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Abstract. In this paper we will present the Julia set and the global behavior of a polynomial second-order
difference equation of type

xn+1 = axm
n xn−1 + axm+1

n−1 + bxn−1

where m ∈N, a > 0 and b ≥ 0 with non-negative initial conditions.

1. Introduction

In general, polynomial difference equations and polynomial maps in the plane have been studied in both
the real and complex domains (see [10, 11]). First results on quadratic polynomial difference equation have
been obtained in [1, 2] but these results gave us only a part of the basins of attraction of equilibrium points and
period-two solutions. In [4], the general second-order difference equation is completely investigated and
described the regions of initial conditions in the first quadrant for which all solutions tend to equilibrium
points, period-two solutions, or the point at infinity, except for the case of infinitely many period-two
solutions. In [3], case of infinitely many period-two solutions is completely investigated and corresponding
difference equation is special case of equation xn+1 = axm

n xn−1 + axm+1
n−1 + bxn−1 for m = 1. Our principal tool

is the theory of monotone maps, and in particular cooperative maps, applied to the system

un+1 = vn,

vn+1 = f (vn,un) ,

where f is a continuous and increasing function in both variables, which guarantee the existence and
uniqueness of the stable and unstable manifolds for the fixed points and periodic points (see [7]). If we set
un = xn−1 and vn = xn for n = 0, 1, 2, . . ., we obtain the results that are based on the theorems which hold for
monotone difference equations. Hence, the method we discussed in this paper is applicable to some special
types of difference systems. Consider the difference equation

xn+1 = f (xn, xn−1), n = 0, 1, . . . (1)

where f is a continuous and increasing function in both variables. The following result has been obtained
in [1]:
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Theorem 1.1. Let I ⊆ R and let f ∈ C[I × I, I] be a function which increases in both variables. Then for every
solution of Eq.(1) the subsequences {x2n}

∞

n=0 and {x2n+1}
∞

n=−1 of even and odd terms of the solution do exactly one of
the following:

(i) Eventually they are both monotonically increasing.

(ii) Eventually they are both monotonically decreasing.

(iii) One of them is monotonically increasing and the other is monotonically decreasing.

As a consequence of Theorem 1.1 every bounded solution of Eq.(1) approaches either an equilibrium
solution or period-two solution and every unbounded solution is asymptotic to the point at infinity in a
monotonic way. Thus the major problem in dynamics of Eq.(1) is the problem of determinig the basins of
attraction of three different types of attractors: the equilibrium solutions, period-two solution(s) and the
point(s) at infinity. The following result can be proved by using the techniques of proof of Theorem 11 in
[7].

Theorem 1.2. Consider Eq.(1) where f is increasing function in its arguments and assume that there is no minimal
period-two solution. Assume that E1(x1, y1) and E2(x2, y2) are two consecutive equilibrium points in North-East
ordering that satisfy

(x1, y1) �ne (x2, y2)

and that E1 is a local attractor and E2 is a saddle point or a non-hyperbolic point with second characteristic root in
interval (−1, 1), with the neighborhoods where f is strictly increasing. Then the basin of attraction B(E1) of E1 is the
region below the global stable manifoldWs(E2). More precisely

B(E1) = {(x, y) : ∃yu : y < yu, (x, yu) ∈ Ws(E2)}.

The basin of attraction B(E2) =Ws(E2) is exactly the global stable manifold of E2. The global stable manifold extend
to the boundary of the domain of Eq.(1). If there exists a period-two solution, then the end points of the global stable
manifold are exactly the period two solution.

Now, the theorems that are applied in [7] provided the two continuous curvesWs (E2) (stable manifold)
iWu (E2) (unstable manifold), both passing through the point E2(x2, y2) from Theorem 1.2, such thatWs (E2)
is a graph of decreasing function andWu (E2) is a graph of an increasing function. The curveWs (E2) splits
the first quadrant of initial conditions into two disjoint regions, but we do not know the explicit form of the
curveWu (E2). In this paper we investigate the following difference equation

xn+1 = axm
n xn−1 + axm+1

n−1 + bxn−1 (2)

where m ∈N, a > 0 and b ≥ 0, that has infinitely many period-two solutions and we expose the explicit form
of the curve that separates the first quadrant into two basins of attraction of a locally stable equilibrium
point and of the point at infinity. In complex domain, if f (z) = P(z)

Q(z) , where z ∈ C ∪ {∞} and P and Q
are polynomials without common divisors, then Julia set J f is the set of points z which do not approach
infinity after f (z) is repeatedly applied (corresponding to a attractor). At the same way, in real domain,
corresponding Julia set J f is connected and it is boundary of set of initial conditions for which the orbit
of f (n) does not tend to infinity. One of the major problems in the dynamics of polynomial maps in real
domain is determining the basin of attractions of the point at infinity and in particular the boundary of the
that basin known as the Julia set. We precisely determined the Julia set of Eq.(2) (boundary of set of initial
conditions in the first quadrant for which the solutions of Eq.(2) does not tend to infinity) and we obtained
the global dynamics in the interior of the Julia set, which includes all the points for which solutions are
not asymptotic to the point at infinity. It turned out that the Julia set for Eq.(2) is the union of the stable
manifolds of some saddle equilibrium points, nonhyperbolic equilibrium points or period-two points. In
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general, it is very important to mention that there is no explicit form of stable and unstable manifolds
for the fixed points and periodic points of any difference equation (or system of difference equations), so
the disadvantage of all results is that these manifolds are continuous decreasing (increasing) functions of
which the parametrization is uncomfortable and we can only obtain their asymptotic formulas by using the
method of undetermined coefficients. So the advantage of our results is that we obtain the exact formula
of our Julia set of Eq.(2). We first list some results needed for the proofs of our theorems. The main result
for studying local stability of equilibria is linearized stability theorem (see Theorem 1.1 in [9]).

Theorem 1.3. (linearized stability): Consider the difference equation

xn+1 = f (xn, xn−1) (3)

and let x̄ be an equilibrium point of difference equation (3). Let p =
∂ f (x̄,x̄)
∂u and q =

∂ f (x̄,x̄)
∂v denote the partial derivatives

of f (u, v) evaluated at the equilibrium x̄. Let λ1 and λ2 roots of the quadratic equation λ2
− pλ − q = 0.

a) If |λ1| < 1 and |λ2| < 1, then the equilibrium x̄ is locally asymptotically stable (sink).

b) If |λ1| > 1 or |λ2| > 1, then the equilibrium x̄ is unstable.

c) |λ1| < 1 and |λ2| < 1⇔ |p| < 1 − q < 2. Equilibrium x̄ is a sink.

d) |λ1| > 1 and |λ2| > 1⇔ |q| > 1 and |p| < |1 − q|. Equilibrium x̄ is a repeller.

e) |λ1| > 1 and |λ2| < 1⇔ |p| > |1 − q|. Equilibrium x̄ is a saddle point.

f) |λ1| = 1 or |λ2| = 1⇔ |p| = |1 − q| or q = −1 and |p| ≤ 2. Equilibrium x̄ is called a non-hyperbolic point.

The next theorem (Theorem 1.4.1. in [8]) is a very useful tool in establishing bounds for the solutions of
nonlinear equations in terms of the solutions of equations with known behaviour.

Theorem 1.4. Let I be an interval of real numbers, let k be a positive integer, and let F : Ik+1
→ I be a function which

is increasing in all its arguments. Assume that {xn}
∞

n=−k, {yn}
∞

n=−k and {zn}
∞

n=−k are sequences of real numbers such
that

xn+1 ≤ F(xn, . . . , xn−k), n = 0, 1, . . .

yn+1 = F(yn, . . . , yn−k), n = 0, 1, . . .

zn+1 ≥ F(zn, . . . , zn−k), n = 0, 1, . . .

and
xn ≤ yn ≤ zn, f or all − k ≤ n ≤ 0.

Then
xn ≤ yn ≤ zn, f or all n > 0.

2. Main results

By using the Theorem 1.3, we obtained the following result on local stability of the zero equilibrium of
Eq.(2):

Proposition 2.1. The zero equilibrium of Eq.(2) is one of the following:

a) locally asymptotically stable if b < 1,
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b) non-hyperbolic and locally stable if b = 1,

c) unstable if b > 1.

Set f
(
x, y

)
= axmy + aym+1 + by and let p =

∂ f (x̄,x̄)
∂x and q =

∂ f (x̄,x̄)
∂y denote the partial derivatives of f (x, y)

evaluated at the equilibrium x̄. The linearized equation at the positive equilibrium x̄ is

zn+1 = pzn + qzn−1,

p = amx̄m,

q = a (m + 2) x̄m + b.

Now, in view of Theorem 1.3 we obtain the following results on local stability of the positive equilibrium
of Eq.(2):

Proposition 2.2. The positive equilibrium of Eq.(2) is one of the following:

a) locally asymptotically stable if p + q < 1,

b) non-hyperbolic and locally stable if p + q = 1,

c) unstable if p + q > 1,

d) saddle point if p > |q − 1|,

e) repeller if 1 − q < p < q − 1.

Theorem 2.3. If b ≥ 1 then every solution {xn} of Eq.(2) satisfies lim
n→∞

xn = ∞.

Proof. If {xn} is a solution of Eq.(2) then {xn} satisfies the inequality

xn+1 ≥ bxn−1, n = 0, 1, . . .

which in view of the result on difference inequalities, see Theorem 1.4, implies that xn ≥ yn, n ≥ 1 where
{
yn

}
is a

solution of the initial value problem

yn+1 = byn−1, y−1 = x−1 and y0 = x0 n = 0, 1, . . .

Consequently, x0, x−1 > 0 then y0, y−1 > 0, yn ≥ 0 for all n, and

xn ≥ yn = λ1

√

bn + λ2

(
−

√

b
)n
, n = 1, 2, . . .

where λ1, λ2 ∈ R such that yn ≥ 0 for all n, which implies lim
n→∞

xn = ∞.

Theorem 2.4. Consider the difference equation (2) in the first quadrant of initial conditions, where m ∈ N, a > 0

and 0 ≤ b < 1. Then Eq.(2) has a zero equilibrium and a unique positive equilibrium x̄+ =
m
√

1−b
2a . The curve

a(xm + ym) = 1 − b is the Julia set and separates the first quadrant into two regions: the region below the given curve
is the basin of attraction of point E0(0, 0), the region above the curve is the basin of attraction of the point at infinity
and every point on the curve except E+(x̄+, x̄+) is a period-two solution of Eq.(2)

Proof. The equilibrium points of Eq. (2) are the solutions of equation x (axm + axm + b) = x that is equivalent
to

x (2axm + b − 1) = 0, (4)

which implies that Eq. (4) has two equilibria: zero equilibrium and unique positive equilibrium x̄+. Since
b ≥ 0 and b < 1, then by applying Proposition (2.1) the zero equilibrium is locally asymptotically stable.
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Denote by f
(
x, y

)
= axmy + aym+1 + by and let p and q denote the partial derivatives of function f

(
x, y

)
at

point E+. By straightforward calculation we obtaine that the following hold:

p + q = (1 − b) m + 1,
q − p = 1.

Hence, by applying Proposition (2.2) the positive equilibrium is an unstable non-hyperbolic point. Period-
two solution u, v satisfies the system

u = (aum + avm + b) u
v = (aum + avm + b) v.

Obviously, the point (0, 0) is solution of the system above, but it is not period two solution. Hence, it has to
be v > 0 which implies aum +avm +b = 1. Therefore every point of the set {(x, y) : axm +aym +b = 1} is a period-
two solution of Eq.(2) except point E+. Now, we have to show that the curve 1

(
x, y

)
= axm + aym + b = 1 is a

graph of the decreasing function in the first quadrant. Let for some x > 0 there are y1 and y2
(
0 < y1 < y2

)
such that 1

(
x, y1

)
= 1

(
x, y2

)
= 1. As 1

(
x, y

)
is increasing in both variables then

1 = 1
(
x, y1

)
< 1

(
x, y2

)
= 1,

which is impossible. Thus the curve 1
(
x, y

)
= 1 is the graph of function in the first quadrant. Further over

1
(
x, y

)
= 1 then

∂1

∂x
+
∂1

∂y
y′ = 0.

By applying the fact that is 1
(
x, y

)
is increasing in both variables we obtain y′ < 0 in the first quadrant.

Hence, 1
(
x, y

)
= 1 is the graph of the decreasing function in the first quadrant. Let {xn} be a solution of

Eq.(2) for initial condition (x0, x−1) which lies below the curve 1
(
x, y

)
= 1. Then

1 (x0, x−1) = axm
0 + axm

−1 + b < 1,
xn+1 = 1 (xn, xn−1) xn−1,

and

x1 = 1 (x0, x−1) x−1 < x−1,
x2 = 1 (x1, x0) x0 < 1 (x−1, x0) x0 = 1 (x0, x−1) x0 < x0.

Thus (x2, x1) and (x0, x−1) are two points in North-East ordering (x2, x1) ≤ne (x0, x−1) which means that the
point (x2, x1) is also below the curve 1

(
x, y

)
= 1 and also holds

1 (x2, x1) < 1.

Similarly we find

x3 = 1 (x2, x1) x1 < x1,
x4 = 1 (x3, x2) x2 < 1 (x1, x2) x2 = 1 (x2, x1) x2 < x2.

Continuing on this way we get

(0, 0) ≤ne . . . ≤ne (x4, x3) ≤ne (x2, x1) ≤ne (x0, x−1)

which implies that both subsequences {x2n} and {x2n+1} are monotonically decreasing and bounded below
by 0. Since below the curve 1

(
x, y

)
= 1 there are no period-two solutions it must be x2n → 0 and x2n+1 → 0.

On the other hand, if we consider solution {xn} of Eq.(2) for initial condition (x0, x−1) which lies above the
curve 1

(
x, y

)
= 1 then 1 (x0, x−1) > 1 and by applying the method shown above we obtain the following

condition:

(x−1, x0) ≤ne (x1, x2) ≤ne (x3, x4) ≤ne . . .

Therefore both subsequences {x2n} and {x2n+1} are monotonically increasing, hence x2n →∞ and x2n+1 →∞

as n→∞.
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The figure 1 is visual illustration of Theorem 2.4 obtained by using Mathematica 9.0, with the boundaries
of the basins of attraction obtained by using the software package Dynamica [6].

Figure 1

All this leads to the following theorem:

Theorem 2.5. Consider the difference equation (2), where m = 2, a > 0, 0 ≤ b < 1 and initial conditions x−1, x0 ∈ R.

Then Eq.(2) has a zero equilibrium, positive equilibrium x̄+ =
√

1−b
2a and negative equilibrium x̄− = −

√
1−b
2a . The

curve a(x2 + y2) = 1− b is the Julia set and separates the real plane into two regions: the region inside the given curve
is the basin of attraction of point E0(0, 0), the region outside the curve is the basin of attraction of the point at infinity
and every point on the curve except E+(x̄+, x̄+) and E−(x̄−, x̄−) is a period-two solution of Eq.(2).

Proof. Since m = 2, it is clear that Eq. (2) has three equilibrium points. By applying Theorem 2.4 we
obtain the zero equilibrium is locally asymptotically stable and the positive equilibrium x̄+ is an unstable
non-hyperbolic point. Similarly, one can show that the negative equilibrium x̄− is also an unstable non-
hyperbolic point and every point on the given curve except E+ and E− is a period-two solution of Eq.(2).
Set S =

{(
x, y

)
: a(x2 + y2) < 1 − b

}
, M0 (x−1, x0) ∈ S and let r0 = d (M0,E0) denotes distance between point

M0 and E0. Now, M0 (x−1, x0) ∈ S ⇔ a(x2
−1 + x2

0) < 1 − b⇔ ar2
0 < 1 − b. Consider the sequence of points {Mn}

where Mn+1 (xn, xn+1), xn+1 =
(
ax2

n + ax2
n−1 + b

)
xn−1 and rn+1 = d (Mn+1,E0) denotes distance between point

Mn+1 and E0. If Mn ∈ S then

a(x2
n−1 + x2

n) < 1 − b⇔ ar2
n + b < 1.

Therefore

r2
n+1 = x2

n + x2
n+1 =

= x2
n +

(
ax2

n + ax2
n−1 + b

)2
x2

n−1 =

= x2
n +

(
ar2

n + b
)2

x2
n−1 < x2

n + x2
n−1 = r2

n
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which implies rn+1 < rn and Mn+1 ∈ S. Obviously, the sequence of positive real numbers {rn} is decreasing
which guarantee that {rn} is convergent. In a view of Theorem 2.4, if M0 (x−1, x0) ∈ S and x−1, x0 are arbitrary
nonnegative numbers, then every solution {xn} satisfies lim

n→∞
xn = 0. Clearly, the following holds:

|xn+1| =
(
ax2

n + ax2
n−1 + b

)
|xn−1| =

(
ar2

n + b
)
|xn−1| < |xn−1| ,

which implies that both subsequences {|x2n|} and {|x2n+1|} are monotonically decreasing. Since there is no
period-two solution of Eq. (2) in set S that leads {|x2n|} and {|x2n+1|} approache a zero equilibrium. Thus it
must be lim

n→∞
rn = 0. The case when M0 is outside the curve a(x2 + y2) = 1 − b is similar and will be omitted

(the sequences {rn}, {|x2n|} and {|x2n+1|} are increasing, since there is no period-two solution of Eq. (2) outside
the curve that leads {|x2n|} and {|x2n+1|} approache the point at infinity).

In view of Theorem 1.4 which implies results on difference inequalities we get the following:

Proposition 2.6. Consider the difference equation of type

xn+1 = Axm
n xn−1 + Bxm+1

n−1 + Cxn−1 (5)

in the first quadrant of initial conditions, where the given parameters satisfy conditions m ∈ N, A > 0, B > 0 and
0 ≤ C < 1. Then the global stable manifold of the positive equilibrium is between two curves

p1 : min{A,B}(xm + ym) + C = 1 (6)

and

p2 : max{A,B}(xm + ym) + C = 1 (7)

Proof. It easy to show that Eq. (5) has two equilibria: zero equilibrium and unique positive equilibrium

x̄+ = m
√

1−C
A+B . Since C < 1 the zero equilibrium is always locally asymptotically stable thus the positive

equilibrium must be unstable equilibrium point. The theorems applied in [7] provided the following global
behavior. More precisely, if the positive equilibrium is a saddle point or a non-hyperbolic point then there
exists a global stable manifold which contains point E+(x̄, x̄),where x̄ is the positive equilibrium. In this case
global behavior of Eq. (5) is described by Theorem 9 in [4]. If the positive equilibrium is a repeller then there
exists a period-two solution and we obtaine that the period-two solution is a saddle point and there are two
global stable manifolds which contain points P1(u, v) and P2(v,u) whre (u, v) is unique period-two solution
of Eq.(5). In this case the global behavior of Eq.(5) is described by Theorem 10 in [4]. Although the Theorems
9 and 10 in [4] have been applied on a polynomial second-order difference equation they are sepcial cases
of general Theorems in [7] applied on function f , where f is increasing function in its arguments. So, the
global dynamics of Eq.(5) is exactly the same as the global dynamics of equations decribed by Theorems 9
and 10 in [4]. Furthermore

xn+1 = Axm
n xn−1 + Bxm+1

n−1 + Cxn−1 ≥
(
min{A,B}(xm + ym) + C

)
xn−1,

and

xn+1 = Axm
n xn−1 + Bxm+1

n−1 + Cxn−1 ≤
(
max{A,B}(xm + ym) + C

)
xn−1

for all n, by applying Theorem 1.4 for solution {xn} of Eq.(5) the following inequality holds

yn ≤ xn ≤ zn,

for all n, where {yn} is a solution of the difference equation

yn+1 =
(
min{A,B}(ym

n + ym
n−1) + C

)
yn−1 (8)

and {zn} is a solution of the difference equation

zn+1 =
(
max{A,B}(zm

n + zm
n−1) + C

)
zn−1 (9)

Since Eq. (8) and Eq. (9) satisfy all conditions of Theorem 2.4 this implies that the statement of Proposition
2.6 holds.
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3. Conclusion

In this paper we restrict our attention to certain polynomial m degree second-order difference equation
Eq. (2). It is important to mention that we have accurately determined the Julia set of Eq. (2) and the
basins of attractions for the zero equilibrium and the positive equilibrium point. In general, all theoretical
concepts which are very useful in proving the results of global attractivity of equilibrium points and
period-two solutions only give us existence of global stable manifold(s) whose computation leads to very
uncomfortable calculus (see [5, 6]).
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[9] Kulenović M. R. S., Ladas G. Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures.
Chapman and Hall/CRC Boca Raton London (2001).

[10] Milnor J. Dynamics in One Complex Variable. Stony Brook New York (2000)
[11] Morosawa S., Nishimura Y., Taniguchi M., Ueda T. Holomorphic dynamics. Cambridge University Press UK (2000)


