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Abstract. A continuous operator T between two normed vector lattices E and F is called unbounded
order-norm continuous whenever xα

uo
−→ 0 implies ‖Txα‖ → 0, for each norm bounded net (xα)α ⊆ E. Let E

and F be two Banach lattices. A continuous operator T : E→ F is called unbounded norm continuous, if for
each norm bounded net (xα)α ⊆ E, xα

un
−→ 0 implies Txα

un
−→ 0. In this manuscript, we study some properties

of these classes of operators and investigate their relationships with the other classes of operators.

1. Introduction

Let E and F be two normed vector lattices. In the second section of this manuscript, we will introduce,
study and investigate on continuous operators T : E→ F which carry every norm bounded and unbounded
order convergent net into a norm convergent net. The collection of these operators is called the class of
unbounded order-norm continuous operators between two normed vector lattices E and F and will be
denoted by Luon(E,F). On the other hand, unbounded order convergence, in general is not topological,
so by using an operator between two normed vector lattices we carry unbounded order convergence into
norm convergence. In the third section, we will introduce a new classification of operators named as
un-continuous operators and we will investigate on some properties of them and their relationships with
other classifications of operators.
In summary, our motivation to write this article is as follows:

1. (a) By Proposition 2.6 of [7] and Theorem 18 of [21], a continuous operator T between two Banach
lattices E and F is M-weakly compact iff it is uaw-Dunford-Pettis iff for each norm bounded uo-null

sequence (xn) ⊆ E, T(xn)
‖.‖
−→ 0. Therefore, the concept of unbounded order-norm continuous operators

introduced in this article is a new equivalent definition for M-weakly compact operators and uaw-
Dunford-Pettis operators by using of the concept of unbounded order convergent.
(b) It is easy to see that for a normed lattice E, if I ∈ Luon(E,E), then E has order continuous norm. So,
the concept of unbounded order-norm continuous operators can be seen as a generalization of the
order continuous norm that has an important role for studying of vector lattices.
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2. (a) If G is a sublattice of Banach lattice E and net (xα) ⊆ G is un-convergent in G, then it is not necessarily
un-convergent in E. We were interested in defining an operator that maintains un-convergence from
G to E and thus between two arbitrary Banach lattices E and F.
(b) By Theorem 2.3 of [13], if Banach lattice E has strong unit, then norm topology is equivalent
to un-topology. Therefore, the new concept of un-continuous operator introduced in this article is
similar to the concept of continuous operator but for un-convergent nets. In [13], authors introduced
un-compact operators and therefore we decided to compare them with un-continuous operators.

To state our results, we need to fix some notations and recall some definitions. Throughout this paper,
the subset E+ = {x ∈ E : x ≥ 0} of vector lattice E is called the positive cone of E and the elements of E+ are
called the positive elements of E. A subset A ⊆ E is called order bounded if there exists a, b ∈ E such that
A ⊆ [a, b] where [a, b] = {x ∈ E : a ≤ x ≤ b}. An operator T : E→ F between two vector lattices is said to be
order bounded if it maps order bounded subsets of E to order bounded subsets of F. If E is a normed space,
then E′ is the topological dual space of E and T′ : F′ → E′ is the topological adjoint of continuous operator
T : E → F between two normed spaces. In a vector lattice E, two elements x and y are said to be disjoint
(in symbols x ⊥ y) whenever |x| ∧ |y| = 0. If A is a nonempty subset of vector lattice E, then its disjoint
complement Ad is defined by Ad = {x ∈ E : x ⊥ y for all y ∈ A}. A sequence (xn)n in a vector lattice E is said
to be disjoint whenever n , m implies xn ⊥ xm. An order closed ideal of E is referred to as a band. A band
B in a vector lattice E that satisfies E = B ⊕ Bd is referred to as a projection band. Let B be a projection band
in a vector lattice E. Thus every vector x ∈ E has a unique decomposition x = x1 + x2, where x1 ∈ B and
x2 ∈ Bd. Then it is easy to see that a projection PB : E→ E is defined via the formula PB(x) = x1. Clearly, PB
is a positive projection. Any projection of the form PB is called a band projection.

Let E be a vector lattice and x ∈ E. A net (xα)α∈A ⊆ E is said to be:

• order convergent to x if there is a net (zβ)β∈B in E such that zβ ↓ 0 and for every β ∈ B, there exists
α0 ∈ A such that |xα − x| ≤ zβ whenever α ≥ α0. We denote this convergence by xα

o
−→ x and write that

(xα)α is o-convergent to x.

• unbounded order convergent to x if |xα − x| ∧ u o
−→ 0 for all u ∈ E+. We denote this convergence by

xα
uo
−→ x and write that (xα)α is uo-convergent to x. It was first introduced by Nakano in [17] and was

later used by DeMarr in [5].

• unbounded norm convergent to x if moreover E is a Banach lattice and ‖|xα−x|∧u‖ → 0 for all u ∈ E+.
We denote this convergence by xα

un
−→ x and write that (xα)α is un-convergent to x. It was studied in

[6, 13].

• unbounded absolutely weakly convergent to x, written as xα
uaw
−−→ x, if |xα − x| ∧ u w

−→ 0 for all u ∈ E+.
See, [20].

The notion of unbounded order convergence (uo-convergence, for short) was firstly introduced by Nakano
in [17]. After that, Bahramnezhad and Haghnejad Azar proposed the definition of unbounded order
continuous operators in [4]. It is clear that for order bounded nets, uo-convergence is equivalent to o-
convergence. By Corollary 3.6 of [10], every disjoint sequence in vector lattice E is uo-null. In [19],
Wickstead characterized the spaces in which weak convergence of nets implies uo-convergence and vice
versa and in [9], Gao characterized the spaces E such that in its topological dual space E′, uo-convergence
implies weak∗-convergence and vice versa.

Let X and Y be two Banach spaces. An operator T : X → Y, is said to be Dunford-Pettis (or that T has
the Dunford-Pettis property) whenever xn

w
−→ 0 in X implies ‖Txn‖ → 0. Let E and F be two Banach lattices.

An operator T : E→ F, is said to be unbounded absolute weak Dunford-Pettis (or, uaw-Dunford-Pettis for
short) if for every norm bounded sequence (xn) in E, xn

uaw
−−→ 0 in E implies ‖Txn‖ → 0 in F. This class of

operators has been introduced in [7]. If E is a Banach lattice and X is a Banach space. An operator T : E→ X,
is said to be M-weakly compact if T is continuous and lim ‖Txn‖ = 0 holds for every norm bounded disjoint
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sequence (xn)n of E. Let E and F be two vector lattices. An operator T : E → F, is said to be disjointness
preserving whenever x ⊥ y in E implies Tx ⊥ Ty in F. If for an operator T : E → F between two vector
lattices, T ∨ (−T) exists we say its modulus |T| exists. A vector e > 0 in vector lattice E is a strong unit when
the ideal Ie (generated by e) is equal to E; equivalently, for every x ≥ 0 there exists n ∈ N such that x ≤ ne.
A vector e > 0 in normed vector lattice E is also a quasi-interior point if the closure of Ie equal with E; or

equivalently, x ∧ ne
‖·‖

−→ x for every x ∈ E+. A positive non-zero vector a in a vector lattice E is an atom if
the principal ideal Ia generated by a coincides with the vector space generated by a. E is called an atomic
vector lattice if it is the band generated by its atoms. A Banach lattice E is said to be KB-space whenever
every increasing norm bounded sequence of E+ is norm convergent. Recall that E∼ = Lb(E,R) is the vector
space of all order bounded linear functionals on E and E∼n is the vector space of all order continuous linear
functionals on E. A sublattice Y of a vector lattice E is said to be regular if for every subset A of Y, infimum of
A is the same in E and in Y, whenever infimum of A exists in Y. A vector lattice E is called laterally complete
whenever every subset of pairwise disjoint positive vectors has a supremum. We say that E is laterally
σ-complete if this property holds for countable sets. For unexplained notation the reader is referred to [2].

2. Unbounded order-norm continuous operators

Definition 2.1. Let E and F be two normed vector lattices. A continuous operator T : E→ F is said to be

1. unbounded order-norm continuous (or, uon-continuous for short), if xα
uo
−→ 0 in E implies Txα

‖.‖
−→ 0 in F for

each norm bounded net (xα)α ⊆ E.

2. unbounded σ-order-norm continuous (or, σ-uon-continuous for short), if xn
uo
−→ 0 in E implies Txn

‖.‖
−→ 0 in F

for each norm bounded sequence (xn)n ⊆ E.

The collection of all unbounded order-norm (resp. σ-order-norm) continuous operators between two
normed vector lattices E and F will be denoted by Luon(E,F) (resp. Lσuon(E,F)). Every continuous operator,
in general, is not unbounded order-norm continuous. As example the identity operator I : c0 → c0 is
continuous, but is not unbounded order-norm continuous.

Here is an example of uon-continuous and an example of σ-uon-continuous operators. At first, recall
that a Banach lattice E is said to have the positive Schur property (the dual positive Schur property) if every
positive w-null sequence in E (positive w∗-null sequence in E′) is norm null.

Example 2.2. 1. Each positive operator T : E→ `1 defined on reflexive Banach lattice E is uon-continuous. Let
(xα) ⊆ E be norm bounded and xα

uo
−→ 0 in E. Without loss of generality, assume (xα) ⊂ E+. Since E has order

continuous norm, therefore xα
un
−→ 0 in E. Since E′ has order continuous norm, then by Theorem 6.4 of [6],

xα
w
−→ 0 in E. Because the operator T is continuous, hence T(xα) w

−→ 0 in `1. By Theorem 5.29(2) of [2], the
operator T is weakly compact and therefore (T(xα))α is relatively weakly compact. Since `1 is σ-order complete

and has the positive Schur property, by Theorem 3.11 of [11], T(xα)
‖.‖
−→ 0 in `1.

As a special case, each positive operator T : `p
→ `1 that 1 < p < ∞ is uon-continuous.

2. Let T : E→ F be a positive operator where E has the dual positive Schur property and F has order continuous
norm. Then T′ : F′ → E′ is a σ-uon-continuous operator. Let ( fn)n ⊆ F′, norm bounded and fn

uo
−→ 0 in F′.

Without loss of generality, assume 0 ≤ fn. Note that 0 ≤ T′ fn. Now since F has order continuous norm, by

Theorem 2.1 from [9], fn
w∗
−→ 0 in F′. Since T′ is w∗-to-w∗ continuous, hence T′ fn

w∗
−→ 0 in E′. Since E has the

dual positive Schur property, hence T′ fn
‖.‖
−→ 0 in (E)′.

Specifically, since C[0, 1] has the dual positive Schur property and c0 has order continuous norm, each positive
operator T : C[0, 1]→ c0 is σ-uon-continuous.

Let E, G and F be normed vector lattices. Then, it is obvious that for each uon-continuous operator T : E→ G
and continuous operator S : G→ F, ST : E→ F is a uon-continuous operator.
Recall that an operator T from vector lattice E into normed vector lattice F is said to be an order-norm
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continuous operator whenever (xα)α ⊆ E and xα
o
−→ 0 implies Txα

‖·‖

−→ 0. This classification of operators
has been introduce and studied by Jalili, Haghnejad Azar and Farshbaf Moghimi, see [12]. The following
example shows that the classification of order-norm continuous operators differ from classification of uon-
continuous operators.

Example 2.3. The operator T : `1
→ `∞ defined by

T(x1, x2, . . .) = (
∞∑

i=1

xi,
∞∑

i=1

xi, . . .)

is an order-norm continuous operator (`1 has order continuous norm and T is a continuous operator). Now, if (en)n is
the standard basis of `1, then (en) is uo-null and norm bounded in `1 and T(en) = (1, 1, 1, . . .). Therefore, ‖T(en)‖9 0
in `∞. Thus, T is not uon-continuous.

If a normed vector lattice E is Dedekind σ-complete and laterally σ-complete, then every order-norm
continuous operator from E into normed vector lattice F is σ-uon-continuous. Namely, if (xn)n is a norm
bounded sequence in E such that xn

uo
−→ 0, then by Theorem 3.2 of [14], (xn)n is order bounded and therefore

xn
o
−→ 0 in E and so T(xn)

‖·‖

−→ 0 in F. Hence T is a σ-uon-continuous operator. If E has strong unit, since
each norm bounded subset of E is order bounded, then each order-norm continuous operator T : E→ F is
uon-continuous.

Let T : E → F be a positive operator between two vector lattices. We say that an operator S : E → F is
dominated by T (or that T dominates S) whenever |Sx| ≤ T|x| holds for each x ∈ E. If T is a uon-continuous
operator between two normed vector lattices E and F, then it is obvious that S : E → F is uon-continuous
whenever S is dominated by T.

Theorem 2.4. Let T : E→ F be an order bounded uon-continuous operator between two normed vector lattices. If,

1. F is Archimedean and T preserves disjointness, then |T| exists and belongs to Luon(E,F).
2. E is Dedekind σ-complete and laterally σ-complete and F is an atomic Banach lattice with order continuous

norm, then |T| exists and belongs to Lσuon(E,F).

Proof. 1. By Theorem 2.40 of [2], |T| exists and for all x, we have |T|(|x|) = |T(|x|)| = |T(x)|. If (xα)α ⊆ E is

norm bounded and xα
uo
−→ 0, then for each α, |T|(|xα|) = |T(|xα|)| = |T(xα)|

‖·‖

−→ 0 in F. Now by inequality

||T|(xα)| ≤ |T||xα|, we have |T|(xα)
‖·‖

−→ 0.
2. First we show that T is a σ-order continuous operator. Let (xn)n ⊆ E and xn

o
−→ 0 in E. Then xn

uo
−→ 0

and by Theorem 3.2 of [14], (xn)n is order bounded in E. So (xn)n is norm bounded. Hence by the

assumption, T(xn)
‖·‖

−→ 0 in F. Note that (T(xn))n is order bounded. Now by Lemma 5.1 of [6], T(xn) o
−→ 0

in F. Hence T is a σ-order continuous operator. Note that by Theorem 4.10 of [2], F is Dedekind
complete, therefore similar to Theorem 1.56 of [2], |T| exists and it is a σ-order continuous operator.
Now, assume that (xn)n ⊆ E is norm bounded and xn

uo
−→ 0 in E, since E is Dedekind σ-complete and

laterally σ-complete, (xn)n is order bounded. It follows that xn
o
−→ 0 in E and |T|(xn) o

−→ 0 in F. Since F

has order continuous norm, we have |T|(xn)
‖·‖

−→ 0.

Recall that a vector lattice E is said to be perfect whenever the natural embedding x 7→ x̂ from E to (E∼n )∼n is
one-to-one and onto. By Exercise 3 of page 74 of [2], if F is a perfect vector lattice, then Lb(E,F) is likewise a
perfect vector lattice for each vector lattice E.

Theorem 2.5. Let E and F be two normed vector lattices.

1. If F has strong unit, then Luon(E,F) is a subspace of Lb(E,F).
Moreover, if the condition (2) from Theorem 2.4 holds, then we have the following assertions.
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2. An order bounded operator T : E→ F is a σ-order continuous operator if and only if it is σ-uon-continuous. It
follows that Lσuon(E,F) ∩ Lb(E,F) is a band of Lb(E,F).

3. If F is perfect, then Lσuon(E,F) ∩ Lb(E,F) is likewise a perfect vector lattice for each vector lattice E.

Proof. 1. Let T : E → F be a uon-continuous operator and let x ∈ E+. similar to Lemma 1.54 of [1], we
consider the order interval [0, x] as a net (xα)α, where xα = α for each α ∈ [0, x], then xα ↓ 0. It is clear

that (xα) is norm bounded and xα
uo
−→ 0 in E. By assumption T(xα)

‖·‖

−→ 0 and therefore (T(xα))α is norm
bounded in F. Because F has strong unit, therefore (T(xα))α is order bounded. Hence T ∈ Lb(E,F).

2. Follows from Theorem 1.57 of [2].
3. We will show that if E is a perfect vector lattice and B is a band of E, then B is perfect vector lattice

in its own right. Suppose x, y ∈ B and x , y, by Theorem 1.71 of [2], there exists f ∈ E∼n such that
f (x) , f (y). The restriction of f to B is order continuous and f |B (x) , f |B (y). Therefore B∼n separates
the points of B. Let (xα)α ⊆ B, 0 ≤ xα ↑ and sup{ f (xα)} < ∞ for each 0 ≤ f ∈ B∼n . It is clear that (xα)α ⊆ E
and 0 ≤ xα ↑ in E. On the other hand, for each f ∈ E∼n , f |B∈ B∼n and f |B (xα) = f (xα) for all α, therefore
sup{| f (xα)|} < ∞ for each 0 ≤ f ∈ E∼n . Thus by Theorem 1.71 of [2], there exists some x ∈ E satisfying
0 ≤ xα ↑ x. Since B is a band of E, hence x ∈ B. Therefore by Theorem 1.71 of [2], B is a perfect vector
lattice. Similarly Lσuon(E,F) ∩ Lb(E,F) is a perfect vector lattice.

Recall that a Banach lattice E is said to be AL-space, if ‖x+ y‖ = ‖x‖+ ‖y‖ holds for all x, y ∈ E+ with x∧ y = 0.

Theorem 2.6. Let E be an AL-space, F be a normed lattice and let T : E → F be a positive operator. Then for the
following assertions:

1. T is a uon-continuous operator.
2. T is a Dunford-Pettis operator.

3. For every relatively weakly compact net (xα)α ⊆ E, xα
w
−→ 0 implies Txα

‖·‖

−→ 0.

4. For every relatively weakly compact net (xα)α ⊆ E, xα
uo
−→ 0 implies Txα

‖·‖

−→ 0.

We have

(1)⇒ (2)⇒ (3)⇒ (4).

Proof. (1)⇒ (2) Let (xn)n ⊆ E be a norm bounded and disjoint sequence. Since xn
uo
−→ 0 and it is norm

bounded in E, therefore by assumption we have Txn
‖·‖

−→ 0 in F. Hence T is a M-weakly compact
operator. Now by Theorem 5.61 of [2], T is weakly compact and therefore by Theorems 5.85 and 5.82
of [2], T is a Dunford-Pettis operator.
(2) ⇒ (3) Suppose (xα)α is relatively weakly compact and xα

w
−→ 0. Suppose also (Txα)α does not

converge to 0 in norm. Then there exists ε > 0 such that for any α, there exists β(α) ≥ α satisfying
‖Txβ(α)‖ ≥ ε. Thus by passing to the subnet (Txβ(α)), we may assume inf ‖Txα‖ > 0. Since 0 ∈ (xα)

w
, By

Theorem 4.50 of [8] there exists a sequence (yn)n ⊆ {xα : α} such that yn
w
−→ 0. The assumption (2) now

implies Tyn
‖·‖

−→ 0, which is a contradiction.
(3)⇒ (4) Suppose (xα)α is relatively weakly compact and xα

uo
−→ 0. By Proposition 3.9 of [11], |xα|

w
−→ 0.

Thus by assumption (3), T|xα|
‖·‖

−→ 0. Now by inequality |Txα| ≤ T|xα|we have Txα
‖·‖

−→ 0.

Remark 2.7. One should note that statements in Theorem 2.6 are not equivalent. For example, the identity operator
of `1, I`1 , is Dunford-Pettis, since `1 has the Schur property. On the other hand, for (en) the standard basis of `1 we
have en

uo
−→ 0 and it is norm bounded. As ‖Ien‖ = ‖en‖ = 1 for each n, hence I`1 is not uon-continuous.

Remark 2.8. A continuous operator T between two Banach lattices E and F is σ-uon-continuous iff it is M-weakly
compact iff it is uaw-Dunford-Pettis (see [7, Proposition 2.6] and [21, Theorem 18]).
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3. Unbounded norm continuous operators

A continuous operator T between two Banach lattices E and F is said to be unbounded norm continuous
(or, un-continuous for short) whenever xα

un
−→ 0 implies Txα

un
−→ 0, for each norm bounded net (xα)α ⊆ E.

For norm bounded sequence (xn)n ⊆ E, if xn
un
−→ 0 implies Txn

un
−→ 0, then T is called a σ-unbounded norm

continuous operator (or, σ-un-continuous for short). The collection of all unbounded norm continuous
operators of L(E,F) (the class of linear operators from E to F) will be denoted by Lun(E,F). That is,

Lun(E,F) = {T ∈ L(E,F) : T is unbounded norm continuous }.

Similarly, Lσun(E,F) will denote the collection of all operators from E to F that are σ-unbounded norm
continuous. That is,

Lσun(E,F) = {T ∈ L(E,F) : T is σ-unbounded norm continuous }.

Every continuous operator in general is not unbounded norm continuous operator. As example, the
inclusion mapping from `1 into `∞ is continuous, but is not unbounded norm continuous operator.
Now in the following, we give some examples of un-continuous operators.

Example 3.1. 1. Let B be a projection band of Banach lattice E and PB the corresponding band projection. It
follows easily from 0 ≤ PB ≤ I (see Theorem 1.44 of [2]) that if xα

un
−→ 0 in E then PBxα

un
−→ 0 in B. Therefore

PB is a un-continuous operator.
2. Let E and F be two Banach lattices such that E has a strong unit. Then by Theorem 2.3 of [13], each continuous

operator T : E→ F is un-continuous.
Since C[0, 1] has a strong unit and operator T : C[0, 1]→ c0, given by

T( f ) = (
∫ 1

0
f (x) sin xdx,

∫ 1

0
f (x) sin 2xdx, . . .),

is a continuous operator, therefore T is un-continuous.
3. Let E and F be two Banach lattices such that E′ has order continuous norm and F is atomic with order continuous

norm, then each continuous operator T : E → F is σ-un-continuous. Let (xn)n ⊆ E be norm bounded and
xn

un
−→ 0 in E, then by Theorem 6.4 of [6] we have xn

w
−→ 0 and therefore Txn

w
−→ 0 in F. By Proposition 6.2 of

[6], Txn
un
−→ 0 in F.

For example operator T : C[0, 1]→ `1, given by

T( f ) = (

∫ 1

0 f (x) sin xdx

12 ,

∫ 1

0 f (x) sin 2xdx

22 , · · · ),

is σ-un-continuous.
It is clear that if E′ has order continuous norm and F has the Schur property, then each continuous operator
T : E→ F is σ-un-continuous.

Recall from Definition 1 of [21] that a continuous operator T : E→ F between two Banach lattices is said to
be uaw-continuous if it maps every norm bounded uaw-null sequence into a uaw-null sequence.

Remark 3.2. Let T : E→ F be an operator between two Banach lattices.

1. If E has order continuous norm and T is σ-un-continuous, then T is uaw-continuous.
2. If F has order continuous norm and T is uaw-continuous, then T is σ-un-continuous.

Now in the following Proposition, by using Theorem 5.3 from [6] and Theorem 2.3 from [13], we show
the relationship between the classifications of unbounded norm continuous and unbounded order-norm
continuous operators.
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Proposition 3.3. Assume that T : E → F is an operator between two Banach lattices and E has order continuous
norm. Then we have the following assertions.
(a) If E is atomic, then Luon(E,F) is a subspace of Lun(E,F).
(b) If F has a strong unit, then each T ∈ Lun(E,F) is uaw-Dunford-Pettis and by one of the following conditions
T ∈ Luon(E,F).

1. T ∈ Lun(E,F).
2. T is onto homomorphism.

Proof. (a) By using Theorem 5.3 from [6], proof is clear.
(b) Assume that (xn) ⊆ E and norm bounded with xn

uaw
−−→ 0 in E. By using Theorem 4 of [20], xn

un
−→ 0 in E,

and so by assumption we have Txn
un
−→ 0 in F. Then by Theorem 2.3 from [13], proof follows.

1. Assume that norm bounded net (xα) ⊆ E with xα
uo
−→ 0 in E and T ∈ Lun(E,F). It is clear that xα

un
−→ 0.

By assumption T(xα) un
−→ 0 and therefore by Theorem 2.3 from [13], T(xα)

‖·‖

−→ 0.
2. If T is homomorphism, then T is continuous, and so ‖T(|xα| ∧ u)‖ → 0 whenever ‖|xα| ∧ u‖ → 0

for all u ∈ E+. On the other since T is onto, it is clear that T is un-continuous and therefore it is
uon-continuous.

With notice Example 6 from [7], the inclusion mapping `2 → `∞ is not uaw-Dunford-Pettis, and so by
proceeding proposition is not un-continuous.

Corollary 3.4. Let E be a Banach lattice with order continuous norm and F has strong unit. Then for the following
assertions:

1. Each positive Dunford-Pettis operator T : E→ F is σ-unbounded norm continuous.
2. Each positive compact operator T : E→ F is σ-unbounded norm continuous.
3. One of the following conditions is valid:

(a) The norm of E′ is order continuous.
(b) F = {0}.

We have 1⇒ 2⇒ 3.

Proof. 1⇒ 2 Note that each compact operator is Dunford-Pettis, so the proof is complete.
2⇒ 3 By assumption and Proposition 3.3, each compact operator is uaw-Dunford-Pettis. Then by Theorem
3.1 of [15] the proof is complete.

By using Theorem 4.3 of [13], we also have the following proposition.

Proposition 3.5. Let E and F be two Banach lattices and Let G be a sublattice of E and T ∈ Lun(E,F). Each of the
following conditions implies that T|G ∈ Lun(G,F).

1. G is majorizing in E;
2. G is norm dense in E;
3. G is a projection band in E.

The preceding Proposition implies that if T ∈ Lun(Eδ,F), then T|E ∈ Lun(E,F) whenever E and F are Banach
lattices and Eδ is a Dedekind completion of E.

Let E,G and F be Banach lattices. If E T
−→ G S

−→ F are un-continuous operators, clearly ST is likewise a
un-continuous operator. Also, by using Theorem 2.40 of [2], if T : E → F preserves disjointness and un-
continuous operator, then |T| exists and is a un-continuous operator.
Deng, Brien and Troitsky in [6], show that un-convergence is topological. For each ε > 0 and x ∈ E+ the
collections Vε,x = {y ∈ E : ‖|y| ∧ x‖ < ε} is a base of zero neighborhoods for a topology, and convergence in
this topology agrees with un-convergence.
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Recall that a topological space is said to be sequentially compact if every sequence has a convergent
subsequence. An operator T : E→ F between two Banach lattices is said to be (sequentially) un-compact if
TBE (BE is closed unit ball of E) is relatively (sequentially) un-compact in E. Equivalently, for every bounded
net (xα)α (respectively, every bounded sequence (xn)n) its image has a subnet (respectively, subsequence),
which is un-convergent. A net (xα)α is un-Cauchy if for every un-neighborhood U of zero there exists α0
such that xα − xβ ∈ U whenever α, β ≥ α0. The order continuous Banach lattice E is un-complete if each
un-Cauchy net (xα)α of E is un-convergent to x ∈ E. These concepts have been introduce by Kandic, Marabeh
and Troitsky, see [13].

Clearly, every compact operator is both un-compact and sequentially un-compact. In general un-compact
and sequentially un-compact operators are not un-continuous and vice versa as shown by the following
example.

Example 3.6. 1. The operator T : `1
→ `∞ defined by

T(x1, x2, . . .) = (
∞∑

i=1

xi,
∞∑

i=1

xi, . . .),

is clearly rank one, and so T is a compact operator. It follows that T is un-compact and sequentially un-compact.
If (en)n is the standard basis of `1, by Proposition 3.5 of [13], en

un
−→ 0 in `1. We have T(en) = (1, 1, 1, ...),

therefore (T(en))n is not un-convergent to 0. Hence T is un-compact but is not a un-continuous operator.
2. Let E = L1[0, 1]. Clearly, the identity operator I : E→ E is un-continuous. Since E is a KB-space, by Theorem

6.4 of [13], BE is un-complete. But since E is not atomic, by Theorem 7.5 of [13], BE is not un-compact. Hence
I is not un-compact.

The operator T in Example 3.6 is un-compact but it is not uon-continuous. In the following theorem, we want
to show that under certain conditions, each positive uon-continuous operator T is a un-compact operator.

Theorem 3.7. Let F be a Banach lattice. If T : `1
→ F is a uon-continuous operator, then T is un-compact.

Proof. Let (xn)n be a norm bounded sequence in `1, then by Theorem 7.5 of [13], there exists a subsequence
(xnk )k of (xn)n such that xnk

un
−→ x for some x ∈ E. Since uo-convergence and un-convergence agree on `1, so

by assumption we have Txnk → Tx in F. Therefore T is compact and so it is un-compact.

A subset A of Banach lattice E is said to be un-bounded, if A is bounded with respect to un-topology.
An operator T : E → F between two Banach lattices is un-bounded if T(A) is un-bounded in F for each
un-bounded subset A of E.

Proposition 3.8. Assume that E and F are two Banach lattices and E has quasi-interior point. If T : E → F is a
un-bounded operator, then T is σ-un-continuous.

Proof. Let (xn)n ⊆ E be norm bounded and xn
un
−→ 0. By Theorem 3.2 from [13], E is metrizable, and so

similar to Theorem 1.28(b) of [18], there exists a sequence (αn) ⊆ R+ such that αn → +∞ and αnxn
un
−→ 0.

Obviously, (αnxn) is un-bounded. Hence (T(αnxn)) is un-bounded. Thus similar to Theorem 1.30 of [18], we
have Txn = 1

αn
T(αnxn) un

−→ 0. That is, T is σ-un-continuous.

Remark 3.9. There is a un-compact operator which is not un-bounded. Let T : `1
→ `∞ be the un-compact operator

in Example 3.6. But, since `1 has quasi-interior point and T is not a σ-un-continuous operator, by Proposition 3.8, T
is not un-bounded.

Proposition 3.10. Assume that E and F are two Banach lattices. If F has a strong unit and let T : E → F be a
sequentially un-compact operator. Then the adjoint operator T′ is both sequentially un-compact and un-compact.
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Proof. Let (xn)n be a bounded sequence in E. Then by the assumption (T(xn))n has a subsequence, which
is un-convergent. Now by Theorem 2.3 of [13], (T(xn))n is norm-convergent and therefore T is a compact
operator. Now by Theorem 5.2 of [2], T′ is compact and therefore it is both sequentially un-compact and
un-compact.

Recall that, for every ideal I of a vector lattice E, the vector space
E
I

is a vector lattice (see page 99 from
[2]).

Theorem 3.11. Let T : E → F be an operator between two Banach lattices and T(E+) = F+. If ker(T) is an ideal of
E, then T is un-continuous.

Proof. At first it is clear that T is surjective. On the other hand, as kernel of T is an ideal of E, by
Theorem 2.22 of [2], the quotient vector space E

ker(T) is a vector lattice and the operator S : E → E
ker(T)

defined by S(x) = x + ker(T) is a Riesz homomorphism. Now we define the operator K : E
ker(T) → F via

K(x + ker(T)) = Tx. It is clear that K is well defined, one-to-one operator and T = KS. Let y ∈ F and
x ∈ E such that y = T(x) = K(x + ker(T)). It follows that K is a surjective operator. Now if x + ker(T) ≥ 0,
then |x + ker(T)| = x + ker(T). On the other hand, since S is Riesz homomorphism, by Theorem 2.14 of
[2], we have S(|x|) = |S(x)|. Therefore |x| + ker(T) = |x + ker(T)| = x + ker(T) and hence K(x + ker(T)) =
K(|x| + ker(T)) = T(|x|) ≥ 0. Thus K is a positive operator. Let y ∈ F+. Since T(E+) = F+, it follows that there
exists x ∈ E+ that y = T(x) = K(x + ker(T)). It follows from K−1(y) = K−1(K(x + ker(T))) = x + ker(T) and
|x + ker(T)| = |x| + ker(T) = x + ker(T) that K−1 is a positive operator. Now by Theorem 2.15 of [2], K is a
Riesz homomorphism. It follows that T is Riesz homomorphism. Now, the proof is complete by this fact
that each surjective Riesz homomorphism is un-continuous.

Theorem 3.12. Let E,F and G be Banach lattices. Then we have the following assertions.

1. If T : E→ F and Q : F→ G are two positive operators that E′ and G have order continuous norm, then QT is
un-continuous.

2. If there exists a positive operator Q : `1
→ F, then there exists a positive un-continuous operator T : c0 → F.

Proof. 1. Let (xα)α ⊆ E be norm bounded and xα
un
−→ 0 in E. Since E′ has order continuous norm, by

Theorem 6.4 of [6], xα
w
−→ 0 in E. Therefore Txα

w
−→ 0 in F and so QT(xα) w

−→ 0 in G. Since G has order
continuous norm, then by Proposition 6.3 of [6], QT(xα) un

−→ 0 in G.
2. Let S : c0 → `1 be a positive operator. Let (xα)α ⊆ c0 is norm bounded and un-null. Since c′0 has order

continuous norm, hence by Theorem 6.4 of [6], xα
w
−→ 0 in c0. So, S(xα) w

−→ 0 in `1. By Theorem 5.29(2)
of [2], S is weakly compact. Therefore (S(xα))α is relatively weakly compact in `1. Now by Theorem

3.11 of [11], S(xα)
‖·‖

−→ 0 in `1. We put T = QS. It is clear that T is a positive un-continuous operator.

Let E be a vector lattice and E∼∼ be the bidual of E. Recall that a subset A of E is b-order bounded in E if A
is order bounded in E∼∼.

Theorem 3.13. Let E be a Banach lattice with order continuous norm and F be a Dedekind σ-complete Banach lattice
such that the norm of F is not order continuous. If each operator T : E→ F is un-continuous, then E is KB-space.

Proof. By way of contradiction, suppose that E is not a KB-space. Then by Lemmas 2.1 and 3.4 of [3],
there exists a b-order bounded disjoint sequence (xn)n of E+ such that ‖xn‖ = 1 for all n, and there exists
a positive disjoint (1n)n of E′ with ‖1n‖ ≤ 1 such that 1n(xn) = 1 for all n, and 1n(xm) = 0 for n , m. Now
we consider the operator S : E → `∞ defined by S(x) = (1k(x))∞k=1 for all x ∈ E. Since (xn)n is disjoint,

by Corollary 3.6 of [10], it is uo-null. Hence xn
uo
−→ 0 in E and therefore xn

un
−→ 0 in E. It follows that

‖S(xn)‖ = ‖(1k(xn))∞k=1‖ ≥ 1n(xn) = 1. By Theorem 2.3 of [13] S(xn) 9 0 with respect to un-topology in `∞.
Therefore S is not un-continuous. On the other hand, since the norm of F is not order continuous and F is
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Dedekind σ-complete, by Corollary 2.4.3 of [16], F contains a complemented copy of `∞. Now we consider
the composed operator T = I ◦ S : E→ `∞ → F, where I is the canonical injection of `∞ into F. This operator
is not un-continuous which is impossible, and so the proof follows.

In the following, we show that under certain conditions, each uon-continuous operator is a combination of
two un-continuous operators.

Theorem 3.14. Let F be a Banach lattice. For the following statements:

1. For any Banach lattice E such that E′ has order continuous norm, each positive operator T : E→ F is
uon-continuous.

2. There exist a reflexive Banach lattice G and two un-continuous operators Q : E → G and S : G → F
such that T = SQ.

We have, (1) implies (2).

Proof. Since c′0 = `1 has order continuous norm, therefore by assumption each positive operator T : c0 → F
is uon-continuous. We want to show that F is a KB-space. Assume by way of contradiction that F is not
KB-space. Then by Theorem 4.60 of [2], c0 is embeddable in F. Let T : c0 → F be this embedding. Then
there exist two positive constants K and M satisfying

K‖xn‖∞ ≤ ‖Txn‖ ≤M‖xn‖∞ f or all (xn) ⊆ c0.

Since (en) is norm bounded and uo-null in c0, we have ‖T(en)‖ ≥ K‖en‖∞ = K > 0. Therefore, T is not uon-
continuous, which contradicts. That is, F is KB-space. Since T is uon-continuous, it is M-weakly compact.
Therefore by Exercise 10 of page 338 of [2], there exists a reflexive Banach lattice G and positive operators
Q : E → G and S : G → F such that T = SQ. We show that Q and S are un-continuous. Let (xα)α ⊆ E
be norm bounded and un-null. Since E′ has order continuous, then by Theorem 6.4 of [6], xα

w
−→ 0 and

therefore Qxα
w
−→ 0 in G. By Proposition 6.3 of [6], Q(xα) un

−→ 0. Since G′ has order continuous norm and F is
a KB-space, a similar argument shows that S is un-continuous.
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