability in two-dimensional quantum field theory, and conformal
field theory. Kac-Moody algebras have also been shown to serve as duality symmetries of non-perturbative
strings appearing to relate all superstrings to a single theory. The infinite-dimensional Lie algebras and
groups have been suggested as candidates for a unified symmetry of superstring theory. In addition to this
wide application to physical theories, the Kac-Moody algebras are relevant to number theory and modular
forms. It seems feasible that the infinite discrete set of duality symmetries of String Theory may be related
to both the affine E8 algebra, and to a hyperbolic Kac-Moody Lie algebra E10. The idea of using Kac-Moody
symmetry to get at non-perturbative information in theories of particle physics remains viable (see further
information on this subject in [82]).
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Among the first authors who have worked in applications of Kac-Moody algebras to the Physics can be
mentioned the following: D.I. Olive, in 1985, published Kac-Moody algebras: an introduction for physicists [202]
and M.C. Dı́az, in 1988, published a short survey on the physical applications of these algebras. Concretely,
he dealt with the non-linear model of the Einstein equation with two commutative Killing vectors and its
link with the infinite dimensional Lie algebras of the dynamic symmetry transformations associated, which
resulted to be Kac-Moody algebras (see [76]).

It can also be cited the wide research carried by J. Daboul on mathematical physics, in particular on
dynamical symmetries, generalized Inonu-Wigner contractions, and quantum computations, and the most
recent on generalized contractions of finite Lie algebras and of infinite-dimensional Kac-Moody algebras
(see [66, 68, 69]).

There are many distinguished researchers working on applications of Kac-Moody algebras to Physics.
Between others we can cite C. Schweigert, who is dealing with these algebras and Lie algebras since 1992
(see [99]), A. Kleinschmidt (see [47, 157]), who has more than fifteen papers published on this topic, and C.
Castro, who used in a very recent paper [52] these algebras as a tool in String Theory.

D. Persson and N. Tabti (see [206]) gave interesting lectures on Kac-Moody Algebras with Applications
in Super-Gravity, at the Third Modave Summer School on Mathematical Physics, held in Modave, Belgium,
August 2007. These lectures were divided into two main parts. In the first part they gave an introduction to
the theory of Kac-Moody algebras directed towards physicists. In particular, they described the subclasses
of affine and Lorentzian Kac-Moody algebras in detail. Their treatment focused on the Chevalley-Serre
presentation, and emphasized the importance of the Weyl group. In the second part of the lectures they
made use of the contents of part one to describe some recent developments devoted to investigations
of the underlying symmetry structures of supergravity theories. They began by describing how toroidal
compactifications of gravity theories reveals hidden global and local symmetries of the reduced Lagrangian.
They also discussed attempts to extend these symmetry structures to infinite-dimensional algebras and
showed how a manifestly Kac-Moody invariant action can be constructed, whose solutions correspond to
exact BPS solutions in maximal supergravity theories.

On July 4th, 2012, only few months before this paper was finished, the CMS and the ATLAS experimental
teams at the Large Hadron Collider independently confirmed the formal discovery of a previously unknown
boson of mass between 125 and 127 GeV/c2, whose behavior so far had been consistent with a Standard
Model Higgs boson.

This particle, called Higgs boson or Higgs particle or, even, God particle (after the title of Leon Lederman’s
book on the topic (1993), although this last epithet is strongly disliked by many physicists, who regard it
as inappropriate sensationalism) is an elementary particle in the Standard Model of particle physics. It is
the last unobserved particle of that model and had been predicted to exist since the 1960s. Its name is in
honor of Peter Higgs, who along with R. Brout and F. Englert, and with G. S. Guralnik, C. R. Hagen, and
T. W. B. Kibble proposed the mechanism that suggested such a particle in 1964 and was the only one who
emphasized the existence of the particle and calculated some of its properties.

In the Standard Model, the Higgs particle is a boson, a type of particle that allows multiple identical
particles to exist in the same place in the same quantum state. It has no spin, electric charge, or color charge.
It is also very unstable, decaying into other particles almost immediately. Some extensions of the Standard
Model predict the existence of more than one kind of Higgs boson.

There exist several papers in the literature linking bosons with Kac-Moody and String Theory. Among
them, A. Bilal studied bosonization of ZN parafermions and su(2)N Kac-Moody algebra in 1989 (see [28])
and, in 1990, M. Sakamoto [221] dealt with the bosonization of bosons in vertex operator representations of
affine Kac-Moody algebras. Previously, C.P. Sun had begun this research in 1987 studying Boson realization
of Virasoro and Kac-Moody algebras and their indecomposable representations [254] and in 1988, a year
later, K. Miki dealt with twisted bosons related to the Kac-Moody algebra [185] and S.N.M. Ruijsenaars [220]
continued this research by linking Dirac quantization, Virasoro and Kac-Moody algebras and boson-fermion
correspondence in 2N dimensions.

Let us recall that in Physics, in contrast to bosons, a fermion (a name coined by Paul Dirac from the
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surname of Enrico Fermi) is any particle characterized by Fermi-Dirac statistics and following the Pauli
exclusion principle; fermions include all quarks and leptons, as well as any composite particle made of
an odd number of these, such as all baryons and many atoms and nuclei. Fermions contrast with bosons
which obey Bose-Einstein statistics. A fermion can be an elementary particle, such as the electron; or it
can be a composite particle, such as the proton. The spin-statistics theorem holds that, in any reasonable
relativistic quantum field theory, particles with integer spin are bosons, while particles with half-integer
spin are fermions.

Similarly to the case of bosons, there exist several papers relating these particles with Kac-Moody
algebras. Curiously, this study was begun by P. Windey in 1986 (see [272]), although relating fermions with
super-Kac-Moody algebras. A year later, A.L. Carey and S.N.M. Ruijsenaars used Kac-Moody algebras to
deal with fermion gauge groups [50] and in 1988, Ruijsenaars himself continued this research [220]. Already
in the 90’s, H.B. Thacker in 1991 [256] and Dolan, in 1994 [81] continued with this research.

Another application of Kac-Moody algebras to Physics is related with solitons. A soliton is a self-
reinforcing solitary wave that maintains its shape while it travels at constant speed. Solitons are caused by
a cancelation of non-linear and dispersive effects in the medium and arise as the solutions of a widespread
class of weakly non-linear dispersive partial differential equations describing physical systems. The soliton
phenomenon was first described by John Scott Russell (1808-1882) who observed a solitary wave in the
Union Canal in Scotland. He reproduced the phenomenon in a wave tank and named it the “Wave of
Translation” (see [200] for further information on these objects).

At this respect, N.S. Craigie, W. Nahm and K.S. Narain [65] and H.J. de Vega [262] in 1985 began this
study dealing with Kac-Moody algebras in field theory with solitons and Carey and Ruijsenaars, two years
later, studied the relation between fermion gauge groups, current algebras and Kac-Moody algebras (see
[50]). Later, in 1990, I. Sterling [245] and V.G. Mikhalëv [184] made progress in this research.

V.D. Ivashchuk and V.N. Melnikov, in 2011 (see [130]) considered a multidimensional gravitational model
containing scalar fields and antisymmetric forms. The manifold chosen was M = M0×M1×. . .×Mn, where Mi
are Einstein spaces (i ≥ 1). They considered the sigma-model approach and exact solutions with intersecting
composite branes (e.g., solutions with harmonic functions and black brane ones) with intersection rules
related to non-singular Kac-Moody algebras (e.g., hyperbolic ones) and they gave some examples of black
brane solutions, e.g., those corresponding to hyperbolic Kac-Moody algebras: H2(q, q), (q ≥ 2) and HA(1)

2 =
A++

2 and to the Lorentzian Kac-Moody algebra P10.

There also exist lots of paper dealing with the link between Crystal Theory and Kac-Moody algebras.
Remember that when the metals described on the periodic table of the elements come into contact with each
other or are changed by chemical reactions in a lab, their properties can be drastically altered. The crystal
theory explains why these property changes occur and helps scientists to predict exactly which changes will
happen. These changes were tried to be explained by using Kac-Moody algebras. So several researchers
are working in this way. In the last years can be cited: Jeong, Kang and other joint collaborators in 2005,
07, 09 and 14 (see [134–136, 145], respectively), D.U. Shin in 2007 and 2008 ([237] and [236], respectively),
N.C. Leung and M. Xu [170], C. Lenart and A. Postnikov [169] in 2008 and A. Savage [224], A. Joseph and
P. Lamprou [137] and S.J. Kang, M. Kashiwara and O. Schiffmann, in 2009 [146, 147]. At present, there are
12 references in MathSciNet containing the words crystal and Kac-Moody algebras in title. The first paper on
this topic dates from 1997 and it is by T. Nakashima and A.Zelevinsky [194]. In that paper, authors studied
parametrizations of the crystal basis of the negative part of the quantized universal enveloping algebra of a
symmetrizable Kac-Moody algebra. Equivalently, the basis vectors should correspond to the lattice points
in some polyhedral convex cone. The authors gave such a description, generalizing a result of Kashiwara
in 1993 in the rank 2 case and their proof was given under certain technical assumptions that are checked
to hold when the Kac-Moody algebra is of finite or affine type.

More recently, Kang, Oh and Park [151]) constructed and investigated the structure of the Khovanov-
Lauda-Rouquier algebras R and their cyclotomic quotients Rλ which give a categorification of quantum
generalized Kac-Moody algebras [151]. One of the key ingredients of their approach is the perfect basis
theory for generalized Kac-Moody algebras.
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Moreover, the same authors had extended in [150] the work of A. Berenstein and D. Kazhdan [27]
published in 2007, to generalized Kac-Moody algebras. They developed the theory of perfect bases for such
algebras, hence giving a new construction of the highest weight crystals associated to quantum generalized
Kac-Moody algebras. Indeed, the authors showed that for all integrable highest weight modules over
affine Kac-Moody algebras the exponent of growth equals 2. In the main result of the paper they calculated
explicitly also the rate of growth in the mentioned case, showing that it depends only on the type and rank
of algebra involved, and the level of representation.

Quantum generalized Kac-Moody algebras have been profusely dealt with in the literature. Indeed, in
the paper [144], also cited in another section of this paper, the authors, Seok-Jin Kang and Masaki Kashiwara,
used supercategories of modules over quiver Hecke superalgebras to establish supercategorification (i.e.,
categorification through supercategories) of quantum Kac-Moody algebras and their integrable highest
weight modules. In fact, they used supercategories of supermodules of quiver Hecke superalgebras to
obtain supercategorification of a general family of quantum Kac-Moody (super)algebras and their integrable
highest weight modules. This family included the usual quantum Kac-Moody superalgebra as a special case.
At this respect, it is convenient to note that supercategorification of quantum Kac-Moody superalgebras
was also established by Hill and Wang in [122], under an extra condition, although the main results by
Kang and Kashiwara do not assume that condition.

A year later, these same authors, joint with Oh [150] extended and improved the previous paper [150]
and, also in 2015, V. Futorny, J.T. Hartwig and E.A. Wilson studied quantum affine modules for non-twisted
affine Kac-Moody algebras [101] and Chen and Zhao represented quantum generalized Kac-Moody algebras
with one imaginary simple root [57].

Moving on another subject, in 2016, T. He, P. Mitra and A. Strominger showed that for massless theories
at the semiclassical level, the soft gluon theorem is the Ward identity of a holomorphic two-dimensional
G-Kac-Moody symmetry acting on two-dimensional correlation functions [120].

The foundation of this theory had been developed in the last five years with many strong relations to
Kac-Moody algebras. Indeed, over half a century ago, Bondi, van der Burg, Metzner and Sachs argued
that gravitational wave scattering in asymptotically Minkowskian spacetimes is governed by an infinite-
dimensional symmetry algebra known as the BMS algebra. The symmetry has consequences for any
theory which can be coupled to gravity, and would be expected to play a central role in Minkowskian
scattering theory. However, while some important results were obtained, the full import of BMS symmetry
has remained elusive. The BMS algebra has two types of elements: first, the global SL(2; C) conformal
transformations of the conformal 2-sphere which are related to Lorentz transformations, and second,
translations along the null generators of the future null infinity (in the Minkowski space). Two decades
later, a mathematically similar problem was studied: 2D field theories with a global SL(2; C) symmetry. Now
symmetries with analytic singularities are allowed, which leads to two Virasoro algebras. The implications
of this infinite symmetry algebra for 2D field theory are of course truly extraordinary. In this way, one hopes
by analogy that the extended BMS symmetry has extraordinary implications for Minkowski scattering. In
1965, Weinberg showed that photon and graviton amplitudes behave in a universal way when one of the
external particles with momentum becomes soft (low energy). See [15] for further information on this topic.

In this same year, 2016, A. Zuevsky dealt with the semi-direct product of Virasoro and affine Kac-Moody
Lie algebras and associated Verma modules, coadjoint orbits, Casimir functions, and biHamiltonian systems
[281].

In 2017, L. Bao and L. Carbone, in a short survey paper [13], dealt with the construction of Kac-Moody
groups over R and Z using certain choices of fundamental representations of E9,E10 and E11, that have
physical relevance in the context of supergravity theories dimensionally reduced to dimensions less than 3.
They constructed Eisenstein series for Kac-Moody groups, which are predicted to encode some perturbative
corrections in the framework of string theories.

Previously and related in certain way to this topic, Damour, along with other authors, [71, 72] had
conjectured that the spin-extended Weyl group Wspin (E10) could be constructed as a discrete subgroup of
a double spin cover Spin(E10) of the subgroup K(E10) of elements fixed by the Cartan-Chevalley involution
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of the split real Kac-Moody group of type E10. Starting from that point, D. Ghatei, M. Horn, R. Köhl
and S. Weib [106] constructed non-trivial spin covers of K, thus confirming that conjecture. Their spin
covers contained what they called spin-extended Weyl groups, which admit a presentation by generators and
relations obtained from the one for extended Weyl groups by relaxing the condition on the generators so
that only their eighth powers are required to be trivial.

Recently, already in 2018, L. Gilch, S. Müller and J. Parkinson have set limit theorems for random walks
on Fuchsian buildings and Kac-Moody groups[107] and Zuevsky, in [282] has proved new theorems to the
construction of the shallow water biHamiltonian systems associated to the semi-direct product of Virasoro
and affine Kac-Moody Lie algebras. Particularly, he has discuss associated Verma modules, coadjoint orbits,
Casimir functions, and bi-Hamiltonian systems.

To finish this subsection, it is convenient to note that recent progress in String Theory and the Theory
of Supergravity shows that the generating functions for the quantum degeneracies of supersymmetric
black holes are related to reflective Siegel modular forms and mock theta-series. Reflective Siegel forms
determine Kac-Moody Lie algebras of Borcherds type which are also important in physics. At this respect,
V. Gritsenko organized in 2010 the Program of Automorphic forms, Kac-Moody Lie algebras and Strings
with the objective of presenting the current results in this field related to string theory, the theory of
automorphic forms and the theory of Kac-Moody Lie algebras (see [115]). Explicit constructions in the theory
of automorphic forms and applications have appeared, due to that during the past decade automorphic
forms have been successfully used to solve some fundamental problems in algebraic geometry and the
theory of Kac–Moody algebras. Thus, special Siegel modular forms and mock theta-series have become an
important tool in the theory of supergravity.

2.5. Kac-Moody algebras: books

Due the natural importance of Kac-Moody algebras there exist several books dedicated to show a general
information of them. Among them, can be cited Kac-Moody and Virasoro Algebras, by Goddard and Olive
[109] in 1988, Formules de caractères pour les algèbres de Kac-Moody générales, by Mathieu [181] in the same
year, Groupes associés aux algèbres de Kac-Moody, by Tits in 1988-89 [257], Introduction to Kac-Moody algebras,
by Z.X. Wan (see [267]), in 1991, which supposed an introduction to a rapidly growing subject of modern
mathematics (in such a time) and later Kac-Moody algebra, Encyclopedia of Mathematics, by M. Hazewinkel
[119], in 2001 and Kac-Moody Groups, their Flag Varieties and Representation Theory, by Kumar [163], in 2002.

In 2009, the Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) journal published a
special Issue containing 20 papers with the total of 569 pages on Kac-Moody Algebras and Applications. It
was devoted to 40th anniversary of Kac-Moody algebras. The Guest Editors for this special issue were R.E.
Borcherds, E. Frenkel, V.G. Kac, R.V. Moody, J. Patera, A. Pianzola and P. Ramond. It can be consulted in
[36].

More recently, in 2010, two new books on these algebras have been published. The first of them
was written by E. Jamsin and J. Palmkvist (see [133]). It is based on lectures given by them at the Fifth
International Modave Summer School on Mathematical Physics, held in Modave, Belgium, August 2009.
In those lectures, they presented in a self-containing way an introduction to the theory of Lie and Kac-
Moody algebras. Throughout the text of that book, they mainly focus on the concepts that are important in
applications to mathematical physics, especially in the context of hidden symmetries.

In the book, the introduction to Lie and Kac-Moody algebras is meant to contain tools that are necessary
when using this theory in mathematical physics, and in particular in the context of hidden symmetries.
The first example of such a symmetry was emphasized by Ehlers in the context of four-dimensional pure
gravity. Assuming the existence of one Killing vector and compactifying the metric on the associated circle,
one finds a three-dimensional theory that has a global symmetry under the Lie algebra sl2 which is bigger
than the expected u(1). The appearance of such hidden symmetries could then be generalized to other
gravity and supergravity theories in various dimensions. As finite-dimensional simple Lie algebras can be
completely classified, one can also completely classify the theories that possess a hidden symmetry under
these algebras. A famous example is the E8 symmetry of D = 11 supergravity in the presence of eight
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commuting Killing vectors. Geroch first noticed the appearance of an infinite-dimensional symmetry when
two commuting Killing vectors are assumed in four-dimensional gravity. This symmetry algebra was later
identified as the affine extension of sl2, the simplest example of an infinite-dimensional Kac-Moody algebra.
More generally, one can see that any theory that possesses a hidden symmetry under a finite-dimensional
Lie algebra g in three dimensions can be seen to be symmetric under the affine extension of g in two
dimensions.

Secondly, A. Ros Camacho[218] has published the notes of the talk entitled Kac-Moody Algebras which
she gave in 2010 in the seminar on Cohomology of Lie algebras, under the supervision of J-Prof. Christoph
Wockel. As herself comments, Kac-Moody algebras are a generalization of the finite-dimensional semi-simple Lie
algebras which preserve almost the full original structure. In the last decades, they have attracted the attention of
physicists as they revealed themselves as a useful tool in theoretical physics. They arise in e.g. dimensional reductions
of gravity and supergravity theories, such as in dynamical symmetries in string theory, conformal field theory and the
theory of exactly solvable models.

One of the last books published has been An Introduction to Kac-Moody Groups over Fields, by T. Marquis
[179]. The author provides an accessible, intuitive, reader-friendly and self-contained introduction to Kac-
Moody groups and algebras over arbitrary fields. In its introduction, he says that pretends to clean the
foundations and to provide a unified treatment of the theory.

In any case, the basic reference in Kac-Moody algebras for the researcher is the book by Kac itself in
1990 Infinite dimensional Lie algebras [141], although for an faster and easier introduction, try the cited Wan
[267] and for a different approach, see the book by Moody and Pianzola [188].
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classification et racines relatives, Journal of Algebra 171:1 (1995) 43–96.
[13] L. Bao, L. Carbone, Kac-Moody groups and automorphic forms in low dimensional supergravity theories, In: Lie algebras, vertex

operator algebras, and related topics, Contemporary Mathematics 695, American Mathematical Society, 2017, pp. 29–40.
[14] Y. Barnea, A. Shalev, E. Zelmanov, Graded subalgebras of affine Kac-Moody algebras, Israel Journal of Mathematics 104 (1998)

321–334.
[15] G. Barnich, B. Oblak, Notes on the BMS group in three dimensions: I. Induced representations, Journal of High Energy Physics

6 (2014) 129, 27 pp.
[16] C. Bartolone, A. di Bartolo, G. Falcone, Nilpotent Lie algebras with 2-dimensional commutator ideals, Linear Algebra and its

Applications 434:3 (2011) 650–656.
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[84] F.J. Echarte, J.R. Gómez, Classification of complex filiform nilpotent Lie algebras of dimension 9, Rendiconti Seminario Facoltà
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D. Fernández-Ternero, J. Núñez-Valdés / Filomat 35:10 (2021), 3445–3474 3469

[91] A. Felikson, P. Tumarkin, Hyperbolic subalgebras of hyperbolic Kac-Moody algebras, Transformation Groups 17:1 (2012) 87–122.
[92] D. Fernández-Ternero, Nilpotent Lie algebras of maximal rank and of Kac-Moody type: D(3)

4 , Journal of Lie Theory 15:1 (2005)
249–260.
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[106] D. Ghatei, M. Horn, R. Köhl, S. Weib, Spin covers of maximal compact subgroups of Kac-Moody groups and spin-extended

Weyl groups, Journal of Group Theory 20:3 (2017) 401–504.
[107] L. Gilch, S. Müller, J. Parkinson, Limit theorems for random walks on Fuchsian buildings and Kac-Moody groups, Groups,

Geometry and Dynamics 12:3 (2018) 1069–1121.
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[170] N.C. Leung, M. Xu, J. Zhang, Kac-Moody Ẽk-bundles over elliptic curves and del Pezzo surfaces with singularities of type A,

Mathematische Annalen 352:4 (2012) 805–828.
[171] E.E. Levi, Sulla struttura dei gruppi finiti e continui, Atti della Reale Accademia delle Scienze di Torino XL (1905) 551–565.
[172] F. Levstein, A classification of involutive automorphisms of an affine Kac-Moody Lie algebra, Journal of Algebra 114:2 (1988)

489–518.
[173] C. Lu, H. Xu, A sufficient condition for pairing problem of generators in symmetrizable Kac-Moody algebras, Journal of Algebra

260:2 (2003) 570–576.
[174] C. Lu, H. Zhang, The isomorphic realization of nondegenerate solvable Lie algebras of maximal rank based on Kac-Moody

algebras, Science China Mathematics 56:5 (2013) 995–1014.
[175] G. Lusztig, Hecke algebras and Jantzens generic decomposition patterns, Advances in Mathematics 37:2 (1980) 121–164.
[176] R. Lv, Y. Tan, Some gim algebras and the associated indefinite Kac-Moody algebras, Journal of Algebra 425 (2015) 42–64.
[177] A.U. Maheswari, Fuzzy decomposition on the affine Kac-Moody algebras, International Journal of Pure and Applied Mathe-

matics 80:1 (2012) 75–91.
[178] A.I. Malcev, Solvable Lie algebras, American Mathematical Society Translations 1950:27 (1950) 228–262 (Translated from

Akademii Nauk SSSR. Seriya Matematicheskaya 9:5 (1945) 329–356).
[179] T. Marquis, An Introduction to Kac-Moody Groups over Fields, European Mathematical Society Textbooks in Mathematics 22,

2018.
[180] O. Mathieu, Sur la construction de groupes associès aux algèbres de Kac-Moody, Comptes Rendus de l’Académie des Sciences
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