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Available at: http://www.pmf.ni.ac.rs/filomat

Calmness of the Solution Mapping of Parametric Variational Relation
Problems

Daniela Inoana

aTechnical University of Cluj-Napoca, Cluj-Napoca, Romania

Abstract. We consider a class of variational relation problems, depending on two parameters from metric
spaces. The issue under investigation is the behaviour of the solution in a neighborhood of a fixed pair of
parameters, more precisely, the Hölder calmness of the solution mapping. After establishing some sufficient
condition for calmness in a general framework, we particularize the result for a variational inclusion and
for an equilibrium problem.

1. Introduction and preliminaries

For problems that depend on parameters, an important and natural topic is the behavior of the solutions
when the parameters are perturbed. One of the stability properties that is worth investigating is the
calmness property, which is related to Lipschitz continuity and gives a bound on the distance between
unperturbed and perturbed solutions.

Hölder continuity and calmness for the solution mappings of parametric equilibrium problems (in scalar
or vector settings) have been studied in numerous papers, for instance in [17], [2], [3], [4] and [7]. In the
case of variational inequalities, such results were obtained even earlier, see for instance [20] and [21].

Variational relation problems, introduced in [16], gather in the same model equilibrium problems,
variational inclusions or optimization problems. Many existence results for variational relation problems,
appeared in papers [1], [5], [6], [12], [11], [14], [15] and [18]. Mainly, two approaches are used to obtain
such existence results: intersection theorems or fixed points theorems. Properties of the solution set, such
as uniqueness, closedness, convexity, boundedness, were investigated in [13] and [19]. Also, in [13], a
parametric problem was considered, and several types of continuity properties for the solution mapping
were studied: inner continuity (lower semicontinuity), outer continuity, inner openness, outer openness.
For an even more general model, continuity of solutions for parametric generalized variational relation
problems was obtained in [10]. The literature dedicated to variational relation problems is substantial, yet,
to the best of our knowledge, the Lipschitz or Hölder continuity and calmness of the solution mapping has
not been studied.

In this paper we want to obtain conditions for the Hölder calmness (in the sense of [8], pag. 197) of the
solution mapping, in the case of a simple variational relation problem that depends on two parameters.
The main theorem generalizes, for variational relation problems, several previous results dedicated to
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equilibrium problems, in [2], [3] and [4]. Subsequently, as a particular case, we will be able to obtain a
calmness result for a variational inclusion, formulated for instance in [9]. The study of calmness, both in
the general framework of variational relation problems and for variational inclusions is new. In the last
part of the paper, as a consequence of the previous theorem, we retrieve a result from [4], for an equilibrium
problem.

We present in what follows the problem under study and some notions used in the paper. Let X, M
and Λ be metric spaces. We will denote by d the metrics on all of these spaces, unless there is possibility of
confusion.

Let K : Λ→ 2X be a set-valued mapping with nonempty closed values. Let R ⊆ X ×X ×M be a relation
connecting x, y ∈ X and depending on a parameter µ ∈ M. For each pair of parameters (λ, µ), consider the
variational relation problem

(VRP)(λ, µ) Find x(λ, µ) ∈ K(λ) such that R(x(λ, µ), y;µ) holds for every y ∈ K(λ).

This is a particular case of the problem formulated and studied in [16]. Denote by S(λ, µ) the set of solutions
of the previous problem and suppose, in the whole paper, that it is nonempty. Our purpose is to investigate
the calmness of the mapping (λ, µ) 7→ S(λ, µ), extending existing results from the case of equilibrium
problems to variational relation problems.

For some nonempty sets A,B in the metric space (X, d) and a ∈ X, denote by d(a,B) := infb∈B d(a, b) the
distance between the point a and the set B, by e(A,B) := supa∈A d(a,B) the excess of A beyond B and by
H(A,B) = max{e(A,B), e(B,A)} the Hausdoff-Pompeiu distance between A and B. By convention, e(∅,B) = 0
for B , ∅.

If a is a real number, we denote a− := d(a, [0,+∞[) = max{−a, 0} and a+ := d(a, ] −∞, 0]) = max{a, 0}.
Let X and Y be metric spaces. A function 1 : X → Y is said to be globally Hölder continuous if there exist

some constants k, γ > 0 such that

d(1(x), 1(x′)) ≤ kdγ(x, x′) for any x, x′ ∈ X.

The function 1 is said to be Hölder calm at a point x̄ ∈ X if there exist some constants k, γ > 0 and a
neighborhood N(x̄) of x̄ such that

d(1(x), 1(x̄)) ≤ kdγ(x, x̄) for any x ∈ N(x̄).

A set-valued mapping T : X→ 2Y is said to be globally Hölder continuous if there exist some constants k, γ > 0
such that

e(T(x),T(x′)) ≤ kdγ(x, x′) for any x, x′ ∈ X.

The mapping T is said to be Hölder calm at a point (x̄, ȳ) with x̄ ∈ X, ȳ ∈ T(x̄), if there exist k, γ > 0 and some
neighborhoods N(x̄) of x̄, N(ȳ) of ȳ, such that

e(T(x) ∩N(ȳ),T(x̄)) ≤ kdγ(x, x̄) for any x ∈ N(x̄).

For γ = 1, one gets the notions of Lipschitz continuity and calmness (see for instance [8]).

2. Hölder calmness of the solution mapping

The next result gives sufficient conditions for the Hölder calmness of the solution mapping of the
variational relation problem (VRP)(λ, µ). Given initial values λ̄, µ̄ for both parameters and a solution in
S(λ̄, µ̄), we are interested in the behaviour of the mapping (λ, µ) 7→ S(λ, µ) when the pair (λ, µ) is in a
neighborhood of (λ̄, µ̄).
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Theorem 2.1. Let µ̄ ∈ M, λ̄ ∈ Λ and x(λ̄, µ̄) ∈ S(λ̄, µ̄) be fixed. Suppose that there exist some neighborhoods U(λ̄),
V(µ̄) and W̄ of λ̄, µ̄ and x(λ̄, µ̄) respectively, for which the following conditions hold:

(i) there exist l, α > 0 such that, for all λ ∈ U(λ̄),

H(K(λ),K(λ̄)) ≤ ldα(λ, λ̄) (1)

(ii) there exist m, β > 0 such that, if R(x, y; µ̄) and R(y, x;µ) hold for x ∈ X, y ∈ W̄ and µ ∈ V(µ̄) it follows that

d(x, y) ≤ mdβ(µ, µ̄) (2)

(iii) there exist n, δ, ψ > 0 such that, if R(x1, y1; µ̄) and R(x2, y2; µ̄) hold for x1, x2, y1, y2 ∈ X it follows that

dψ(x1, x2) ≤ n(dδ(x1, y2) + dδ(x2, y1)). (3)

Then:
(a) the set S(λ̄, µ̄) ∩ W̄ has a unique element;
(b) for every λ ∈ U(λ̄) and µ ∈ U(µ̄),

e(S(λ, µ) ∩ W̄,S(λ̄, µ̄)) ≤ k1dγ1 (λ, λ̄) + k2dγ2 (µ, µ̄)

where k1 = (2nlδ)
1
ψ , k2 = m, γ1 = αδ

ψ and γ2 = β.

Proof : We prove first that the problem (VRP)(λ̄, µ̄) has at most one solution in the neighborhood W̄. Let
x, x′ ∈ S(λ̄, µ̄) ∩ W̄. This means that x, x′ ∈ K(λ̄) ∩ W̄ and the relations R(x, x′; µ̄) and R(x′, x; µ̄) hold.
According to hypothesis (ii), it follows that d(x, x′) ≤ mdβ(µ̄, µ̄) = 0, so x = x′.

Step I: Let λ ∈ U(λ̄) and x(λ, µ̄) ∈ S(λ, µ̄). We want to estimate the distance between x(λ̄, µ̄) and x(λ, µ̄).
Since x(λ̄, µ̄) ∈ K(λ̄) and x(λ, µ̄) ∈ K(λ), condition (i) implies that there exist x1 ∈ K(λ) and x2 ∈ K(λ̄) such
that

d(x(λ̄, µ̄), x1) ≤ ldα(λ, λ̄) and d(x(λ, µ̄), x2) ≤ ldα(λ, λ̄). (4)

Since x(λ, µ̄) is a solution of the variational problem with the parameters λ, µ̄ and x1 ∈ K(λ) we get that
R(x(λ, µ̄), x1; µ̄) holds. In the same way, R(x(λ̄, µ̄), x2; µ̄) holds too. Hypothesis (iii) and (4) lead then to the
estimation:

dψ(x(λ̄, µ̄), x(λ, µ̄)) ≤ n(dδ(x(λ, µ̄), x2) + dδ(x(λ̄, µ̄), x1)) ≤ 2nlδdαδ(λ, λ̄),

d(x(λ̄, µ̄), x(λ, µ̄)) ≤ (2nlδ)
1
ψ d

αδ
ψ (λ, λ̄). (5)

Step II: For µ ∈ V(µ̄) and x(λ, µ) ∈ S(λ, µ)∩W̄, we estimate the distance between x(λ, µ̄) and x(λ, µ). From the
definition of the variational problem follows that the relations R(x(λ, µ̄), x(λ, µ); µ̄) and R(x(λ, µ), x(λ, µ̄);µ)
hold. According to hypothesis (ii), this implies

d(x(λ, µ̄), x(λ, µ)) ≤ mdβ(µ, µ̄). (6)

Step III: If S(λ, µ) ∩ W̄ = ∅, then e(S(λ, µ) ∩ W̄,S(λ̄, µ̄)) = 0 and the conclusion of the theorem is direct. If
S(λ, µ) ∩ W̄ , ∅, using (5) and (6) from the previous two steps we have, for every x(λ, µ) ∈ S(λ, µ) ∩ W̄

d(x(λ, µ), x(λ̄, µ̄)) ≤ d(x(λ, µ), x(λ, µ̄)) + d(x(λ, µ̄), x(λ̄, µ̄))

≤ (2nlδ)
1
ψ d

αδ
ψ (λ, λ̄) + mdβ(µ, µ̄),

which implies

e(S(λ, µ) ∩ W̄,S(λ̄, µ̄)) ≤ (2nlδ)
1
ψ d

αδ
ψ (λ, λ̄) + mdβ(µ, µ̄). �
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Remark 2.2. 1) Conclusion (b) of the theorem is a calmness property of the solution mapping. Hypothesis (i) of the
previous result is stronger than the Hölder calmness of the mapping K, but weaker than the Hölder continuity. The
condition is used in this form in paper [4].

2) For the particular value µ := µ̄, hypothesis (ii) is equivalent with the anti-symmetry of relationR. This property
is used in [13], Proposition 3.1, to prove the uniqueness of the solution.

Example 2.3. Let X = R and M = [−1, 1] be endowed with the euclidean distance and m, β > 0 be some fixed
constants. The relation R is defined by: R(x, y;µ) holds if and only if y − m|µ|β ≤ x ≤ 1 − |µ|. R verifies both
hypotheses (ii) and (iii) for the parameter µ̄ = 0.

Indeed, let x, y and µ be such that R(x, y; 0) and R(y, x;µ) hold, that is y ≤ x ≤ 1 and x − m|µ|β ≤ y ≤ 1 − |µ|.
Then

|x − y| = x − y ≤ m|µ|β = mdβ(µ, µ̄),

so (2) is checked.
Let x1, x2, y1, y2 ∈ R be such that R(x1, y1; 0) and R(x2, y2; 0) hold, that is y1 ≤ x1 ≤ 1 and y2 ≤ x2 ≤ 1. If

x1 ≤ x2, then 0 ≤ x2 − x1 ≤ x2 − y1. If x2 ≤ x1, then 0 ≤ x1 − x2 ≤ x1 − y2. These inequalities imply that
|x1 − x2| ≤ |x1 − y2| + |x2 − y1|, so (3) is satisfied.

Let K = [0, 1 − λ], with the parameter λ ∈ [0, 1
2 ]. For λ̄ = 0, condition (i) in the previous Theorem is verified.

For a pair of parameters (λ, µ) the variational relation problem is:

Find x ∈ [0, 1 − λ] such that y −m|µ|β ≤ x ≤ 1 − |µ| holds for every y ∈ [0, 1 − λ].

In the case λ̄ = µ̄ = 0, the solution of the problem is unique, S(0, 0) = {1}. For arbitrary parameters (λ, µ) the solution
is the interval

S(λ, µ) = [{1 − λ −m|µ|β}+,min{1 − λ, 1 − |µ|}].

This is nonempty if and only if |µ| −m|µ|β ≤ λ. If S(λ, µ) , ∅, choosing W̄ = R, we have the estimation

e(S(λ, µ) ∩ W̄,S(0.0)) =

{
1, if 1 − λ −m|µ|β ≤ 0
λ + m|µ|β, otherwise.

In both situations it follows that e(S(λ, µ) ∩ W̄,S(0.0)) ≤ λ + m|µ|β, which gives the conclusion of Theorem 2.1.

Remark 2.4. The calmness property of the mapping (λ, µ) 7→ S(λ, µ) can be still obtained if in Theorem 2.1 hypotheses
(ii) and (iii) are replaced by the condition:

There exist m,n, β, δ > 0 such that, if R(x1, y1;µ1) and R(x2, y2;µ2) hold for x1, x2, y1, y2 ∈ X, µ1, µ2 ∈ M it
follows that

d(x1, x2) ≤ n(dδ(x1, y2) + dδ(x2, y1)) + mdβ(µ1, µ2).

Indeed, let λ ∈ U(λ̄), µ ∈ V(µ̄), x(λ, µ) ∈ S(λ, µ) ∩ W̄ (which we suppose is nonempty). Since x(λ̄, µ̄) ∈ K(λ̄) and
x(λ, µ) ∈ K(λ), from (i) there exist x ∈ K(λ) and x′ ∈ K(λ̄) such that

d(x(λ, µ), x′) ≤ ldα(λ̄, λ) and d(x(λ̄, µ̄), x) ≤ ldα(λ̄, λ).

For these, R(x(λ̄; µ̄), x′.µ̄) and R(x(λ, µ), x;µ) hold. So,

d(x(λ̄, µ̄), x(λ, µ)) ≤ n(dδ(x(λ̄, µ̄)), x) + dδ(x(λ, µ)), x′)) + mdβ(µ̄, µ) ≤ 2nlδdαδ(λ̄, λ) + mdβ(µ̄, µ).
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3. Applications

I. Let F : X × X ×M→ 2Y and G : X × X ×M→ 2Y be two mappings with nonempty values. Consider
the following variational inclusion problem (studied in [9]):

(VIP)(λ, µ) Find x(λ, µ) ∈ K(λ) such that F(x(λ, µ), y;µ) ⊆ G(x(λ, µ), y;µ) for every y ∈ K(λ).

Denote by S(λ, µ) the set of solutions and suppose that it is nonempty.

Theorem 3.1. Let µ̄ ∈ M, λ̄ ∈ Λ and x(λ̄, µ̄) ∈ S(λ̄, µ̄) be fixed. Suppose that there exist some neighborhoods U(λ̄),
V(µ̄) and W̄ of λ̄, µ̄ and x(λ̄, µ̄) respectively, such that:

(i’) there exist l, α > 0 such that, for all λ ∈ U(λ̄),

H(K(λ),K(λ̄)) ≤ ldα(λ, λ̄)

(ii’) there exist h, ψ > 0 such that, for all x, y ∈ X

hdψ(x, y) ≤ e(F(x, y; µ̄),G(x, y; µ̄)) + e(F(y, x; µ̄),G(y, x; µ̄)) (7)

(iii’) there exist a, ε > 0 and θ ≥ 0 such that, for all µ ∈ V(µ̄), x ∈ W̄ and y ∈ X, with x , y,

max{e(F(x, y; µ̄),F(x, y;µ)), e(G(x, y;µ),G(x, y; µ̄))} ≤ adε(µ, µ̄)dθ(x, y) (8)

(iv’) there exist n, δ > 0 such that, for any x, y1, y2 ∈ X,

max{e(F(x, y1; µ̄),F(x, y2; µ̄)), e(G(x, y1; µ̄),G(x, y2; µ̄))} ≤
n
2

dδ(y1, y2) (9)

(v’) θ < ψ.
Then:
(a) the set S(λ̄, µ̄) ∩ W̄ has only one element;
(b) for every λ ∈ U(λ̄) and µ ∈ U(µ̄),

e(S(λ, µ) ∩ W̄,S(λ̄, µ̄)) ≤ k1dγ1 (λ, λ̄) + k2dγ2 (µ, µ̄)

where k1 = (2nlδ)
1
ψ , k2 =

(
2a
h

) 1
ψ−θ , γ1 = αδ

ψ and γ2 = ε
ψ−θ .

Proof : It is enough to check the conditions (ii) and (iii) of Theorem 2.1, for the relationR ⊆ X×X×M defined
by:
R(x, y;µ) holds if and only if F(x, y;µ) ⊆ G(x, y;µ).
Let µ ∈ V(µ̄), x ∈ X, y ∈ W̄ such that R(x, y; µ̄) and R(y, x;µ) hold. This means

F(x, y; µ̄) ⊆ G(x, y; µ̄) and F(y, x;µ) ⊆ G(y, x;µ) (10)

which implies, by the definition of the excess e(·, ·)

e(F(x, y; µ̄),G(x, y; µ̄)) = e(F(y, x;µ),G(y, x;µ)) = 0. (11)

From hypotheses (ii’), (iii’) and (11) follows, in the case x , y,

hdψ(x, y) ≤ e(F(x, y; µ̄),G(x, y; µ̄)) + e(F(y, x; µ̄),G(y, x; µ̄)) = e(F(y, x; µ̄),G(y, x; µ̄))
≤ e(F(y, x; µ̄),F(y, x;µ)) + e(F(y, x;µ),G(y, x;µ)) + e(G(y, x;µ),G(y, x; µ̄))

= e(F(y, x; µ̄),F(y, x;µ)) + e(G(y, x;µ),G(y, x; µ̄)) ≤ 2adε(µ, µ̄)dθ(x, y).

Subsequently,

d(x, y) ≤
(2a

h

) 1
ψ−θ

d
ε

ψ−θ (µ, µ̄),
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that is condition (2) holds. If x = y this is obvious.
To check the inequality (3), let x1, x2, y1, y2 ∈ X be such that R(x1, y1; µ̄) and R(x2, y2; µ̄) hold, that is

F(x1, y1; µ̄) ⊆ G(x1, y1; µ̄) and F(x2, y2; µ̄) ⊆ G(x2, y2; µ̄).
Using (8), (9) and the triangle inequality, follows

hdψ(x1, x2) ≤ e(F(x1, x2; µ̄),G(x1, x2; µ̄)) + e(F(x2, x1; µ̄),G(x2, x1; µ̄))
≤ e(F(x1, x2; µ̄),F(x1, y1; µ̄)) + e(F(x1, y1; µ̄),G(x1, y1; µ̄)) + e(G(x1, y1; µ̄),G(x1, x2; µ̄))
+ e(F(x2, x1; µ̄),F(x2, y2; µ̄)) + e(F(x2, y2; µ̄),G(x2, y2; µ̄)) + e(G(x2, y2; µ̄),G(x2, x1; µ̄))

≤ n(dδ(x2, y1) + dδ(x1, y2)).�

Example 3.2. Let the set of parameters be M = [0,∞[ and X = R2
+ be the first quadrant of the complex plane,

Y = R2. Consider the inclusion B(O, µ) ⊆ B(A, 1
4 d(A,B) + µ), where A,B are points in X, d(A,B) is the euclidean

distance between A and B and B(A, r) denotes the closed ball centered at A, of radius r. We prove that the mappings
F(A,B;µ) = B(O, µ) and G(A,B;µ) = B(A, 1

4 d(A,B) + µ) verify conditions (ii’)-(iv’), for µ̄ = 0.
Let A(a1, a2),B(b1, b2) ∈ X. We have

e({O},B(A,
1
4

d(A,B))) =

{
0, if d(O,A) ≤ 1

4 d(A,B)
d(O,A) − 1

4 d(A,B), otherwise. (12)

From the triangle inequality, it is impossible that both e({O},B(A, 1
4 d(A,B))) and e({O},B(B, 1

4 d(A,B))) are null.
Further suppose, for instance, that the first excess is nonzero and the second one is zero. Then, from (12),

e({O},B(A,
1
4

d(A,B))) + e({O},B(B,
1
4

d(A,B))) = d(O,A) −
1
4

d(A,B)

≥ d(O,A) −
1
4

d(A,B) + d(O,B) −
1
4

d(A,B) =
√

a2
1 + a2

2 +
√

b2
1 + b2

2 −
1
2

d(A,B)

≥

√
(a1 − b1)2 + (a2 − b2)2 −

1
2

d(A,B) =
1
2

d(A,B),

which verifies (ii’). The same can be obtained if both terms of the sum are nonzero.
We have e({O},B(O, µ))) = 0 and e(B(A, 1

4 d(A,B) + µ),B(A, 1
4 d(A,B))) = µ, which confirms (8) with a = ε = 1

and θ = 0.
Finally, to verify (iv’) we notice that

e(B(A,
1
4

d(A,B1)),B(A,
1
4

d(A,B2))) =

{
0, if d(A,B1) ≤ d(A,B2)
1
4 d(B1,B2) otherwise. (13)

II. Consider now a more particular case, where F is single-valued and G is a constant mapping. More
precisely, let F(x, y;µ) = { f (x, y;µ)}, with f : X × X ×M→ R and G(x, y;µ) = [0,+∞[ for all x, y ∈ X and all
µ ∈M. The variational inclusion problem becomes the classical equilibrium problem:

(EP)(λ, µ) Find x(λ, µ) ∈ K(λ) such that f (x(λ, µ), y;µ) ≥ 0 for every y ∈ K(λ).

Directly from Theorem 3.1 we get

Theorem 3.3. Let µ̄ ∈ M, λ̄ ∈ Λ and x(λ̄, µ̄) ∈ S(λ̄, µ̄) be fixed. Suppose that there exist some neighborhoods U(λ̄),
V(µ̄) and W̄ of λ̄, µ̄ and x(λ̄, µ̄) respectively, such that

(i”) there exist l, α > 0 such that, for all λ ∈ U(λ̄),

H(K(λ),K(λ̄)) ≤ ldα(λ, λ̄)

(ii”) there exist h, ψ > 0 such that, for all x, y ∈ X

hdψ(x, y) ≤ f (x, y; µ̄)− + f (y, x; µ̄)−.
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(iii”) there exist a, ε, θ > 0 such that, for all µ ∈ V(µ̄), x ∈ W̄ and y ∈ X, with x , y,

| f (x, y; µ̄) − f (x, y;µ)| ≤ adε(µ, µ̄)dθ(x, y)

(iv”) there exist n, δ > 0 such that, for any x, y1, y2 ∈ X,

| f (x, y1; µ̄) − f (x, y2; µ̄)| ≤
n
2

dδ(y1, y2)

(v”) θ < ψ.
Then:
(a) the set S(λ̄, µ̄) ∩ W̄ has only one element;
(b) for every λ ∈ U(λ̄) and µ ∈ U(µ̄),

e(S(λ, µ) ∩ W̄,S(λ̄, µ̄)) ≤ k1dγ1 (λ, λ̄) + k2dγ2 (µ, µ̄)

where k1, k2, γ1, γ2 are the same as in Theorem 3.1.

Remark 3.4. 1) The function f (·, ·; µ̄) is said to be strongly monotone if there exist some constants h, ψ > 0 such
that f (x, y; µ̄) + f (y, x; µ̄) ≤ −hdψ(x, y), for any x, y ∈ X with x , y. Hypothesis (ii”) is well-known in the literature
(see for instance [3], [4]) and is weaker than the strong monotonicity property of the function f (·, ·; µ̄). Condition
(iii”) is called uniform Hölder calmness.

2) The above result is very close to Theorem 3.1 in [4]. There, the Hölder continuity of f in the second argument
(condition (iv”)) is requested for every parameter µ in a neighbourhood of µ̄. For the evaluation of the distance between
the unperturbed and the perturbed solution set is used ρ(A,B) = supa∈A,b∈B d(a, b).

Acknowledgement The author would like to thank the reviewers for valuable suggestions which
helped to improve the paper.

References

[1] R. P. Agarwal, M. Balaj, D. O’ Regan, Variational relation problems in a general setting, Journal of Fixed Point Theory and
Applications 18 (2016) 479–493.
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[3] L. Q. Anh, P. Q. Khanh, Uniqueness and Hölder continuity of the solution to multivalued equilibrium problems in metric spaces,
Journal of Global Optimization 37 (2007) 449-–465.
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