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aFaculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
bInstitute of Mathematics, Physics and Mechanics, Ljubljana, Ljubljana, Slovenia

cFaculty of Education, University of Maribor, Maribor, Slovenia

Abstract. Let G be a graph and let S = (s1, s2, . . . , sk) be a non-decreasing sequence of positive integers. An
S-packing coloring of G is a mapping c : V(G) → {1, 2, . . . , k} with the following property: if c(u) = c(v) = i,
then d(u, v) > si for any i ∈ {1, 2, . . . , k}. In particular, if S = (1, 2, 3, . . . , k), then S-packing coloring of G is
well known under the name packing coloring. Next, let r be a positive integer and u, v ∈ V(G). A vertex u
r-distance dominates a vertex v if dG(u, v) ≤ r.

In this paper, we present a new concept of a coloring, namely distance dominator packing coloring, defined
as follows. A coloring c is a distance dominator packing coloring of G if it is a packing coloring of G and for
each x ∈ V(G) there exists i ∈ {1, 2, 3, . . .} such that x i-distance dominates each vertex from the color class
of color i. The smallest integer k such that there exists a distance dominator packing coloring of G using k
colors, is the distance dominator packing chromatic number of G, denoted by χd

ρ(G). In this paper, we provide
some lower and upper bounds on the distance dominator packing chromatic number, characterize graphs
G with χd

ρ(G) ∈ {2, 3}, and provide the exact values of χd
ρ(G) when G is a complete graph, a star, a wheel, a

cycle or a path. In addition, we consider the relation between χρ(G) and χd
ρ(G) for a graph G.

1. Introduction

The wide interest given to the concept of graph coloring is reflected in many variants of colorings
derived from the classical coloring (for example: total coloring, fractional coloring, S-packing coloring,
b-coloring, equitable coloring, partitioned coloring, dominator coloring, etc). While some variants of graph
coloring consider only a specific property of coloring as a function, the others combine colorings with some
other well known concepts. For example, such a type of coloring is a dominator coloring of a graph, which
combines the concepts of coloring and domination. Namely, it is defined as a coloring of a graph with the
property that each vertex of the graph dominates all vertices of at least one color class (see [3, 7, 8, 15, 16]).
Since dominator coloring involves coloring and domination, it can be generalized from the perspective of
domination and also from the perspective of coloring. For instance, distance r-dominator coloring generalizes
dominator coloring in a way that uses r-distance dominating sets instead of standard dominating sets, and
r-distance coloring instead of classical coloring (see [12]). Recall that a vertex u r-distance dominates a
vertex v if dG(u, v) ≤ r. Next, recall that r-distance coloring is a coloring with the property that any two
vertices of any color class are at distance more than r.
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In this paper, we present another generalization of dominator coloring, which includes also distance
r-dominator coloring. Namely, we use the concept of S-packing coloring instead of r-distance coloring (and
also instead of classical coloring, since 1-distance coloring is equivalent to classical coloring). Recall that
for a given graph G and a given non-decreasing sequence of positive integers S = (s1, s2, . . . , sk), a S-packing
coloring of G is a mapping c : V(G) → {1, 2, . . . , k} with the following property: if c(u) = c(v) = i, then
d(u, v) > si for any i ∈ {1, 2, . . . , k}. If S = (1, 2, 3, . . . , k), then S-packing coloring of G is called packing coloring.
Note that S-packing coloring, where S = (1, 1, 1, . . .), coincides with classical coloring, and S-packing
coloring, where S = (r, r, r, . . .), is distance r-dominator coloring. We have to mention that the concept of
S-packing coloring is used, since it presents a wide generalization of several variations of colorings (we
have already mentioned a classical coloring and a distance coloring, but there are also several others such
as a packing coloring). In addition, it has a very wide spectrum of possible applications, such as frequency
assignments [9], applications in resource placements and biological diversity [1]. Moreover, the concept of
S-packing coloring is the subject in a number of papers (e.g., [4, 6, 10, 11]), especially packing coloring (note
that there is probably a non-exhaustive list of papers on packing coloring problem that were published
only in the last two years, see e.g. [2, 5, 13, 14, 17]). Based on this generalization of coloring, we present a
new concept of a distance dominator S-packing coloring. It is defined as follows. For a given non-decreasing
sequence of positive integers S = (s1, s2, . . . , sk), a coloring c is a distance dominator S-packing coloring of
G if it is an S-packing coloring of G, and in addition, each vertex from G si-distance dominates all vertices
colored with the color i for some i ∈ {1, 2, . . . , k} (note that, if there is only one vertex colored with some
color i, then it si-distance dominates all vertices colored with i, actually only itself).

Note that the concept of dominator coloring coincides with distance dominator S-packing coloring,
where S = (1, 1, 1, . . .), and distance dominator S-packing coloring is equivalent to distance r-dominator
coloring if S = (r, r, r, . . .). Recall that S-packing coloring, when S = (1, 2, 3, . . .), is called packing coloring. In
this case, distance dominator S-packing coloring will be shortly called distance dominator packing coloring, and
it will be the subject of our study. We believe that the new concept could have several possible applications,
which are derived from the applications of packing coloring and distance domination. For instance, some
companies have their offices located sufficiently far apart (in order to optimally cover an area), but on the
other hand, the company want to have all offices of some competitive company in the vicinity such that it
can check their work in order to be better as they are.

This paper is organized as follows. In the next section, we establish the notation and define the concepts
used throughout the paper. We provide some lower and upper bounds on the distance dominator packing
chromatic number and prove that the invariant is not hereditary (in the sense that a graph cannot have
smaller distance dominator packing chromatic number than its subgraphs) in general. In Section 3, we
establish characterizations of graphs with distance dominator packing chromatic number 2 or 3. Next, we
consider a relation between the packing chromatic number and the distance dominator packing chromatic
number of a given graph. We provide some properties of graphs with equal distance dominator packing
chromatic number and packing chromatic number, but on the other hand, we prove that for any positive
integer k there exists a graph G such that χd

ρ(G) − χρ(G) = k. Finally, we provide the exact values of the
distance dominator packing chromatic numbers of complete graphs, stars, wheels, paths and cycles. We
end this paper with some remarks and open problems.

2. Notations and preliminaries

In this paper, we consider only finite, simple graphs. For a given graph G, we denote its vertex set by
V(G) and the set of its edges by E(G). The (open) neighborhood of an arbitrary vertex v ∈ V(G), denoted by
NG(v), is the set of all vertices adjacent to v. The number of elements in NG(v), |NG(v)|, is called the degree
of v and is denoted by de1G(v). If de1G(v) = 1, then we say that v is a leaf. Further, the distance between
the vertices u, v ∈ V(G), dG(u, v), is the length of the shortest u, v-path in G. The eccentricity of a vertex v,
εG(v), is the maximum distance between v and any other vertex of G: εG(v) = maxu∈V(G){d(v,u)}. Next, the
diameter of G, denoted by diam(G), is the maximum eccentricity. Note that the subscript in some of the
above notations may be omitted if the graph G is clear from context.
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Let u, v ∈ V(G). A vertex u dominates a vertex v, if u and v are adjacent. In other words, u dominates
v if dG(u, v) = 1. A dominating set of a given graph G is a subset D of V(G) such that each x ∈ V(G) \ D is
dominated by at least one vertex from D (is adjacent to at least one vertex from D). The cardinality of the
smallest dominating set of G is called the domination number of G and is denoted by γ(G). The described
concept of domination in graphs can be generalized as follows. Let r be a positive integer and u, v ∈ V(G).
Then, we say that a vertex u r-distance dominates a vertex v if dG(u, v) ≤ r. Note that the concept of domination
is equivalent to 1-distance domination.

A proper k-coloring of G (or shorter, k-coloring) is a mapping c : V(G) −→ {1, 2, . . . , k}, such that c(u) , c(v)
for any adjacent vertices u, v ∈ V(G). The smallest integer k such that there exists a k-coloring of G is called
the chromatic number of G and is denoted by χ(G). The wide interest given to this concept is reflected in
many graph invariants derived from the chromatic number. One of them is S-coloring, defined as follows.
Let S = (s1, s2, . . . , sk) be a non-decreasing sequence of positive integers. An S-packing coloring of a given
graph G is a mapping c : V(G) −→ {1, 2, . . . , k} which satisfies the following property: if c(u) = c(v) = i, then
d(u, v) > si for any i ∈ {1, 2, . . . , k}. Recall that the before defined concept of (classical) coloring coincides
with S-packing coloring, if S = (1, 1, 1, . . .).

Moreover, the S-packing coloring with S = (1, 2, 3, . . .) is well known under the name packing coloring.
The smallest integer k such that there exists an S-packing coloring of G, where S = (1, 2, . . . , k), is called the
packing chromatic number of G and is denoted by χρ(G).

A dominator coloring of a given graph G is a coloring of the vertices of G such that each vertex of the
graph dominates all vertices of at least one color class (recall that the color class of the color i is the set all
vertices colored with a color i). By the generalization of this concept from the perspectives of domination
and coloring, we get a distance dominator S-packing coloring defined as follows. Let S = (s1, s2, . . . , sk) be a
non-decreasing sequence of positive integers. A coloring c is a distance dominator S-packing coloring of
G if it is an S-packing coloring of G, and in addition, each vertex from G si-distance dominates all vertices
colored with a color i for some i ∈ {1, 2, . . . , k}. In particular, if S = (1, 2, 3, . . .), then such a coloring is called a
distance dominator packing coloring. For any i ∈ {1, 2, . . . , k} and a given distance dominator packing coloring
c of G, we denote by Bi the color class of color i, i.e. the set of all vertices which receive a color i by c
(Bi = c−1(i)). So, in other words, c is a distance dominator packing coloring of G if it is a packing coloring
and for each x ∈ V(G) there exists i ∈ {1, 2, 3, . . .} such that x i-distance dominates each vertex from Bi. The
smallest integer d for which there exists a distance dominator packing coloring of a given graph G using d
colors (d-distance dominator packing coloring), is called the distance dominator packing chromatic number of
G and is denoted by χd

ρ(G).
Clearly, every distance dominator packing coloring of a given graph is also a packing coloring, which

implies the following proposition.

Proposition 2.1. Let G be a graph. Then,
χd
ρ(G) ≥ χρ(G).

While the written proposition gives us the lower bound on the distance dominator packing chromatic
number of a given graph, with the following two propositions, we provide also some upper bounds on this
number.

Proposition 2.2. For any graph G, χd
ρ(G) ≤ χρ(G) + γ(G).

Proof. In order to prove the statement, we construct a (χρ(G) + γ(G))-distance dominator packing coloring
of G. Let D = {u1,u2, . . . ,uγ(G)} be a smallest dominating set of G and let c be any optimal packing coloring
of G. Then, by setting c′(u) = c(u) for any u ∈ V(G) \D, and c′(ui) = χρ(G) + i for any i ∈ {1, 2, . . . , γ(G)}, we
form a distance dominator packing coloring c′ of G. Namely, each vertex ui distance dominates the color
class of color χρ(G) + i. Furthermore, since D is a dominating set of G, each vertex u ∈ V(G) \D is adjacent
to some vertex ui ∈ D and hence u distance dominates the color class of color χρ(G) + i. Clearly, since c′ is a
packing coloring of G, the statement holds.
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Proposition 2.3. For any connected graph G of order at least 2, χd
ρ(G) ≤ |V(G)| − α(G) + 1. In addition, the bound

is sharp.

Proof. Let G be a connected graph of order at least 2. In order to prove that χd
ρ(G) ≤ |V(G)| − α(G) + 1,

we construct a (|V(G)| − α(G) + 1)-distance dominator packing coloring c of G. Let A be an independent
set of G such that |A| = α(G). Then, set c(a) = 1 for any vertex a ∈ A and let the vertices from V(G) \ A
receive pairwise different colors from {2, 3, . . . , |V(G)| − α(G) + 1} by c. Clearly, this is a packing coloring of
G. Moreover, each vertex u ∈ V(G) \ A distance dominates the color class of color c(u). Next, since G is a
connected graph, each vertex a from A is adjacent to at least one vertex u ∈ V(G) \ A colored with unique
color c(u), which implies that a distance dominates the color class of color c(u).

Finally, in order to prove that the bound is sharp, consider an arbitrary graph G with diameter 2. Namely,
by [9, Proposition 2.1], χρ(G) = |V(G)| − α(G) + 1, and by Corollary 4.2, χd

ρ(G) = χρ(G). This completes the
proof.

Next, recall that the invariant of packing chromatic number is hereditary in the sense that a graph
cannot have smaller packing chromatic number than its subgraphs. Since every distance dominator packing
coloring of a given graph is also its packing coloring, there arises a question of whether also the distance
dominator packing chromatic number is hereditary. As we will see, this is not the case. Indeed, consider
the cycle C8 and the path P8. As we will see in the sequel of this paper (see Theorems 5.2 and 5.3), χd

ρ(C8) = 3
and χd

ρ(P8) = 4. Since P8 is a subgraph of C8, our claim holds. But then, there arises a question of whether
χd
ρ(H) ≤ χd

ρ(G) for some family of subgraphs H of a given graph G. Recall that a graph H is an isometric
subgraph of a given graph G, if for any two vertices u, v ∈ V(H), dH(u, v) = dG(u, v). We will show that a
graph cannot have smaller distance dominator packing chromatic number than its isometric subgraphs.

Proposition 2.4. Let G be a graph. If H is an isometric subgraph of G, then χd
ρ(H) ≤ χd

ρ(G).

Proof. Let H be an isometric subgraph of a given graph G, c an arbitrary optimal distance dominator packing
coloring of G and x an arbitrary vertex of H. Then, in G x distance dominates all vertices of one color class,
say B. Using the fact that dH(x, y) = dG(x, y) for any y ∈ V(H), we infer that x distance dominates all vertices
from color class B also in subgraph H. Thus, c is a distance dominator packing coloring of H and the claim
holds.

3. Characterizations of graphs with small distance dominator packing chromatic numbers

In this section, we characterize graphs with small distance dominator packing chromatic numbers,
namely graphs G with χd

ρ(G) ∈ {2, 3}. Several times we use the fact that every distance dominator packing
coloring of a given graph is also its packing coloring (namely that χρ(G) ≤ χd

ρ(G) holds for any graph G)
and the results of Goddard et al. [9], which characterize graphs G with χρ(G) ∈ {2, 3}.

With the following theorem we prove that connected graphs with distance dominator packing chromatic
number 2 are exactly stars.

Theorem 3.1. For any connected graph G, χd
ρ(G) = 2 if and only if G is a star.

Proof. First, let G be a star K1,n, n ≥ 1. If n ≥ 2, then color all its leaves with color 1 and the other vertex
with color 2. Otherwise, color one vertex with color 1 and the other with color 2. In this way, 2-distance
dominator packing coloring of G is formed, hence χd

ρ(G) ≤ 2. Further, using the fact that χρ(G) = 2 [9,
Proposition 3.1] and Proposition 2.1 we infer the result.

Next, suppose that G is a connected graph such that χd
ρ(G) = 2. By Proposition 2.1, χρ(G) ≤ 2. Using

characterizations of graphs with packing chromatic numbers 1 or 2 [9, Proposition 3.1], we derive that G is
a complete graph K1 or a star. Since χd

ρ(K1) = 1 and χd
ρ(K1,n) = 2 for any n ≥ 1, the result follows.

Before characterizing graphs G with χd
ρ(G) = 3, recall the characterization of graphs G with χρ(G) = 3,

which was proven by Goddard and co-authors [9].
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Proposition 3.2. [9] Let G be a graph. Then χρ(G) = 3 if and only if G can be formed by taking some bipartite
multigraph H with bipartition (V2,V3), subdividing every edge exactly once, adding leaves to some vertices in V2∪V3,
and then performing a single T-add to some vertices in V3.

Note that T-add to a vertex v is defined as follows. First, we take a vertex wv and a set Xv of independent
vertices, then add an edge between vertices v and wv, and finally add some of the edges between {v,wv}

and Xv.

Theorem 3.3. For any connected graph G, χd
ρ(G) = 3 if and only if one of the following four possibilities holds for G.

1. G can be formed by taking bipartite multigraph K1,2 with bipartition (V2,V3), subdividing every edge exactly
once, adding leaves to some vertices in V2 ∪ V3, and then performing a single T-add to a vertex in V3.

2. G can be formed by taking bipartite multigraph Ki, j, i, j ≥ 2, with bipartition (V2,V3), subdividing every edge
exactly once and adding leaves to some vertices in V2.

3. G is a subgraph of a graph from 1 and contains P4, K3 or C4 as an induced subgraph.
4. G is an isometric subgraph of a graph from 2 which contains P4, K3 or C4 as an induced subgraph.

Proof. First, suppose that G is a connected graph such that χd
ρ(G) = 3. By Proposition 2.1, χρ(G) ≤ 3, which

implies that G is a complete graph of order 1, a star or a graph with χρ(G) = 3. Clearly, since χd
ρ(K1) = 1

and χd
ρ(K1,n) = 2 for any n ≥ 1, we have χρ(G) = 3, which means that G satisfies condition from Proposition

3.2. Since every distance dominator packing coloring of a graph G is also packing coloring of G (but not
necessarily optimal), the graphs that satisfy χd

ρ(G) = 3 are exactly the graphs from the characterization
of graphs that satisfy χρ(G) = 3, for which there exists a distance dominator packing coloring with three
colors. Thus, we are looking for graphs with χρ(G) = 3, described in Proposition 3.2, for which there exists
a distance dominator packing coloring with three colors.

First, consider the case when G is a graph formed as is described in Proposition 3.2 for which H = K1,2
and with single T-add. It is easy to check that the packing coloring shown in the Figure 1 is unique for G,
and that it is also the distance dominator packing coloring for G. Therefore, χd

ρ(G) = 3.
Further, let G′ be formed as is described in Proposition 3.2 for which H = Ki, j, i, j ≥ 2. We observe

that there exists only one packing coloring c of G′ using 3 colors: all vertices in V2 and each vertex wv that
belongs to T-add of some vertex v, receive color 2, all vertices in V3 color 3, and all the remaining vertices
color 1. Clearly, c is not a distance dominator packing coloring of G′ since vertices in T-adds and leaves
added to vertices in V3 do not distance dominate any color class. Hence, in order to get a graph G from
G′ with χd

ρ(G) = 3, we remove some vertices from G′. Clearly, the deleted vertices are those which are
problematic, namely vertices in T-adds and leaves added to vertices in V3. In this way, we obtain a graph
G described in 2. Coloring c|G is a distance dominator packing coloring for G using three colors. Thus,
χd
ρ(G) ≤ 3. Clearly, G contains P4 as an induced subgraph, so we conclude that χd

ρ(G) = 3.
Next, consider the family of proper subgraphs of graphs which are described in Proposition 3.2. First,

supppose that G is a proper subgraph of a graph described in 1. Using Theorem 3.1, we infer that G contains
P4, C4 or K3 as an induced subgraph which provides that χd

ρ(G) ≥ 3. On the other hand, G is a subgraph of
the graph shown in Fig. 1 and the shown coloring restricted to G is a distance dominator packing coloring
for G using 3 colors. This provides that χd

ρ(G) = 3. Therefore, if χd
ρ(G) = 3 and G is a proper subgraph of a

graph described in 1, then it contains P4, C4 or K3 as an induced subgraph. Next, let G be a proper subgraph
of a graph H described in 2. Denote by a1, a2, . . . the vertices obtained by subdivision in H. Note that, if G
is an isometric subgraph of H, then from Proposition 2.4 follows that χd

ρ(G) ≤ χd
ρ(H) = 3. Using Theorem

3.1 we infer that G contains an induced subgraph isomorphic to P4, C4 or K3. This proves the description
4. Next, suppose that G is not an isometric subgraph of H. This means that: a) there exists ai ∈ V(H) such
that ai is a leaf in G or b) ai < V(G) (in this case, since G is not an isometric subgraph of H, ai do not belong
to C4 in H). If ai is a leaf adjacent to some vertex from V3, then it is easy to check that there does not exist
distance dominator packing coloring for G using 3 colors. If ai is a leaf adjacent to some vertex from V2 and
ai belong to some C4 in H, then G is not a proper subgraph of H, a contradiction. Hence, we can assume
that ai is a leaf adjacent to some vertex from V2 but ai does not belong to some C4 in H. It is easy to check
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that there does not exist distance dominator packing coloring for G using 3 colors. Finally, consider the
case when ai < V(G). Again, there does not exist distance dominator packing coloring for G using 3 colors.

The converse implication is trivial. Let G be a graph from 1 or 2 or any of theirs subgraphs described
in 3 or 4. We have already constructed the 3-distance dominator packing coloring for each of these graphs
and hence χd

ρ(G) ≤ 3. Next, since in each case these graphs contain P4, K3 or C4 as an induced subgraph, we
have χd

ρ(G) ≥ χρ(G) ≥ 3.
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Figure 1: Distance dominator packing coloring of graphs, described in 1, with three colors.

Interestingly, we have proven that the characterizations of graphs G with χd
ρ(G) = 2 (resp., χd

ρ(G) = 1)
and graphs H with χρ(H) = 2 (resp., χρ(H) = 1) coincide, while this is not true for graphs G and H with
χd
ρ(G) = 3 and χρ(H) = 3. Therefore, the difference of the concepts of packing coloring and distance domi-

nator packing coloring can be noticeable only for graphs that are not 1- or 2-packing colorable, which is a
motivation for the following studies.

We conclude the section by proving a lemma that gives the property of graphs with χd
ρ(G) = 3. The

lemma will be used later in the paper.

Lemma 3.4. Let G be a connected graph. If χd
ρ(G) = 3, then diam(G) ≤ 6. In addition, this bound is sharp.

Proof. Let G be a connected graph with χd
ρ(G) = 3 and suppose that diam(G) ≥ 7. Then, there exist vertices

u, v ∈ V(G) such that dG(u, v) = 7. Denote by P : u = x0, x1, x2, . . . x6, v = x7 one of the shortest u, v-paths in
G. Since χρ(P) = 3 and P is an isometric subgraph of G, by Proposition 2.1 and 2.4, χd

ρ(P) = 3. Hence, there
exists an optimal packing coloring of P which is also a distance dominator packing coloring. It is easy to
check that any optimal packing coloring c of P assigns a color 3 to exactly two vertices, say xa and xb, where
0 ≤ a < b ≤ 7 and b − a ≥ 4. Since χρ(Pn) > 2 for any n ≥ 4, it is clear that at most three consecutive vertices
of the path P receive a color different from 3 by c. Using these facts we infer that b − a = 4. In other words,
there are exactly 3 vertices between xa and xb that belong to P and moreover, there is only one possibility to
color them using only colors 1 and 2, namely c(xa+1) = 1 = c(xa+3) and c(xa+2) = 2. Recall that this holds also
for any optimal distance dominator packing coloring of P. We infer that xa does not 1-distance dominate all
vertices of a color class of color 1, neither 3-distance dominate all vertices of a color class of color 3, which
implies that it 2-distance dominates all vertices from a color class of color 2. By analogous consideration,
the same holds also for xb. Hence, c(xi) , 2 for any existing xi, where i ∈ {a − 2, a − 1, b + 1, b + 2} (and also
c(xi) , 3), which implies that xa is a leaf or is adjacent to leaf and the same holds for xb. Then, P has at most
7 vertices, a contradiction to our assumption.

In order to prove that the bound is sharp, consider the path P7. Namely, diam(P7) = 6 and later we will
see that χd

ρ(P7) = 3.

4. Packing chromatic number and distance dominator packing chromatic number

Recall that each distance dominator packing coloring of a given graph is also its packing coloring. Hence,
for any graph G, χd

ρ(G) ≥ χρ(G). In this section, we provide some sufficient conditions for the equality of
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the packing chromatic number and the distance dominator packing chromatic number of a given graph.
On the other hand, we prove that the difference between both of the mentioned numbers can be arbitrarily
large.

Theorem 4.1. Let G be a graph. If χρ(G) ≥ diam(G), then χρ(G) = χd
ρ(G).

Proof. Let G be a graph such that χρ(G) ≥diam(G) = k. Then, any packing coloring of G assigns a color χρ(G)
to exactly one vertex x ∈ V(G). Consequently, x χρ(G)-distance dominates its own color class. Any other
vertex of G is at distance at most k from x and thus χρ(G)-distance dominates the color class of color χρ(G).
Therefore, any packing coloring of G is also a distance dominator packing coloring of G, thus χd

ρ(G) ≤ χρ(G).
Using Proposition 2.1 we derive the result.

Note that, if G has diameter 2, it contains at least one edge (actually two edges), which implies that
χρ(G) ≥ 2. Therefore, every graph with diameter 2 satisfies the condition from Theorem 4.1 and hence the
following claim holds.

Corollary 4.2. Let G be a graph with diameter 2. Then, χρ(G) = χd
ρ(G).

Next, we show that the difference between the packing chromatic number and the distance dominator
packing chromatic number of a graph can be arbitrary large.

Theorem 4.3. For any integer k ≥ 1 there exists a graph G such that χd
ρ(G) − χρ(G) = k.

Proof. Let k be an arbitrary positive integer. In order to prove the statement, consider the path Pn, where
n = k2 + 8k. Since n ≥ 9, χρ(Pn) = 3 [9, Proposition 2.3]. If k = 1, then n = 9 and Theorem 5.2 will show
us that χd

ρ(P9) = 4, hence the χd
ρ(P9) − χρ(P9) = 1. Analogously consider the case when k = 2. Namely, by

Theorem 5.2, χd
ρ(P20) = 5 and thus the result follows. Next, if k ≥ 3, then n ≥ 33. In this case, Theorem 5.5

will show us that χd
ρ(Pn) =

⌈√
n + 16

⌉
− 1 = k + 3. Therefore, χd

ρ(Pn) − χρ(Pn) = (k + 3) − 3 = k and hence the
proof is done.

5. Distance dominator packing chromatic numbers of some known families of graphs

In this section, we determine the distance dominator packing chromatic numbers of complete graphs,
stars, wheels, paths and cycles.

Using Theorem 4.1 (or Corollary 4.2) and some results by Goddard and co-authors [9], we infer the
following results.

Proposition 5.1. Let n be a positive integer. Then,
χd
ρ(Kn) = n,
χd
ρ(K1,n) = 2,

χd
ρ(Wn) =

{
4; n = 3 or n = 4k, k ∈N ,
5; otherwise .

Next, we continue with determining the distance dominator packing chromatic numbers of paths and
cycles.

Theorem 5.2. Let Pn be a path. Then,

χd
ρ(Pn) =


2; n ∈ {2, 3} ,
3; 4 ≤ n ≤ 7 ,
4; 8 ≤ n ≤ 11 ,
5; 12 ≤ n ≤ 20 .
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Proof. Since χρ(P2) = 2, χρ(P3) = 2 [9], diam(P2) = 1 and diam(P3) = 2, Theorem 4.1 implies that χd
ρ(P2) =

χd
ρ(P3) = 2.

Next, let n ∈ {4, 5, 6, 7}. Since in this case χρ(Pn) = 3 [9], Proposition 2.1 implies that χd
ρ(Pn) ≥ 3. In

order to prove that χd
ρ(Pn) ≤ 3 for any n ∈ {4, 5, 6, 7}, color the vertices of P7 one after another with colors

1, 2, 1, 3, 1, 2, 1. Clearly, such coloring is a distance dominator packing coloring of P7, thus χd
ρ(P7) = 3. Next,

since for any n ∈ {4, 5, 6}, Pn is an isometric subgraph of P7, from Proposition 2.4 it follows that χd
ρ(Pn) = 3,

n ∈ {4, 5, 6}.
Now, consider the case when n ∈ {8, 9, 10, 11}. Color all vertices of P11 one after another with colors

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1. Since such coloring is a distance dominator packing coloring, we infer that χd
ρ(P11) ≤

4. Moreover, using Proposition 2.4 and the fact that χd
ρ(P7) = 3, we infer that 3 ≤ χd

ρ(Pn) ≤ 4 for any
n ∈ {8, 9, 10, 11}. Next, since diam(Pn) ≥ 7 for any n ≥ 8, Lemma 3.4 yields the result.

Finally, let n ∈ {12, 13, . . . , 20} and prove that χd
ρ(Pn) = 5. Suppose to the contrary that χd

ρ(P12) = 4 and
denote by c an arbitrary 4-distance dominator packing coloring of P12. Let u1,u2, . . . ,u12 be the consecutive
vertices of P12.

First, consider the case when c(ui) = c(u j) = 4 for some i, j, where 1 ≤ i < j ≤ 12. Note that j − i ≥ 5 and
without loss of generality assume that i − 1 ≤ 12 − j. The latter means that the number of vertices on the
left hand side of ui is less than or equal to the number of vertices on the right hand side of u j, and implies
that i ≤ 4. Since χρ(P4) = 3, the vertices ui+1,ui+2,ui+3,ui+4 receive colors from {1, 2, 3} in a way that each of
the listed colors is used. This fact implies that ui+8 (note that i + 8 ≤ 12 since i ≤ 4) does not dominate all
vertices of any color class and hence there does not exist a 4-distance dominator packing coloring of P12
which assigns to (at least) two distinct vertices a color 4. Therefore, c(ui) = 4 for exactly one i ∈ {1, 2, . . . , 12}.
Without loss of generality we may assume that i ≤ 6. Again, since χρ(P4) = 3, the vertices ui+1,ui+2,ui+3,ui+4
receive colors from {1, 2, 3} by c in a way that each of the listed colors is used. If i ≤ 4, then u12 does not
dominate any color class, a contradiction to c being a 4-distance dominator packing coloring. Otherwise, if
i ∈ {5, 6}, then also the vertices u1,u2,u3 and u4 receive colors from {1, 2, 3} such that each of the listed colors is
used. Again, u12 does not distance dominate all vertices of any color class, a contradiction. Therefore, there
does not exist any 4-distance dominator packing coloring of P12 and thus, χρ(P12) ≥ 5. Using Proposition
2.4 we also infer that χρ(Pn) ≥ 5 for any n ≥ 12.

In order to prove that χρ(Pn) ≤ 5 for any n ∈ {12, 13, . . . , 20} form a 5-distance dominator packing
coloring c of Pn as follows. If n ≥ 15, then let c(u5) = 4 and c(u15) = 5. Otherwise, let c(u5) = 4 and c(un) = 5.
In both cases, all of the other vertices of Pn are colored one after another with the following pattern of
colors: 1, 2, 1, 3. Clearly, c is a 5-distance dominator packing coloring of Pn and thus χρ(Pn) = 5 for any
n ∈ {12, 13, . . . , 20}. This completes the proof.

Theorem 5.3. Let Cn be a cycle. Then,

χd
ρ(Cn) =


3; n ∈ {3, 4, 8} ,
4; n ∈ {5, 6, 7, 9, 10, 11, 12} ,
5; n ∈ {13, 14, . . . , 20} .

Proof. First, recall that χρ(C3) = χρ(C4) = 3, diam(C3) = 1 and diam(C4) = 2. Then, using Theorem 4.1, we
infer that χd

ρ(C3) = χd
ρ(C4) = 3. Next, consider a cycle C8. By Proposition 2.1 we derive that χd

ρ(C8) ≥ 3.
In order to see that χd

ρ(C8) ≤ 3, form a 3-distance dominator packing coloring of C8 as follows. Color all
vertices of C8 one after another using the following pattern of colors: 1, 2, 1, 3, 1, 2, 1, 3. It is easy to check
that such coloring is 3-distance dominator packing coloring of C8, hence χd

ρ(C8) = 3.
Next, recall that χρ(C5) = χρ(C6) = χρ(C7) = χρ(C9) = 4, diam(C5) = 2, diam(C6) = 3, diam(C7) = 3 and

diam(C9) = 4. Again, applying Theorem 4.1 we derive that χd
ρ(C5) = χd

ρ(C6) = χd
ρ(C7) = χd

ρ(C9) = 4.
Further, consider a cycle C10. If we color its vertices one after another using colors 1, 3, 1, 4, 1, 2, 3, 1, 4, 2,

we get 4-distance dominator packing coloring of C10, which implies that χd
ρ(C10) ≤ 4. Next, suppose that
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χd
ρ(C10) ≤ 3. Since χρ(P4) > 2, at most three consecutive vertices of C10 receive colors 1 or 2. This implies that

three vertices of C10 receive a color 3 and hence none of the vertices of C10 distance dominates all vertices
of a color class of color 3. In addition, none of the vertices distance dominates a color class of color 1 or 2
and thus, there does not exist 3-distance dominator packing coloring of C10, what completes the proof in
this case. Analogously we prove that χd

ρ(Ci) ≥ 4 for any i ≥ 11. In order to prove that χd
ρ(C11) = χd

ρ(C12) = 4,
we form a 4-distance dominator packing colorings of C11 and C12 as follows. Color all vertices of C11 one
after another with the following patterns of colors: 1, 2, 1, 3, 1, 2, 4, 1, 2, 1, 3, and all vertices of C12 one after
another with colors: 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3. Clearly, these are 4-distance dominator packing colorings,
hence χd

ρ(C11) = χd
ρ(C12) = 4.

Next, let n ∈ {13, 14, . . . , 20} and prove that χd
ρ(Cn) = 5. First, color one (arbitrary) vertex of Cn with color

4 and one of its diametral vertices with color 5. Further, color the remaining vertices using colors 1, 2, 3 in a
way that we get a packing coloring of Cn (it is easy to check that such packing coloring exists). Clearly, such
packing coloring of Cn is 5-distance dominator packing coloring, since each vertex of Cn distance dominates
color class of color 4 or 5 (note that the vertices, colored by 4 and 5 are pairwise at distance at most 10).
Thus, χd

ρ(Cn) ≤ 5. Next, prove that χd
ρ(Cn) ≥ 5 for any n ∈ {13, 14, . . . , 20}. Suppose to the contrary that

χd
ρ(Cn) ≤ 4 and denote by c any 4-distance dominator packing coloring of Cn. Then, it is easy to check that

none of the vertices from V(Cn) distance dominates all vertices of the color class of color 1 or 2. If |c−1(4)| ≥ 3,
then |c−1(3)| ≥ 3 since χρ(P4) > 2. Next, we derive that none of the vertices distance dominates a color class
of a color 3 or 4. Hence, c cannot be a 4-distance dominator packing coloring. Therefore, |c−1(4)| ∈ {1, 2}.
If |c−1(4)| = 1, then at least 12 consecutive vertices of Cn receive colors different from 4, which implies that
|c−1(3)| ≥ 3. Thus, none of the vertices of Cn distance dominates a color class of a color 3 and there are only
9 vertices of Cn which distance dominate color class of color 4, a contradiction since n ≥ 13. Next, suppose
that |c−1(4)| = 2. Then, |c−1(3)| ≥ 2. Further, we observe that at most 5 vertices distance dominate the color
class of color 4 and at most 3 vertices distance dominate the color class of color 3. Again, a contradiction,
since at least 5 vertices of Cn do not distance dominate all vertices from any color class. Therefore, χd

ρ(Cn) ≥ 5
and the proof is completed.

The following lemma will help us to determine χd
ρ(Pn) and χd

ρ(Cn) for any n ≥ 21.

Lemma 5.4. Let G be the path Pn or the cycle Cn, n ≥ 21. Further, let x ≥ 5 be a positive integer. Then, there does
not exist an x-distance dominator packing coloring of G if n = x2 + 2x − 14.

Proof. Let G be the path Pn or the cycle Cn, n ≥ 21. Suppose to the contrary that there exists x-distance
dominator packing coloring c of G, where n = x2 + 2x − 14 and x ≥ 5. Let B1, B2, . . . ,Bx be the color classes
determined by c. Clearly, there are no vertices of G, which distance dominate the color class B1 or B2.
Denote the number of vertices that distance dominate color class B3 by t. Note that if |B3| = 1, then t ≤ 7, if
|B3| = 2, then t ≤ 3, and otherwise, t = 0.

First, consider the case when |B j| ≥ 3 for some j ∈ {4, 5, . . . , x}. Then, none of the vertices of G distance
dominates all vertices from color class B j. Further, note that, if u of G is colored with i ∈ {4, 5 . . . , x}, then
only the vertices which are at distance at most i from u can i-distance dominate color class Bi. This means
that the number of the vertices which can distance dominate Bi is at most 2i + 1. Therefore, the number of
the vertices that distance dominate all vertices from some color class is at most t +

∑x
i=4,i, j(2i + 1), which is

less than n = x2 + 2x − 14, a contradiction to c being a x-distance dominator packing coloring. Therefore,
each of the colors from {4, 5, . . . , x} is assigned to at most two vertices of G by c. If a color j ∈ {4, 5, . . . , x}
is assigned to exactly one vertex of G by c, then at most 2 j + 1 vertices distance dominate color class B j.
Further, consider the case when a color j ∈ {4, 5, . . . , x} is assigned to exactly two vertices. If G is the path
Pn, then it is clear that there are at most j vertices distance dominating color class B j (vertices between two
vertices colored by j). Next, suppose that G is the cycle Cn. Let u, v ∈ V(Cn) be colored by j. Then, there are
exactly two disjoint paths, P and P′, between u and v in Cn. If only the vertices from P (resp., P′) distance
dominate both vertices from B j, then clearly the number of such vertices is at most j. Otherwise, there
are some vertices belonging to P and some to P′, which distance dominate the color class B j, and we will
prove that also in this case there cannot be more than j such vertices. Suppose to the contrary that there are
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j + 1 vertices that distance dominate all vertices from color class B j, and denote by a the number of them
belonging to P and by b the number of them belonging to P′ (clearly, a + b = j + 1). Then, the number of the
vertices of Cn is 3 j + 1 ≤ 3x + 1. Since 3x + 1 < n for any x ≥ 5, we have a contradiction and hence the claim
holds.

In the sequel of this proof, we distinguish three cases.
Case 1. |Bi| = 1 for every i ∈ {4, 5, . . . , x}.

Subcase 1.1. |B3| = 1. Since χρ(P4) ≥ 3, there exist at most three consecutive vertices of G which receive a
color 1 or 2. This implies that c assigns a color 1 or 2 to at most 3(x − 2) + 3 vertices if G is the path Pn, and
to at most 3(x − 2) vertices if G is the cycle Cn. Further, c assigns to x − 2 vertices colors from {3, 4, 5, . . . , x}.
Therefore, c colors at most 4x − 5 vertices if G is the path Pn, and at most 4x − 8 vertices if G is the cycle Cn.
In both cases, c colors less than n vertices, a contradiction.
Subcase 1.2. |B3| = 2.
Again, the fact that χρ(P4) ≥ 3, implies that there exist at most three consecutive vertices of G which receive
a color 1 or 2. Thus, c assigns to two vertices a color 3, to x − 3 vertices colors from {4, 5, . . . , x} and color 1
or 2 to at most 3(2 + x − 3) + 3 vertices (more precisely, to at most 3(2 + x − 3) + 3 vertices if G is the path Pn,
and to at most at most 3(2 + x − 3) vertices if G is the cycle Cn). Therefore, c colors at most 4x − 1 vertices,
what is less than n, a contradiction.
Subcase 1.3. |B3| ≥ 3. In this case there are no vertices of G which distance dominate color class B3, thus the
number of the vertices that distance dominate all vertices of any color class is at most

∑x
i=4(2i+1) = x2+2x−15,

what is less than n, a contradiction to c being a distance dominator packing coloring.
Case 2. |B j| = 2 for some j ∈ {4, 5, . . . , x} and |Bi| = 1 for every i ∈ {4, 5, . . . , x} \ { j}.

In this case there are at most t +
∑x

i=4,i, j(2i + 1) + j vertices of G which distance dominate all vertices of some
color class. If t ≤ 5, then t +

∑x
i=4,i, j(2i + 1) + j < n, a contradiction to c being x-distance dominator packing

coloring of G. Therefore, we only need to consider the case when t = 6 or t = 7, which both mean that
|B3| = 1.

Denote by a, b the vertices colored by j and recall that the color class B j is distance dominated by at
most j vertices. The fact j ≥ 4 implies that there are at least 4 vertices on each path between a and b. Since
χρ(P4) > 2, we infer that there are at most three consecutive vertices of G which receive a color 1 or 2.
Hence, there is at least one vertex on each path between a and b, which receives a color k > 2 by c (and
this color is used only once by c). Therefore, if j vertices distance dominate color class B j, then at least 4 of
them also distance dominate a color class Bk, which implies that there are at most t +

∑x
i=4,i, j(2i + 1) + j − 4

vertices distance dominating some color class, what is less than n for any x ≥ 5, a contradiction. Otherwise,
there are at most j− 2 vertices which distance dominate color class B j (note that the case when j− 1 vertices
distance dominate color class B j is not possible). Hence, at most t +

∑x
i=4,i, j(2i + 1) + ( j − 2) vertices of G

distance dominate all vertices from some color class. Since this is less than n, again we have a contradiction.
Case 3. |B j| = 2 for at least two colors j ∈ {4, 5, . . . , x}.

Let j1, j2, . . . , jk ∈ {4, 5, . . . , x} be the colors for which |B j1 | = |B j2 | = . . . = |B jk | = 2. Then there are at
most jl vertices that distance dominate color class B jl for any l ∈ {1, . . . k}, and at most 2l + 1 vertices that
distance dominate color class Bl for any l ∈ {4, 5, . . . , x}\{ j1, j2, . . . , jk}. Therefore, the number of vertices of
G that distance dominate some color class is at most t +

∑x
i=4,i<{ j1,..., jk}(2i + 1) +

∑
i∈{ j1,..., jk} i which is at most

t+
∑x

i=4,i<{ j1, j2}(2i+1)+
∑

i∈{ j1, j2} i. But t+
∑x

i=4,i<{ j1, j2}(2i+1)+
∑

i∈{ j1, j2} i < n, a contradiction to c being a x-distance
dominator packing coloring. So, in all cases we got a contradiction to c being a distance dominator packing
coloring, hence we can conclude that there does not exist an x-distance dominator packing coloring of G if
n = x2 + 2x − 14.

Theorem 5.5. Let G be the path Pn or the cycle Cn, n ≥ 21. Then,

χd
ρ(G) =

⌈√
n + 16

⌉
− 1.

Proof. Let G be the path Pn or the cycle Cn, n ≥ 21. Further, let u1,u2, . . . ,un be its consecutive vertices. Let
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n + 16

⌉
− 1 = r.

First, in order to prove that χd
ρ(G) ≤ r, we form a r-distance dominator packing coloring c of G in the

following way. First, for all l ∈ {5, . . . , r} and i = 5 +
∑l

j=5 2 j, set c(ui) = l. Further, let c(u5) = 4. Finally,
color the other vertices of G one after another using the following pattern of colors: 1, 2, 1, 3. Clearly, the
described coloring is a packing coloring of G with the color classes B1,B2, . . . ,Br. Next, it is easy to observe
that any two vertices u,u′ ∈ V(G) such that c(u) = k−1 and c(u′) = k, where k ∈ {5, 6, . . . , r}, are at distance 2k
(in other words, there are 2k−1 consecutive vertices of G between u and u′). In particular, vertices ui, where
i ≤ 4, are at distance at most 4 from u5, which is colored by 4. Next, recall that c(ur2+r−15) = r and then it is
easy to check that all vertices u j, where r2 + r− 15 < j ≤ n, are at distance at most r from ur2+r−15. These facts
imply that each vertex ui colored with a color from {1, 2, 3} l-distance dominates all vertices from a color
class Bl for some l ∈ {4, 5, . . . , r}. Clearly, each ui with the property that c(ui) = l ≥ 4, l-distance dominates
the color class Bl. Thus, c is an r-distance dominator packing coloring of G and χd

ρ(G) ≤ r.
Next, prove that χd

ρ(G) ≥ r. Suppose to the contrary that χd
ρ(G) ≤ r − 1 (recall that r − 1 ≥ 5).

Then, χd
ρ(G) + 2 ≤

⌈√
n + 16

⌉
. Therefore, χd

ρ(G) + 2 <
√

n + 16 + 1, and we get χd
ρ(G)2 + 2χd

ρ(G) − 15 < n, a
contradiction to Lemma 5.4.

6. Remarks and open problems

Note that in the case of distance r-dominator coloring (and hence, also in the case of dominator coloring),
all colors are somehow equivalent (namely, vertices in each color class are pairwise at distance more than
r). Since each vertex of a given graph must r-distance dominate all vertices of one color class, it is not
clear, if r refers to its color or to the color of the vertices from the mentioned color class. Clearly, this is
not true for distance dominator S-packing coloring as is defined in this paper. Therefore, the concept of
dominator coloring (and distance r-dominator coloring) can be generalized via S-packing coloring in two
different ways. One of them is presented in our paper, but we could also demand that each vertex u of a
given graph x-distance dominates all vertices from some color class, where x is the color of u (not of the
mentioned color class). Hence, there arises a natural aspiration to study the second type of generalization
of dominator coloring via S-packing coloring.

Further, in Section 3, we have characterized graphs with distance dominator packing chromatic number
2 respectively 3, but there is still the problem of characterization of graphs with distance dominator packing
chromatic number 4. Using the fact that χρ(G) ≤ χd

ρ(G) for any graph G, we know that graphs H with
χd
ρ(H) = 4 are those with χρ(H) = 3 or χρ(H) = 4. Since a characterization of graphs with packing chromatic

number 4 is not known yet, we think that the task is harder as in the case of graphs with χd
ρ equal to 3.

Next, in Section 5, we have determined the distance dominator packing chromatic numbers of complete
graphs, stars, wheels, paths and cycles. There is still the open question about the exact values or bounds for
the distance dominator packing chromatic numbers for some others well known graphs. For instance, for
the family of trees it is already known that the distance dominator packing chromatic number is unbounded.
Namely, each tree contains a path as an isometric subgraph and the distance dominator packing chromatic
number in the family of paths is unbounded.
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