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Abstract. The behavior of a generalized random environment integer-valued autoregressive model of
higher order with geometric marginal distribution and negative binomial thinning operator is dictated by a
realization {zn}

∞

n=1 of an auxiliary Markov chain called random environment process. Element zn represents
a state of the environment in moment n ∈ N and determines all parameters of the model in that moment.
In order to apply the model, one first needs to estimate {zn}

∞

n=1, which was so far done by K-means data
clustering. We argue that this approach ignores some information and performs poorly in certain situations.
We propose a new method for estimating {zn}

∞

n=1, which includes the data transformation preceding the
clustering, in order to reduce the information loss. To confirm its efficiency, we compare this new approach
with the usual one when applied on the simulated and the real-life data, and notice all the benefits obtained
from our method.

1. Introduction

Integer-valued autoregressive (INAR) models appeared for the first time in [11] and [2]. Over the time,
they showed to be a very useful tool for describing the integer-valued data. One may, for example, apply
INAR models to describe the monthly number of rainy days, crime cases, newborn individuals of one
species. It becomes clear that such data may be found in any area. For that reason, numerous INAR
models have been proposed and studied in the literature. INAR models are based on so called thinning
operator, which to a given integer-valued random variable X assigns the sum of X independent identically
distributed random variables. The distribution of the auxiliary random variables determines the type of the
thinning operator. Some of the models with different thinning operators may be found in [3], [10], [17, 18]
and [16]. Another variety of INAR models arise from considering different marginal distributions, see for
example [12], [1], [5] and [6].

We focus on the recent random environment INAR models that appeared for the first time in [14] and
are flexible towards the environment conditions changes. The behavior of these models is ruled by a
Markov chain {Zn}

∞

n=1, called random environment process. The elements of the random environment process
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are also called (random) environment states. To apply a random environment INAR model, one must first
estimate the environment states. In [14] this was done using clustering methods, in particular K-means
introduced by [7]. However, using K-means for this purpose induces a certain loss of information, as we
discuss below, and may lead to poor performance of the model. In order to estimate environment states
as accurate as possible, we propose a new random environment estimation (abbrev. RENES) method. To
avoid the confusion, it is important to emphasize that we do not introduce a new method for estimating the
parameters of random environment INAR models, but only a new method for estimating {zn}

∞

n=1. However,
the estimators of random environment INAR models parameters are defined under the assumption that
{zn}

∞

n=1 is known in advance, meaning that a different approach for estimating {zn}
∞

n=1 will for sure imply the
difference in the parameter estimates.

We need to provide more details on the random environment INAR models. We begin with the first
order random environment INAR model with geometric marginals (RrNGINAR(1)) introduced in [14]. The
marginal distribution of the RrNGINAR(1) time series in moment n is determined by the realization of the
random environment process zn recorded in the same moment — for this reason we write Xn(zn). Moreover,
the distribution of Xn(zn) is geometric with expectation µzn ∈ {µ1, µ2, . . . µr}. The recursive relation that
defines RrNGINAR(1) model is given by

Xn(zn) = α ∗ Xn−1(zn−1) + εn(zn, zn−1), (1)

where, α∗ : X 7→
∑X

i=1 Ui denotes the negative binomial thinning operator, that to each integer-valued ran-
dom variable X assigns the sum of X independent random variables having geometric distribution with
mean value α. In order to measure the goodness of fit of such defined model, corresponding environment
states zn for all observations must be estimated. This is where the K-means clustering method took place.
The predefined number of clusters was chosen to be the number of environment states r registered in the
observed phenomenon. Each cluster was assigned to one state and each sample element was assigned
to a state depending on the cluster it felt into. In particular, if two different process elements Xn(zn) and
Xm(zm) belong to the same cluster, then it was assumed that zn = zm. In that way, the sequence of random
environment states was fully determined. However, this approach shows a serious shortcomings, which
are consequence of the fact that only data point value was taken into account in K-means clustering method.
Once the K-means is performed, graphed representation of the database will be divided by horizontal lines
into strips, as shown in the lower panel of Figure 1. Each strip corresponds to one cluster. This entails that
all high values in the database must be located in the same cluster. Similar to this, all low values must
be located in the same cluster. This is, however, not the case with the data simulated from RrNGINAR(1)
process. The upper panel of Figure 1 shows the data simulated from R2NGINAR(1) model. As we can see,
it is possible that high data values appear also in the environment conditions different than those assumed
for the high data values, so the data is no longer divided by a horizontal strip. K-means totally rules out
this possibility.

As an example, consider the number of the new COVID-19 cases per day. As it is known, the weather
conditions significantly affected the spread rate, so we use RrNGINAR(1) model with r = 2 different en-
vironment states: summer and winter. However, there are some other circumstances undetected or not
measurable, that can affect the number of new cases per day, for example public demonstrations, unal-
lowed gatherings of people during vacations or emergence of the new virus strain. In these situations, it
would be ideal for clustering method to recognize specific circumstances and keep high values (detected
in summertime) in ’summer’ cluster. However, standard K-means is incapable to do so. Observing only
numerical value of the process realization, K-means might recognize high summertime values as winter
occasions, and locate those realizations in the wrong cluster. The same holds for all K-means adaptations
familiar so far. Obviously, an improved random environment estimation method is needed in order to
solve such problem.

In years that followed, few more sophisticated INAR models appeared. [15] defined random environ-
ment INAR models of higher order. Beside the marginal distribution parameter, authors assumed here that
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Simulated R2NGINAR(1) time series–exact environment states

States estimated by the application of standard K-means method

Figure 1: The environment states of R2NGINAR(1) simulation: different states presented with a different symbol–a circle or a triangle.
The estimated states are obviously divided by a horizontal strip, unlike the exact states.
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the order of the model is also determined by the environment state in particular moment. Another step
ahead was made by [9]. Beside all the assumptions mentioned above, authors additionally assumed that
the thinning parameter value αzn in moment n depends on the environment state zn in the same moment.
According to [9], {Xn(zn)}∞n=1 is called a generalized random environment INAR model of higher order with
geometric marginals and negative binomial thinning operator (abbrev. RrNGINAR(M,A,P)) if its element
Xn(zn) at moment n ∈N is determined by the recursive relation

Xn(zn) =


αzn ∗ Xn−1(zn−1) + εn(zn, zn−1) w.p. φzn

1,Pn
,

αzn ∗ Xn−2(zn−2) + εn(zn, zn−2) w.p. φzn
2,Pn
,

...

αzn ∗ Xn−Pn (zn−Pn ) + εn(zn, zn−Pn ) w.p. φzn
Pn,Pn

.

(2)

SetsM = {µ1, . . . , µr},A = {α1, . . . , αr}, P = {p1, . . . , pr} contain model parameter values — µzn is the mean of
the marginal geometric distribution of Xn(zn), αzn is the thinning parameter value and pzn represents the max-
imal value that order Pn may take for a fixed state zn ∈ {1, . . . , r}. There are two different RrNGINAR(M,A,P)
models, depending on the way sequence {Pn}

∞

n=1 is defined. One of them, RrNGINARmax(M,A,P) is con-
structed so that for each n ∈ N it holds Pn = max{p∗n, pzn }, while for the other one, RrNGINAR1(M,A,P)
we have Pn = 1 if p∗n < pzn and Pn = pzn otherwise. Here p∗n = max{i ≥ 1: zn−i = · · · = zn−1} represents the
number of predecessors of zn that are mutually equal.

Beside the shortcomings mentioned above, we detected another difficulty when applying K-means to
a generalized random environment INAR process of higher order, as it was done in [9]. To explain the
difficulty, consider the simplest case with r = 2 environment states and suppose similarity between mean
values within states, µ1 ≈ µ2. In other words, the observations inside states are not that much different
and are accumulated around parallel horizontal lines that are close to each other. In this situation, it is
reasonable to expect the existence of a strip in which points from both environment states will be mixed.
The border between states won’t be a straight line, but a wavy and jagged line. Taking into account the
fact that K-means method separates clusters by straight horizontal lines, it becomes obvious that some
improvements are necessary.

In this paper we introduce a new random environment estimation (RENES) method that will eliminate
disadvantages mentioned above. The idea of RENES method is to transform the data sample that corre-
sponds to the generalized random environment INAR model of higher order before applying clustering.
As previously mentioned, all the parameter values µzn , αzn and Pn carry the information about zn. To
prevent the information loss, the main goal is to form a three-dimensional sequence, based on real-life data
realizations, that mimics the behavior of {(µzn , αzn ,Pn)}∞n=1. Finally, the K-means algorithm will be applied
on such obtained three-dimensional data sequence. It is possible to apply RENES method to any other
generalized random environment INAR model of higher order (to those that have different marginal dis-
tribution and thinning operator), but we focus on RrNGINAR(M,A,P) models, as it was the case in [9]. In
order to confirm the efficiency of RENES, corresponding simulated data sequences are created. Observing
the simulations, we can examine whether changes in the number of states and parameter values affect the
efficiency of RENES method.

The structure of this paper is as follows. In Section 2, a construction of the new RENES method is
presented. Section 3 provides description of simulations and their properties. Cases with 2 and 3 different
environment states are described. An extensive simulation study for newly proposed RENES method is
given in Section 4. Results of applying the RENES method to the real-life data are given in Section 5.
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2. Construction of the new RENES method

Consider a sample {Xn}
N
n=1 = {Xn(zn)}Nn=1 of size N ∈ N from RrNGINAR(M,A,P) model. In order

to construct the method, the main idea is to determine certain kind of pre-estimators {µ̃n}
N
n=1, {α̃n}

N
n=1 and

{P̃n}
N
n=1 of parameter sequences {µzn }

N
n=1, {αzn }

N
n=1 and {Pn}

N
n=1 based only on the realized sample, without

knowing the random environment sequence {zn}
N
n=1. For all n ∈ N, pre-estimators µ̃n, α̃n and P̃n will be

defined as functions dependent on xn and (possibly) on several neighboring realizations. The main pur-
pose of such obtained {µzn }

N
n=1, {αzn }

N
n=1 and {Pn}

N
n=1 is to mimic the behavior of the model parameters over

time. This way, an information about zn will be preserved. Then, clustering the three-dimensional data
{(µ̃n, α̃n, P̃n)}Nn=1 would produce better estimation of {zn}

N
n=1 than clustering of the starting sequence {xn}

N
n=1,

since the information loss is prevented.

As mentioned before, our goal is not to define new estimators of model parameters, but to improve the
estimation of {zn}

∞

n=1. Given sequence of so-called ’pre-estimators’ {(µ̃n, α̃n, P̃n)}Nn=1 is just a helpful tool to
estimate {zn}

∞

n=1 (see Figure 2), and it doesn’t represent any kind of alternative estimates of model param-
eters. Model parameters have already been successfully estimated in [9], and we rely on those results in
evaluating our RENES method.

Although it is possible to implement clustering of three-dimensional data {(µ̃n, α̃n, P̃n)}Nn=1, method can
be improved even more, by considering trimmed (truncated) means. To that purpose, let c = (c0, c1, . . . , ck)′

be a vector of positive real numbers such that c0 + 2
∑k

j=1 c j = 1. Then, for a given sequence a1, a2, . . . , aN let
us define a function

T(ai, c) =

ai, i ≤ k or i > N − k,∑i+k
j=i−k c| j−i|a j, k < i ≤ N − k.

(3)

Elements of c are decreasing c0 ≥ c1 ≥ · · · ≥ ck, so that T(ai, c) represents a trimmed mean affected the
most by the current value ai. The influence of the k neighboring elements of ai on T(ai, c) decreases when
moving away from ai. If zn−k = · · · = zn+k for some n ∈ {1, . . . ,N}, it will make sense to use T(µ̃n, c) instead
of µ̃n when estimating the environment state zn, because in this case all the elements Xn−k, . . . ,Xn+k carry
information about zn. As mentioned in [9], RrNGINAR(M,A,P) model shows bad performances in case
when environment states are changing rapidly. Its application makes sense only if the probability of re-
maining in the same state is big enough. Hence, for k small enough, one may assume that 2k+1 neighboring
elements of {zn}

N
n=1 are equal with high probability in all the situations of practical importance. Thus, it

sounds reasonable to replace {(µ̃n, α̃n, P̃n)}Nn=1 in clustering procedure with another three-dimensional data
sequence {(T(µ̃n, cm),T(α̃n, ca),T(P̃n, cp))}Nn=1, for some vectors cm, ca and cp. Theoretically speaking, lengths
of these vectors do not have to be equal. The upper limit of the vector’s length might be discussed as well.
Higher values of k give better pre-estimates, provided all of observations Xn−k, . . . ,Xn+k correspond to the
same state. Otherwise, pre-estimates might be even worsened. To reconcile these two opposing facts, we
are not going to discuss vectors cm, ca, cp of length higher than 4.

If we want all the coordinates of (T(µ̃n, cm),T(α̃n, ca),T(P̃n, cp)) to have equal impact on the clustering, it is
necessary to scale them. Thus, we define a function S that to a given element an of a sequence {an}

N
n=1 assigns

properly scaled (normed) value of T(an, c). By scaled value of T(an, c) we mean the quotient T(an,c)
1
N

∑N
i=1 T(an,c)

.

Bearing that in mind, the function S can be defined as

S(an, c) =
T(an, c) ·N∑N

i=1 T(ai, c)
.

By introducing three more parameters Cm,Ca,Cp ∈ R, it becomes possible to control the level of impact
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each coordinate has on the clustering procedure. Finally, by using standard K-means we cluster the three-
dimensional data vector

(CmS(µ̃n, cm),CaS(α̃n, ca),CpS(P̃n, cp)). (4)

The only left is to define starting pre-estimators (µ̃n, α̃n, P̃n), n = 1, 2, . . . ,N, in a reasonable way, by
looking at the construction of RrNGINAR(M,A,P) models. Bearing in mind the fact that parameters
µi, i = 1, 2, . . . , r, represent means within clusters, it would be reasonable to set for any n = 1, 2, . . . ,N that

µ̃n = Xn. (5)

Taking into account the fact that the partial auto-correlation function is used to determine the order of
the time series, estimation of the sequence {Pn}

N
n=1 will take place as follows. If pzn is the maximal order

allowed for particular element in the state zn, than we have

P̃n =


max

K=1,...,pzn

pac fK(X1, . . .X2dp+1), n ≤ dp,

max
K=1,...,pzn

pac fK(Xn−dp , . . . ,Xn+dp ), dp < n ≤ N − dp,

max
K=1,...,pzn

pac fK(XN−2dp , . . . ,XN), n > N − dp,

(6)

where pac fK is the partial auto-correlation function at lag K and dp ∈ N. The function (6) works well if
all 2dp + 1 elements of the sequence {Xn}

N
n=1 involved in P̃n correspond to the same state zn. However, this

requirement is not demanding, since the application of RrNGINAR(M,A,P) model is reasonable only in
the case when the probability of remaining in the same state is higher than the probability of changing the
state.

To predict the thinning parameter value in moment n, we use the known property of the negative
binomial thinning operator, that E (α ∗ X|X) = αX. This motivates us, by looking at (2), to define

α∗n =


An/Bn, Bn , 0, n > 1,
1, An = Bn = 0, n > 1,
max

{(
Al
Bl

: l ∈ {2, . . . ,N},Bl > 0
)}
, otherwise,

for any n ∈ N, where An = (xn − T(µ̃n, cm))+ and Bn = 1
s
∑s

i=1 Ai for s = min{n − 1, P̃n}. Here (x)+ = max{x, 0}
represents the positive part of x ∈ R. Since such obtained thinning parameter value might be greater than
1, we finally have

α̃n =
α∗n

max
n=1,...,N

α∗n
, n ∈ N. (7)

To sum up, Figure 2 provides a detailed algorithm of the new RENES method. To apply the method, one
should choose the values of parameters dp, cm, ca, cp, Cm, Ca and Cp (called in sequel RENES method param-
eters). We will try to make an optimal choice based on RrNGINARmax(M,A,P) and RrNGINAR1(M,A,P)
simulations. It is important here to distinguish RENES method parameters from the model parameters. In
Section 3 we give details about our choice of model parameters, while in Section 4 we give results of the sim-
ulation study with such choice of model parameters and discuss how to choose RENES method parameters.
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Figure 2: Possibilities for random environment estimation. The algorithm of the new RENES method follows the path determined by
shorter double arrows. On the other hand, the standard K-means is shown by a long single arrow in diagram.

3. Simulation study—the choice of model parameters

We simulated RrNGINAR(M,A,P) time series of length N = 500. In the sequel we consider all se-
quences of the same length, so instead of {·}500

n=1 we write shortly {·}. Properties of simulations are such that
they make difficult to apply standard K-means. The case with r = 2 different environment states is presented
within the section. On the other hand, the case with r = 3 environment states can be found in Appendix
A. For each of the cases, two different combinations of model parameters are observed. Further, each com-
bination of parameters will generate two different replications of the corresponding RrNGINAR(M,A,P)
time series. One of them will be used to obtain the values of dp, cm, ca, cp,Cm,Ca,Cp. With the help of such
obtained RENES method parameters, the other replication will be reconstructed in order to evaluate the
efficiency of the new RENES method. Furthermore, both versions of the model, RrNGINARmax(M,A,P)
and RrNGINAR1(M,A,P) will be analyzed simultaneously. For more information about these models, see
[9].

The random environment process, being a Markov chain, has parameters pvec — a vector containing
initial probabilities of being in certain state and pmat — transition probability matrix that in the intersection
of i-th row and j-th column contains the probability P(Zn = i|Zn−1 = j) for any i, j ∈ {1, . . . r}. Another remark
about the notation is that we writeM,A and P as vectors, even though they are introduced as sets. We do
so to eliminate the ambiguity, preserving the order of the states.

In order to create R2NGINAR(M,A,P) simulations, the following combinations of parameters are given.

1. First of all, we are going to create time series with similar means within states, while other model
parameters will differ significantly. Surrounding like this would make K-means useless. Hence, we
chooseM = (1, 1.5). On the contrary to that, thinning parameters, as well as maximal orders within
states, should differ significantly. Hence, we choose A = (0.05, 0.6) and P = (2, 4). Regarding the
choice of α j, j = 1, 2, one of them is chosen to be very small, while the other is chosen to be close to its
upper limit. Furthermore, probabilities φk

i, j corresponding to the R2NGINARmax(M,A,P) simulation
are chosen to be

φ1 =

[
1 0

0.9 0.1

]
, φ2 =


1 0 0 0

0.1 0.9 0 0
0.1 0.45 0.45 0
0.1 0.1 0.4 0.4

 .
Probabilities corresponding to the R2NGINAR1(M,A,P) simulation are located in last rows of
these matrices. An initial state is nearly fair, due to the value of its distribution pvec = (0.6, 0.4).
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In order to have long arrays of elements corresponding to the same state within the simulated
R2NGINAR(M,A,P) time series, transition probabilities outside the main diagonal are significantly
smaller than those located on the main diagonal. Thus, transition probability matrix is of the form

pmat =

[
0.9 0.1
0.2 0.8

]
.

2. The other combination of parameters is characterized by a great similarity between thinning param-
eters. Beside that, the mean values will be similar enough to to make it difficult to use the standard
K-means method. Orders of the model will be the only values on the basis of which it is possible
to determine the environment states of realizations. That will be a good test for our new approach.
To that purpose, we have that M = (3, 5), A = (0.4, 0.5) and P = (2, 5). Further, in the case of
R2NGINARmax(M,A,P),

φ1 =

[
1 0

0.4 0.6

]
, φ2 =


1 0 0 0 0

0.2 0.8 0 0 0
0.4 0.4 0.2 0 0
0.3 0.3 0.3 0.1 0
0, 4 0.2 0.2 0.1 0.1

 .
Last rows of these matrices contain probabilities corresponding to the R2NGINAR1(M,A,P) simula-
tion. An initial state is fair, since pvec = (0.5, 0.5). Finally, the transition probability matrix provides
long arrays of elements corresponding to the same state, that is,

pmat =

[
0.8 0.2
0.25 0.75

]
.

4. Simulation study — results and the choice of RENES method parameters

In this section we seek for optimal RENES method parameters, based on RrNGINAR(M,A,P) sim-
ulations with r = 2 environment states. The choice of corresponding model parameters is given in the
previous section. In order to improve the readability of the paper, only one parameters combination will
be discussed in detail. For chosen combination, the procedure of obtaining dp, cm, ca, cp, Cm,Ca and Cp
will be fully exposed. As for the second combination, the procedure will be omitted and only final results
will be provided. Corresponding discussion regarding optimal RENES method parameters in the case of
RrNGINAR(M,A,P) simulations with r = 3 environment states is provided in Appendix B.

Using the first model parameters combination, corresponding R2NGINARmax(2, 4) and R2NGINAR1(2, 4)
simulations were created, two replications of each. The first replication of each pair was used to provide
the parameters of RENES method. The procedure starts with the determination of {µ̃n} using (5). In or-
der to improve {µ̃n}, vector cm has to be provided. For k small enough, we have already assumed that
all Xn−k, . . . ,Xn+k correspond to the same state. Thus, all µ̃n−k, . . . , µ̃n+k can have similar contribution to
T(µ̃n, cm). In other words, we can choose coordinates of the vector cm to be as equal as possible. Due to
the fact that it multiplies the middle realization xn, the value of c0 may eventually be a bit higher. Figure 3
shows sequences of pre-estimates {T(µ̃n, cm)}, obtained for various selections of cm. There we show only the
first 200 elements, to increase readability of the plot.

As Figure 3 shows, the usage of cm results in much more accurate pre-estimates of the sequence
{µn} in both cases. Using this technique, we managed to trim peaks that deviate significantly form the
real mean values. Obviously, the best result is obtained for cm = (0.16, 0.14, 0.14, 0.14) in the case of
R2NGINARmax(2, 4) simulation. Speaking of R1NGINAR1(2, 4) simulation, similar results are obtained in
the case of cm = (0.2, 0.2, 0.2) and cm = (0.16, 0.14, 0.14, 0.14). The second option is selected.
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a) R2NGINARmax(2, 4) model

b) R2NGINAR1(2, 4) model

Figure 3: Pre-estimates of {µn} obtained for various selections of cm in the case of simulated R2NGINAR(2, 4) models: green diamond-
true mean values sequence {µn}; regular black line-sequence {T(µ̃n, cm)} for cm = 1; thick blue line- sequence {T(µ̃n, cm)} for cm = (0.4, 0.3);
dashed black line-sequence {T(µ̃n, cm)} for cm = (0.2, 0.2, 0.2), dashed red line-sequence {T(µ̃n, cm)} for cm = (0.16, 0.14, 0.14, 0.14).



B. A. Pirković et al. / Filomat 35:13 (2021), 4545–4576 4554

We determine {P̃n} in two steps. The first step provides a determination of the parameter dp, given in
(6). In order to obtain the optimal value of dp, let us denote by ∆p the root mean square of differences
between correct orders Pn, n = 1, 2, . . . , 500, and corresponding estimated order values P̃n, 1, 2, . . . , 500,
obtained by (6). The error ∆p is calculated for various choices of dp and the results are presented in Table 1.
The smallest value of ∆p will reveal the optimal value of parameter dp. Having a brief look at Table 1,
we conclude that, in the case of R2NGINARmax(2, 4) simulation, the smallest value of ∆p is obtained for
dp = 8 (∆p = 1.439). Similarly, the smallest ∆p value in the case of R2NGINAR1(2, 4) simulation is obtained
for dp = 15 (∆p = 1.372).

Table 1: Values of the error ∆p for various selections of dp.

R2NGINARmax(2, 4) R2NGINAR1(2, 4) R2NGINARmax(2, 5) R2NGINAR1(2, 5)
dp ∆p dp ∆p dp ∆p dp ∆p
5 1.479 5 1.561 5 2.034 5 2.127
6 1.457 6 1.582 6 2.139 6 2.050
7 1.451 7 1.589 7 2.220 7 2.054
8 1.439 8 1.613 8 2.166 8 2.072
9 1.481 9 1.621 9 2.172 9 2.010

10 1.519 10 1.522 10 2.110 10 2.069
11 1.504 11 1.493 11 2.124 11 2.099
12 1.457 12 1.511 12 2.085 12 2.101
13 1.476 13 1.496 13 2.083 13 2.089
14 1.483 14 1.431 14 2.035 14 2.075
15 1.475 15 1.372 15 2.078 15 2.104
16 1.496 16 1.425 16 2.042 16 2.100
17 1.513 17 1.391 17 2.016 17 2.138
18 1.442 18 1.373 18 2.052 18 2.121
19 1.458 19 1.381 19 2.058 19 2.089
20 1.441 20 1.447 20 2.065 20 2.090

The second step involves determination of the corresponding vector cp for fixed optimal value of dp.
Similarly as for cm, we assume that Xn−k, . . . ,Xn+k all correspond to the same state. Thus, P̃n−k, . . . , P̃n+k are
all assumed to have similar contribution to T(P̃n, cp). Hence, coordinates of cp are chosen to be as similar as
possible. Sequences {T(P̃n, cp)} obtained for various selections of cp are shown in Figure 4 and compared to
the exact order sequence {Pn}.

In order to interpret Figure 4, one fact needs to be clarified. Namely, the goal is to choose order pre-
estimate which provides the highest probability of placing corresponding observations in correct clusters.
In other words, the best pre-estimate of {Pn} is not necessarily the one that most often matches the exact
order value, but the one that is close enough in most of the cases. In this respect, the best result in both
cases (R2NGINARmax(2, 4) and R2NGINAR1(2, 4)) is obtained for k = 3, ie. for cp = (0.16, 0.14, 0.14, 0.14).
Although this pre-estimate struggle to reach maximal orders, in most of the cases it stays close enough to
the correct order values and do not make large mistakes.

Finally, having calculated {T(µ̃n, cm)} and {P̃n}, we are able to calculate α̃n, n = 1, 2, . . . ,N, using (7).
Following the same reasons as before, coordinates of ca are assumed to be as similar as possible. Regarding
the length of ca, several options are tested. Sequences {T(α̃n, ca)} obtained for various selections of ca are
given in Figure 5 and compared to the real sequence {αn}.

According to the figure, vectors ca = (0.2, 0.2, 0.2) and ca = (0.16, 0.14, 0.14, 0.14) provide more accurate
pre-estimates then ca = 1 or ca = (0.4, 0.3). Namely, sequences obtained for k = 2 and k = 3 do not show
sudden and sharp ups and downs so often. The most of their values stay in a strip between α1 and α2,
which is an expected behavior for a fine sequence of pre-estimates. It is hard to choose the better one, but
it seems that the plot line obtained for ca = (0.16, 0.14, 0.14, 0.14) stays a bit closer to the real parameter
values. This conclusion holds for both, R2NGINARmax(2, 4) and R2NGINAR1(2, 4) models, so the same
ca = (0.16, 0.14, 0.14, 0.14) is chosen in both cases.
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a) R2NGINARmax(2, 4) model with dp = 8

b) R2NGINAR1(2, 4) model with dp = 15

Figure 4: Pre-estimates of {Pn} obtained for various selections of cp in the case of simulated R2NGINAR(2, 4) models: green diamond-
true order sequence {Pn}; regular black line-sequence {T(P̃n, cp)} for cp = 1; thick blue line-sequence {T(P̃n, cp)} for cp = (0.4, 0.3); dashed
black line-sequence {T(P̃n, cp)} for cp = (0.2, 0.2, 0.2), dashed red line-sequence {T(P̃n, cp)} for cp = (0.16, 0.14, 0.14, 0.14).

To summarize, optimal values of dp, cm, ca and cp, involved in RENES method are provided in Table
2. Note that in both cases all three vectors are chosen to be of the same length k, which is not surprising.
Recall that k depends on the probabilities of staying in the same state. If we chose smaller diagonal values
of pmat, the optimal length k would certainly be smaller.

Now, one can provide 3-dimensional sequences {T(µ̃n, cm)}, {T(α̃n, ca)}, {T(P̃n, cp)}, and after that {S(µ̃n, cm)},
{S(α̃n, ca)}, {S(P̃n, cp)}. It is left to determine parameters Cm,Ca and Cp given in (4). To that purpose, a mod-
ification of the procedure used to determine dp is applied. More precise, for each Cm = i, Ca = j, Cp = l,
i, j, l = 1, 2, . . . , 10, the clustering of the three dimensional data sequence

{(CmS(µ̃n, cm),CaS(α̃n, ca),CpS(P̃n, cp))}
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a) R2NGINARmax(2, 4) model

b) R2NGINAR1(2, 4) model

Figure 5: Pre-estimates of {αn} obtained for various selections of ca in the case of simulated R2NGINAR(2, 4) models: green diamond-
true thinning parameters sequence {αn}; regular black line-sequence {T(α̃n, ca)} for ca = 1; thick blue line-sequence {T(α̃n, ca)} for ca =
(0.4, 0.3); dashed black line-sequence {T(α̃n, ca)} for ca = (0.2, 0.2, 0.2), dashed red line-sequence {T(α̃n, ca)} for ca = (0.16, 0.14, 0.14, 0.14).

Table 2: Values of the constant dp and vectors cm, ca, cp, in the case of simulated R2NGINAR(2, 4) time series.

R2NGINARmax(2, 4)
dp cm ca cp
8 (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14)

R2NGINAR1(2, 4)
dp cm ca cp
15 (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14)
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is performed. Thousand clustering results are provided this way, and each of them represents an estimate of
the environment state sequence {zn}. To select the best one, estimates thus obtained are compared with the
sequence of exact states. The highest number of exactly estimated states will reveal the best combination of
parameters Cm, Ca, Cp. In the case of R2NGINARmax(2, 4) simulation, the best result in random environment
estimation is obtained for Cm = 6, Ca = 2, Cp = 9, having 328 estimated states equal to corresponding exact
states. On the other hand, result obtained by standard K-means managed to have 301 exactly estimated
states. A comparative overview of exact states, states obtained by standard K-means and states obtained
by usage of RENES method is provided by Figure 6. And yet again, only first 200 states are given in each
figure.

Beside the higher number of the exactly estimated states, two more improvements are achieved by
usage of RENES method. According to the figures, the RENES method produces much longer data series
that correspond to the same state. Bearing in mind the fact that random environment models show poor
performances when environment states are changing rapidly, mentioned improvement seems very con-
venient. Further, RENES method doesn’t make a crisp data division using a horizontal line, as K-means
does. The possibility of obtaining a high data value in the environment conditions different from those
assumed for the high data values is not ruled out this time. In other words, RENES method allows data
elements with high values to belong to the cluster with predominantly low values, and vice versa. This
property makes RENES method more suitable for clustering the data where, beside one detected predomi-
nant environment condition, some hidden circumstances also have an impact on the time series realizations.

Similar holds in the case of simulated R2NGINAR1(2, 4) time series. For each Cm = i, Ca = j, Cp = l,
i, j, l = 1, 2, . . . , 10, the clustering of three dimensional data sequence

{(CmS(µ̃n, cm),CaS(α̃n, ca),CpS(P̃n, cp))}

is performed. The best result is obtained for Cm = 8, Ca = 2, Cp = 3, having 326 estimated states equal
to the corresponding exact states. On contrary to that, the standard K-means method managed to have
309 exactly estimated states. And yet again, comparative overview of the exact states, states obtained
by standard K-means method and states obtained by new RENES method is provided by Figure 7. The
plots undoubtedly show dominance of RENES method comparing to the standard K-means. Achievements
mentioned in the case of R2NGINARmax(2, 4) simulation, also hold here.

Unused replications are suitable here to check the efficiency of our RENES method. First of all,
these replications were observed as real-life data sequences. Further, environment state estimation via
K-means method and via RENES method took place. The same holds for both, R2NGINARmax(2, 4) and
R2NGINAR1(2, 4) simulations. Having results of both random environment estimation methods given
above, unknown model parameters were estimated for each clustering result by usage of conditional max-
imum likelihood (CML) procedure.

A data sequences reconstruction by corresponding R2NGINARmax(2, 4) or R2NGINAR1(2, 4) model may
happen now for each clustering result. RMS of differences between simulated data and their reconstructions
will represent the measure of the fitting quality. Results of the modeling obtained after applying standard
K-means and RENES method are provided in Table 3. Dominance of RENES method is noticeable. RMS
values obtained after applying standard K-means method are unexpectedly high (RMS = 1.989 in the case
of R2NGINARmax(2, 4) model and RMS = 1.836 in the case of R2NGINAR1(2, 4) model). This confirms the
hypothesis given in the introduction that K-means is not a useful tool for clustering the data corresponding
to the RrINAR(M,A,P) process with similar means within states. On the other hand, RMS values obtained
after applying RENES method are much more acceptable (RMS = 1.529 in the case of R2NGINARmax(2, 4)
model and RMS = 1.478 in the case of R2NGINAR1(2, 4) model).

The second model parameters combination lead us to the creation of corresponding R2NGINARmax(2, 5)
and R2NGINAR1(2, 5) simulations, two replications of each. The first one is used to obtain the optimal val-
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Exact states of R2NGINARmax(2, 4) simulation

States obtained by standard K-means clustering method

States obtained by RENES method for dp = 8, cm = (0.16, 0.14, 0.14, 0.14), ca =
(0.16, 0.14, 0.14, 0.14), cp = (0.16, 0.14, 0.14, 0.14), Cm = 6, Ca = 2, Cp = 9.

Figure 6: The environment states of R2NGINARmax(2, 4) simulation
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Exact states of R2NGINAR1(2, 4) simulation

States obtained by standard K-means clustering method

States obtained by RENES method for dp = 15, cm = (0.16, 0.14, 0.14, 0.14), ca =
(0.16, 0.14, 0.14, 0.14), cp = (0.16, 0.14, 0.14, 0.14), Cm = 8, Ca = 2, Cp = 3.

Figure 7: The environment states of R2NGINAR1(2, 4) simulation
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Table 3: CML parameter estimates and RMS values obtained after reconstruction of the simulated data sequences that correspond to
the R2NGINARmax(2, 4) and R2NGINAR1(2, 4) time series.

R2NGINARmax(2, 4) R2NGINAR1(2, 4)

Clustering CML RMS CML RMS

Regular M̂ = (0.544, 4.168) 1.989 M̂ = (0.713, 5.435) 1.836
K-means Â = (0.001, 0.403) Â = (0.254, 0.386)

φ̂1 =

[
1 0

0.999 0.001

]
φ̂1 = (0.937, 0.063)

φ̂2 =


1 0 0 0

0.001 0.999 0 0
0.328 0.331 0.341 0
0.252 0.200 0.242 0.306

 φ̂2 = (0.252, 0.200, 0.248, 0.300)

M̂ = (0.901, 1.589) 1.529 M̂ = (0.931, 1.412) 1.478
RENES Â = (0.002, 0.309) Â = (0.173, 0.585)

φ̂1 =

[
1 0

0.999 0.001

]
φ̂1 = (0.952, 0.048)

φ̂2 =


1 0 0 0

0.001 0.999 0 0
0.329 0.330 0.341 0
0.247 0.200 0.242 0.311

 φ̂2 = (0.244, 0.206, 0.230, 0.320)

ues for dp, cm, ca, cp, Cm, Ca and Cp. The same procedure as the one presented in the case of R2NGINAR(2, 4)
simulations is preformed, and thus obtained optimal values are given in Table 4.

Table 4: Values of the constant dp and vectors cm, ca, cp, in the case of simulated R2NGINAR(2, 5) time series.

R2NGINARmax(2, 5)
dp cm ca cp Cm Ca Cp
17 (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14) (0.4,0.3) 4 2 3

R2NGINAR1(2, 5)
dp cm ca cp Cm Ca Cp
9 (0.2,0.2,0.2) (0.16,0.14,0.14,0.14) (0.4,0.3) 9 6 7

Further, unused replications were observed as real-life data sequences. After the environment state es-
timation happened via K-means method and via RENES method, those replications were reconstructed by
R2NGINARmax(2, 5) or R2NGINAR1(2, 5) model for each clustering result. Modeling results thus obtained
are given in Table 5.

Generally, much higher RMS values were detected in the case when simulations were dictated by the
second combination of model parameters. This is understandable, given that the realization values are
much higher in this case. As a consequence, a benefit obtained in RMS values is higher as well. Comparing
the corresponding parameter estimates, we see that the estimates of means are much more accurate after
application of the RENES method. Estimates of thinning parameters are also a bit more accurate in this
case. More accurate parameter estimates ultimately led to a significant differences in RMS values. Based
on all the above, it can be concluded that the new RENES method successfully sorts the realizations in
corresponding clusters and thus contributes to a more efficient application of the R2NGINAR(M,A,P)
models.
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Table 5: CML parameter estimates and RMS values obtained after reconstruction of the simulated data sequences that correspond to
the R2NGINARmax(2, 5) and R2NGINAR1(2, 5) time series.

R2NGINARmax(2, 5) R2NGINAR1(2, 5)

Clustering CML RMS CML RMS

Regular M̂ = (2.480, 14.170) 4.030 M̂ = (2.422, 13.473) 4.141
K-means Â = (0.080, 0.133) Â = (0.167, 0.202)

φ̂1 =

[
1 0

0.008 0.992

]
φ̂1 = (0.025, 0.975)

φ̂2 =


1 0 0 0 0

0.002 0.998 0 0 0
0.399 0.400 0.201 0 0
0.299 0.300 0.300 0.101 0
0.198 0.199 0.200 0.200 0.203

 φ̂2 = (0.202, 0.203, 0.203, 0.200, 0.192)

M̂ = (3.550, 5.489) 3.422 M̂ = (2.853, 5.007) 3.529
RENES Â = (0.010, 0.433) Â = (0.176, 0.292)

φ̂1 =

[
1 0

0.004 0.996

]
φ̂1 = (0.365, 0.635)

φ̂2 =


1 0 0 0 0

0.001 0.999 0 0 0
0.389 0.399 0.212 0 0
0.298 0.299 0.299 0.104 0
0.175 0.201 0.201 0.200 0.223

 φ̂2 = (0.176, 0.200, 0.202, 0.221, 0.201)

5. Real-life data application

In order to confirm its efficiency, we tested our RENES method on the data that has been very popular in
recent months. From the web site Data Europa (http://www.data.europa.eu) we chose the time series that
represent the number of new COVID-19 cases on daily basis detected on the island of Mauritius between
March 18, 2020 and April 25, 2021. The plot of a given series is provided in Figure 8. As can be noticed,
the number of newly detected cases was kept under control most of the time. The most frequent number
of newly infected inhabitants was 0, with occasional and isolated jumps. However, in two time intervals
(form March 22, 2020 to April 9, 2020 and from March 6, 2021 to April 9, 2021), uncommon results emerged.
During these periods, the number of newly infected inhabitants oscillated dramatically, with sharp and
frequent ups and downs. In other words, very high values began to appear, followed by sudden decrements
and vice versa. All mentioned here indicates that environment state changes might occurred.

The plot of the autocorrelation function given in Figure 9 shows that all orders up to order 5 are sig-
nificant. Since the influence of our RENES method on modeling by R2NGINAR(2, 4) and R2NGINAR(2, 5)
models has already been examined in the previous section, the same models are going to be observed here
as well. Now, we can estimate random environment sequence {zn} using standard K-means and RENES
method. All RENES method parameters are the same as in the previous section. Obtained clustering
results are provided in Figure 10. Unlike the standard K-means, RENES method had success in recognizing
the atypical behavior of the time series and managed to place in a separate cluster almost all values that
were realized during two mentioned time intervals. This conclusion points to the fact that the applica-
tion of the selected R2NGINAR(M,A,P) models could be even more effective after usage of RENES method.

As a final step in proving the RENES method supremacy, the fitting quality of given R2NGINAR(2, 4)
and R2NGINAR(2, 5) models is examined for each clustering result. As a measure of the goodness of
fit we use the root mean squares (RMS) of differences between the observations and their predicted val-
ues. Table 6 contains results obtained using R2NGINARmax(2, 4), R2NGINAR1(2, 4), R2NGINARmax(2, 5) and
R2NGINAR1(2, 5) models for each clustering result. Obviously, there is a big difference in fitting quality,
depending on the choice of method by which the realizations are distributed into clusters. According to
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Figure 8: Number of newly detected COVID-19 cases in Mauritius on daily basis

Figure 9: PACF for the data that represent a number of new COVID-19 cases in Mauritius on daily basis

Table 6, all selected models show much lower RMS values after applying the RENES method. This way,
usefulness of the RENES method is proved and the benefits of its use are confirmed. If the reader possibly
wants to compare results of modeling given in Table 6 with the results obtained using various models with
stationary or non-stationary nature, he can take a look at Appendix C.

6. Conclusion

In this article, the new RENES method for estimating random environment process {zn} in RrNGINAR
(M,A,P) models is defined. Taking into account only the values of the data elements, application of the K-
means on RrNGINAR(M,A,P) data sequences leads to the loss of information about random environment.
Otherwise, by applying K-means on previously transformed data, the loss of information is significantly
reduced. This happens because the method follows the behavior of all parameters of the model, which also
carry information about belonging to the particular environment state. Hence, RENES method leads to a
more natural interpretation of the time series, since there is a possibility of finding extremely high or low
values in any state. Because of all mentioned above, RENES method is more suitable for fine clusterings,
where small differences (distances) between means within clusters occur, ie. where boundaries between
states are not straight lines, but wavy or jagged lines. First, the theoretical review of the method is given,
with all necessary discussions and clarifications. Appropriate simulated RrNGINAR(M,A,P) time series
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Standard K-means

RENES method

Figure 10: Clustering results for the real-life data
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Table 6: CML parameter estimates and RMS-s obtained after application of two different R2NGINARmax(M,A,P) and
R2NGINAR1(M,A,P) models on selected real-life data (both clustering methods are considered).

R2NGINARmax(2, 4) R2NGINAR1(2, 4)

Clustering CML RMS CML RMS

Regular M̂ = (0.494, 30.190) 4.260 M̂ = (0.490, 30.190) 4.217
K-means Â = (0.001, 0.481) Â = (0.260, 0.474)

φ̂1 =

[
1 0

0.001 0.999

]
φ̂1 = (0.019, 0.981)

φ̂2 =


1 0 0 0

0.001 0.999 0 0
0.329 0.329 0.342 0
0.249 0.199 0.240 0.312

 φ̂2 = (0.260, 0.261, 0.200, 0.279)

M̂ = (1.103, 14.791) 3.871 M̂ = (1.522, 14.793) 3.828
RENES Â = (0.001, 0.511) Â = (0.249, 0.937)

φ̂1 =

[
1 0

0.999 0.001

]
φ̂1 = (0.049, 0.951)

φ̂2 =


1 0 0 0

0.001 0.999 0 0
0.329 0.328 0.343 0
0.191 0.207 0.248 0.354

 φ̂2 = (0.249, 0.243, 0.238, 0.270)

R2NGINARmax(2, 5) R2NGINAR1(2, 5)

Clustering CML RMS CML RMS

Regular M̂ = (0.494, 30.190) 4.151 M̂ = (0.491, 30.190) 4.153
K-means Â = (0.001, 0.480) Â = (0.200, 0.473)

φ̂1 =

[
1 0

0.001 0.999

]
φ̂1 = (0.020, 0.980)

φ̂2 =


1 0 0 0 0

0.001 0.999 0 0 0
0.399 0.399 0.202 0 0
0.299 0.300 0.299 0.102 0
0.199 0.200 0.199 0.199 0.203

 φ̂2 = (0.200, 0.200, 0.201, 0.201, 0.198)

M̂ = (1.050, 13.999) 3.769 M̂ = (1.101, 14.099) 3.798
RENES Â = (0.002, 0.535) Â = (0.199, 0.494)

φ̂1 =

[
1 0

0.999 0.001

]
φ̂1 = (0.015, 0.985)

φ̂2 =


1 0 0 0 0

0.001 0.999 0 0 0
0.398 0.399 0.203 0 0
0.299 0.299 0.299 0.103 0
0.122 0.202 0.202 0.203 0.271

 φ̂2 = (0.199, 0.199, 0.204, 0.200, 0.198)
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are created. Application of RENES method on the simulated data is implemented. Finally, the supremacy
of this new approach over standard K-means is confirmed on popular real-life data.
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[14] A. S. Nastić, P. N. Laketa, M. M. Ristić, Random Environment Integer Valued Autoregressive process, Journal of Time Series

Analysis 37 (2016) 267–287.
[15] A. S. Nastić, P. N. Laketa, M. M. Ristić, Random Environment INAR models of higher order, RevStat:Statistical Journal 17 (2017)

35–65.
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7. Appendix

7.1. Appendix A. The choice of model parameters in the case of RrNGINAR(M,A,P) simulations with 3 environ-
ment states

The following parameters combinations are used to create simulated R3NGINAR(M,A,P) time series.

1. The first combination assumes that means within states are chosen to be close, that is,M = (0.5, 1, 1.5).
On the other hand, parameters α j, j = 1, 2, 3, differ significantly, with values A = (0.1, 0.35, 0.6).
Coordinates of the vector P = (2, 4, 2) represent maximal orders within states, while corresponding
probability matrices are of the form

φ1 =

[
1 0

0.9 0.1

]
, φ2 =


1 0 0 0

0.2 0.8 0 0
0.2 0.4 0.4 0
0.2 0.2 0.3 0.3

 , φ3 =

[
1 0

0.1 0.9

]
.

Probability matrices given above are used to create R3NGINARmax(M,A,P) simulations. To create
R3NGINAR1(M,A,P) simulations, probabilities located in the last rows of these matrices are going
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to be exploited. Distribution of the initial state is given as pvec = (0.3, 0.4, 0.3), while the transition
probability matrix favors simulations to remain in the same state, i.e.

pmat =

 0.7 0.2 0.1
0.1 0.8 0.1
0.2 0.2 0.6

 .

2. The second combination of model parameters will also create an interesting challenge for RENES
method, since some states have only one pair of parameters which are significantly different. Namely,
we have thatM = (2, 4, 6),A = (0.2, 0.3, 0.6) and P = (2, 4, 5). Beside that, we have

φ1 =

[
1 0

0.7 0.3

]
, φ2 =


1 0 0 0

0.5 0.5 0 0
0.3 0.3 0.4 0
0.3 0.2 0.2 0.3

 , φ3 =


1 0 0 0 0

0.4 0.6 0 0 0
0.2 0.5 0.3 0 0
0.25 0.3 0.2 0.25 0
0.2 0.2 0.3 0.1 0.2

 .
As we can see, means within states grow progressively, although the jumps are not too high. The first
and the second state have similar thinning parameters, while corresponding orders differ significantly.
On the other hand, the second and the third state have similar orders, while corresponding thinning
parameters differ significantly. Finally, all parameters of the first and the third state differ significantly.
In order to be able to place the realization at moment n in the appropriate cluster, it is crucial for the
clustering method to possess information about the behavior of all parameters of the model at the
same moment.
An initial state has the distribution pvec = (0.35, 0.35, 0.3) and the transition probability matrix is of the
form

pmat =

 0.9 0.05 0.05
0.2 0.7 0.1
0.1 0.1 0.8

 .
7.2. Appendix B. Simulation study in the case of simulated RrNGINAR(M,A,P) time series with 3 environment

states

Simulation study follows the same path as it was the case with testing on simulated data with 2 environ-
ment states. After creating R3NGINARmax(2, 4, 2) and R3NGINAR1(2, 4, 2) simulations (two replications of
each) using the first combination of model parameters, one may start with determination of RENES method
parameters. The sequence {µ̃n} is again obtained by usage of (5). To improve such obtained sequence
of pre-estimates, optimal shape of the vector cm is of interest. Sequences {T(µ̃n, cm)} obtained for various
selections of cm are shown in Figure 11 and compared to the real parameter values {µn}.

For both simulations, R3NGINARmax(2, 4, 2) and R3NGINAR1(2, 4, 2), the best pre-estimate result is ob-
tained in the case of cm = (0.16, 0.14, 0.14, 0.14). The ability of trimming the high peaks is noticed. In
particular, this pre-estimate shows remarkable potential to assess means within the second (middle) state.

Further, a determination of the sequence {P̃n} takes place in two steps. The first step towards that goal
is to determine the value of parameter dp. Calculations of ∆p for various selections of dp are performed and
corresponding results are given in Table 7. Optimal dp values are 17 and 18 (for R3NGINARmax(2, 4, 2) and
R3NGINAR1(2, 4, 2) respectively).

The second step in determination of {P̃n} is to provide corresponding vector cp for fixed optimal value
of dp. Sequences {T(P̃n, cp)} obtained for various selections of cp are shown in Figure 12 and compared to
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a) R3NGINARmax(2, 4, 2) model

b) R3NGINAR1(2, 4, 2) model

Figure 11: Pre-estimates of {µn} obtained for various selections of cm in the case of simulated R3NGINAR(2, 4, 2) models: green
diamond-true mean values sequence {µn}; regular black line-sequence {T(µ̃n, cm)} for cm = 1; thick blue line- sequence {T(µ̃n, cm)}
for cm = (0.4, 0.3); dashed black line-sequence {T(µ̃n, cm)} for cm = (0.2, 0.2, 0.2), dashed red line-sequence {T(µ̃n, cm)} for cm =
(0.16, 0.14, 0.14, 0.14).
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Table 7: Values of the error ∆p for various selections of dp.

R3NGINARmax(2, 4, 2) R3NGINAR1(2, 4, 2) R3NGINARmax(2, 4, 5) R3NGINAR1(2, 4, 5)
dp ∆p dp ∆p dp ∆p dp ∆p
5 1.571 5 1.605 5 1.925 5 1.881
6 1.569 6 1.695 6 1.915 6 1.906
7 1.573 7 1.582 7 1.912 7 1.918
8 1.523 8 1.580 8 1.882 8 1.932
9 1.568 9 1.569 9 1.823 9 1.887
10 1.556 10 1.596 10 1.785 10 1.861
11 1.520 11 1.565 11 1.749 11 1.850
12 1.503 12 1.572 12 1.731 12 1.890
13 1.504 13 1.536 13 1.774 13 1.881
14 1.464 14 1.474 14 1.807 14 1.905
15 1.425 15 1.474 15 1.798 15 1.911
16 1.430 16 1.456 16 1.810 16 1.916
17 1.416 17 1.474 17 1.823 17 1.950
18 1.418 18 1.408 18 1.844 18 1.944
19 1.420 19 1.455 19 1.854 19 1.916
20 1.418 20 1.433 20 1.875 20 1.884

the exact order sequence {Pn}. According to figure, sequences obtained in case when k = 1, k = 2 and k = 3
behave practically the same. On the other hand, the sequence obtained for k = 0 has frequent and sharp ups
and downs, which lead to the erroneous clustering result. The same conclusion holds for both simulations,
R3NGINARmax(2, 4, 2) and R3NGINAR1(2, 4, 2). Due to the simplicity of the model, we prefer to take k = 1
and cp = (0.4, 0.3).

We are now able to determine α̃n, n ∈ N, using (7). To improve such obtained pre-estimates, determi-
nation of ca took place. Sequences {T(α̃n, ca)} obtained for various selections of ca are given in Figure 13
and compared to the real sequence {αn}. As figure shows, sequence of pre-estimates obtained for k = 3
is in advantage in regard to other sequences. For ca = (0.16, 0.14, 0.14, 0.14), just a few steep jumps are
located on the plot curve. Pre-estimates are rarely beyond the greatest thinning parameter value, and even
if something like that happens, the overdrafts are generally not large. Most of the time, this sequence
of pre-estimates keeps oscillating between α1 and α3, with particulary god assessment of α2. The same
conclusion holds for both, R3NGINARmax(2, 4, 2) and R3NGINAR1(2, 4, 2) simulation. Thus, in both cases
we have ca = (0.16, 0.14, 0.14, 0.14).

Previous results regarding dp, cm, ca and cp are summarized in Table 8. To determine Cm, Ca and Cp, the
clustering of

{(CmS(µ̃n, cm),CaS(α̃n, ca),CpS(P̃n, cp))}

is performed for each Cm = i, Ca = j, Cp = l, i, j, l = 1, 2, . . . , 10, and thousand different estimates of
{zn} are provided. The best result is obtained for Cm = 9, Ca = 7 and Cp = 2 in the case of simulated
R3NGINARmax(2, 4, 2) time series, having 209 estimated states which are equal to corresponding exact
states. On contrary to that, the standard K-means method managed to have only 155 exactly estimated
states, which doesn’t seem acceptable at all. A comparative overview of exact states, states obtained by
standard K-means method and states obtained by usage of new RENES method is provided by Figure 14.
The same procedure is applied in the case of simulated R3NGINAR1(2, 4, 2) time series. The highest number
of exactly estimated states is obtained for Cm = 6, Ca = 1 and Cp = 8, with 216 elements which estimated
states are equal to corresponding exact states. The standard K-means method managed to have only 153
exactly estimated states. A comparative overview of exact states, states obtained by standard K-means
method and states obtained by usage of RENES method is provided by Figure 15.

Same as it was the case with 2 environment states simulations, several improvements are noticeable
here as well. Beside higher number of exactly estimated states, the RENES method produces much longer
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a) R3NGINARmax(2, 4, 2) model with dp = 17

b) R3NGINAR1(2, 4, 2) model with dp = 18

Figure 12: Pre-estimates of {Pn}obtained for various selections of cp in the case of simulated R3NGINAR(2, 4, 2) models: green diamond-
true order sequence {Pn}; regular black line-sequence {T(P̃n, cp)} for cp = 1; thick blue line-sequence {T(P̃n, cp)} for cp = (0.4, 0.3); dashed
black line-sequence {T(P̃n, cp)} for cp = (0.2, 0.2, 0.2), dashed red line-sequence {T(P̃n, cp)} for cp = (0.16, 0.14, 0.14, 0.14).

Table 8: Values of the constant dp and vectors cm, ca, cp, in the case of simulated R3NGINAR(2, 4, 2) time series.

R3NGINARmax(2, 4, 2)
dp cm ca cp
17 (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14) (0.4,0.3)

R3NGINAR1(2, 4, 2)
dp cm ca cp
18 (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14) (0.4,0.3)
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a) R3NGINARmax(2, 4, 2) model

b) R3NGINAR1(2, 4, 2) model

Figure 13: Pre-estimates of {αn} obtained for various selections of ca in the case of simulated R3NGINAR(2, 4, 2) models: green diamond-
true thinning parameters sequence {αn}; regular black line-sequence {T(α̃n, ca)} for ca = 1; thick blue line-sequence {T(α̃n, ca)} for ca =
(0.4, 0.3); dashed black line-sequence {T(α̃n, ca)} for ca = (0.2, 0.2, 0.2), dashed red line-sequence {T(α̃n, ca)} for ca = (0.16, 0.14, 0.14, 0.14).
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Exact states of R3NGINARmax(2, 4, 2) simulation

States obtained by standard K-means clustering method

States obtained by RENES method for dp = 17, cm = (0.16, 0.14, 0.14, 0.14), ca =
(0.16, 0.14, 0.14, 0.14), cp = (0.4, 0.3), Cm = 9, Ca = 7, Cp = 2

Figure 14: The environment states of R3NGINARmax(2, 4, 2) simulation
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Exact states of R3NGINAR1(2, 4, 2) simulation

States obtained by standard K-means clustering method

States obtained by RENES method for dp = 18, cm = (0.16, 0.14, 0.14, 0.14), ca =
(0.16, 0.14, 0.14, 0.14), cp = (0.4, 0.3), Cm = 6, Ca = 1, Cp = 8

Figure 15: The environment states of R3NGINAR1(2, 4, 2) simulation
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sequences of consecutive elements in each of 3 given states. In general, this improvement enables more suc-
cessful application of random environment INAR models of higher order. Further, the possibility of finding
extremely high or low values in any of three given states is perceptible here. Furthermore, the possibility
of having equal elements in different states is also detected. Since this often occurs in generalized random
environment INAR time series of higher order with similar means within states, the RENES method seems
more applicable than the standard K-means.

The amount of benefit one gets by applying the RENES method is measured on unused replications of
the simulated R3NGINARmax(2, 4, 2) and R3NGINAR1(2, 4, 2) time series. Having results of both environ-
ment state estimation methods mentioned earlier, a valid reconstruction of given simulations is performed
by appropriate R3NGINARmax(2, 4, 2) or R3NGINAR1(2, 4, 2) model for each clustering result singularly.
RMS of differences between simulated data and their reconstructions should indicate whether there is any
truly benefit from applying the RENES method. Results of modeling obtained after applying the standard
K-means method and after applying the RENES method are provided in Table 9. Although a way smaller
than in the case of simulations with 2 environment states, the benefit of applying the RENES method still
exists. Reconstructions after K-means clustering produced the following RMS values: RMS = 1.285 in the
case of R3NGINARmax(2, 4, 2) simulation and RMS = 1.471 in the case of R3NGINAR1(2, 4, 2) simulation.
On contrary to that, reconstructions after RENES method produced the following: RMS = 1.149 in the case
of R3NGINARmax(2, 4, 2) simulation and RMS = 1.370 in the case of R3NGINAR1(2, 4, 2) simulation.

Table 9: CML parameter estimates and RMS values obtained after reconstruction of the simulated data sequences that correspond to
the R3NGINARmax(2, 4, 2) and R3NGINAR1(2, 4, 2) time series.

R3NGINARmax(2, 4, 2) R3NGINAR1(2, 4, 2)

Clustering CML RMS CML RMS

Regular M̂ = (0.324, 2.308, 5.278) 1.285 M̂ = (0.523, 3.558, 7.779) 1.471
K-means Â = (0.051, 0.188, 0.2199) Â = (0.052, 0.201, 0.437)

φ̂1 =

[
1 0

0.894 0.106

]
φ̂1 = (0.999, 0.001)

φ̂2 =


1 0 0 0

0.001 0.999 0 0
0.331 0.331 0.338 0
0.220 0.202 0.240 0.338

 φ̂2 = (0.249, 0.201, 0.241, 0.309)

φ̂3 =

[
1 0

0.001 0.999

]
φ̂3 = (0.001, 0.999)

M̂ = (0.501, 1.201, 1.503) 1.149 M̂ = (0.503, 1.161, 1.449) 1.370
RENES Â = (0.199, 0.328, 0.321) Â = (0.090, 0.213, 0.368)

φ̂1 =

[
1 0

0.983 0.017

]
φ̂1 = (0.754, 0.246)

φ̂2 =


1 0 0 0

0.001 0.999 0 0
0.326 0.331 0.343 0
0.243 0.201 0.242 0.314

 φ̂2 = (0.256, 0.211, 0.247, 0.286)

φ̂3 =

[
1 0

0.001 0.999

]
φ̂3 = (0.141, 0.859)

In order to confirm additionally the effectiveness of the RENES method, two replications of the simulated
R3NGINARmax(2, 4, 5) and R3NGINAR1(2, 4, 5) time series were created, dictated by the second combina-
tion of model parameters. Optimal values of dp, cm, ca cp, Cm, Ca and Cp were obtained, based on the first
replications of each pair. The procedure presented in previous cases was followed this time as well. Results
thus obtained are presented in Table 10.
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Table 10: Values of the constant dp and vectors cm, ca, cp, in the case of simulated R3NGINAR(2, 4, 5) time series.

R3NGINARmax(2, 4, 5)
dp cm ca cp Cm Ca Cp
12 (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14) (0.4,0.3) 10 3 1

R3NGINAR1(2, 4, 5)
dp cm ca cp Cm Ca Cp
11 (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14) (0.4,0.3) 7 5 2

Further, the standard K-means and the RENES method are performed on unused replications. Further-
more, those replications are reconstructed by corresponding R3NGINARmax(2, 4, 5) or R3NGINAR1(2, 4, 5)
model for each clustering result, and modeling results such obtained are provided in Table 11. As one may
notice, RMS values are not that large in general, bearing on mind relatively high realization values. Hence,
the amount of benefit detected after application of the RENES method is really satisfactory. The benefits
are mainly generated by a more accurate estimates of the mean values. As for the other model parameters,
corresponding estimates are of the same level.

Table 11: CML parameter estimates and RMS values obtained after reconstruction of the simulated data sequences that correspond to
the R3NGINARmax(2, 4, 5) and R3NGINAR1(2, 4, 5) time series.

R3NGINARmax(2, 4, 5) R3NGINAR1(2, 4, 5)

Clustering CML RMS CML RMS

Regular M̂ = (0.760, 4.420, 11.410) 2.109 M̂ = (0.770, 5.060, 14.625) 2.353
K-means Â = (0.177, 0.300, 0.299) Â = (0.164, 0.200, 0.302)

φ̂1 =

[
1 0

0.008 0.992

]
φ̂1 = (0.009, 0.991)

φ̂2 =


1 0 0 0

0.968 0.032 0 0
0.299 0.300 0.401 0
0.299 0.300 0.300 0.101

 φ̂2 = (0.301, 0.302, 0.300, 0.097)

φ̂3 =


1 0 0 0 0

0.001 0.999 0 0 0
0.399 0.399 0.202 0 0
0.299 0.300 0.299 0.102 0
0.199 0.199 0.200 0.201 0.201

 φ̂3 = (0.202, 0.200, 0.201, 0.202, 0.195)

M̂ = (2.496, 4.499, 6.511) 1.719 M̂ = (2.369, 4.426, 6.495) 1.977
RENES Â = (0.298, 0.300, 0.424) Â = (0.162, 0.198, 0.473)

φ̂1 =

[
1 0

0.001 0.999

]
φ̂1 = (0.449, 0.551)

φ̂2 =


1 0 0 0

0.477 0.523 0 0
0.298 0.299 0.403 0
0.298 0.300 0.299 0.103

 φ̂2 = (0.294, 0.198, 0.259, 0.249)

φ̂3 =


1 0 0 0 0

0.001 0.999 0 0 0
0.399 0.400 0.201 0 0
0.299 0.300 0.300 0.101 0
0.199 0.199 0.200 0.201 0.201

 φ̂3 = (0.239, 0.162, 0.250, 0.161, 0.186)
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7.3. Appendix C. Application of various models with stationary or non-stationary nature
Beside mentioned R2NGINAR(2, 4) and R2NGINAR(2, 5) models, several models with stationary or non-

stationary nature are considered here. The following stationary models are taken into account: INAR(1)
model with Poisson marginals (PoINAR(1)) from [2], quasi-binomial INAR(1) model with generalized Pois-
son marginals (GPQINAR(1)) presented in [5], geometric INAR(1) model (GINAR(1)) provided by [4], new
geometric INAR(1) model (NGINAR(1)) defined by [16], combined geometric INAR(p) model (NGINAR(p))
given in [13], p = 2, 3, 4, 5, and random coefficient INAR(1) model with negative binomial marginals
(NBRCINAR(1)) defined by [18]. As for the non-stationary models, we consider the following: a 2 state
random environment NGINAR(1) model presented in [14] and random environment models of higher order
(R2NGINAR(p)) described in [15], where p = 2, 3, 4, 5.

Corresponding modeling results are given in Table 12 and Table 13. Table 12 contains results obtained by
applying stationary models. In addition, a modeling result obtained by applying the R2NGINAR(1) model
is also placed in this table. Further, Table 13 contains results obtained by applying R2NGINARmax(p) and
R2NGINAR1(p) models of various orders. Based on the tables, the following conclusions can be drawn. The
weakest results are obtained by applying stationary models. Involving the concept of random environment
with 2 different environment states into the modeling procedure brings significant improvement. This
confirms the hypothesis that the time series really took place in two different environment states. Taking
into account results given in Table 6, R2NGINAR(M,A,P) models are the best for selected real-life data
among all models in random environment. In other words, the selected real-life data may be observed as a
realization of the generalized random environment INAR time series of higher order. Therefore, it makes
sense to test the effectiveness of the new RENES method on selected real-life data.

Table 12: CML parameter estimates and RMS-s obtained after application of various models on selected real-life data.

Model CML RMS Model CML RMS

PoINAR(1) λ̂ = 2.062 6.904 GPQINAR(1) λ̂ = 0.422 7.097
α̂ = 0309 θ̂ = 0.825

ρ̂ = 0.195

GINAR(1) q̂ = 0.829 7.028 NGINAR(1) µ̂ = 4.573 6.923
α̂ = 0.286 α̂ = 0.367

NGINAR(2) µ̂ = 4.573 8.638 NGINAR(3) µ̂ = 4.573 8.679
α̂ = 0.012 α̂ = 0.011
p̂ = 0.184 p̂ = 0.184

NGINAR(4) µ̂ = 4.573 8.681 NGINAR(5) µ̂ = 4.573 8.671
α̂ = 0.011 α̂ = 0.016
p̂ = 0.141 p̂ = 0.139

NBRCINAR(1) p̂ = 0.154 7.261 RrNGINAR(1) M̂ = (1.844, 10.947) 5.745
ρ̂ = 0, 493 α̂ = 0.145
n̂ = 0, 513



B. A. Pirković et al. / Filomat 35:13 (2021), 4545–4576 4576

Table 13: CML parameter estimates and RMS-s obtained after application of R2NGINARmax and R2NGINAR1 models of various orders
on selected real-life data.

R2NGINARmax(2) R2NGINAR1(2)

CML RMS CML RMS

M̂ = (0.912, 7.204) 6.408 M̂ = (0.913, 7.204) 6.409
α̂ = 0.107 α̂ = 0.107

φ̂ =

[
1 0

0.427 0.573

]
φ̂ = (0.427, 0.573)

R2NGINARmax(3) R2NGINAR1(3)

CML RMS CML RMS

M̂ = (0.723, 30.149) 4.206 M̂ = (0.833, 29.112) 4.204
α̂ = 0.007 α̂ = 0.008

φ̂ =

 1 0 0
0.998 0.002 0
0.247 0.367 0.386

 φ̂ = (0.352, 0.439, 0.209)

R2NGINARmax(4) R2NGINAR1(4)

CML RMS CML RMS

M̂ = (0.702, 30.180) 4.212 M̂ = (0.710, 30.008) 4.201
α̂ = 0.009 α̂ = 0.009

φ̂ =


1 0 0 0

0.970 0.030 0 0
0.332 0.389 0.279 0
0.331 0.235 0.433 0.001

 φ̂ = (0.265, 0.450, 0.131, 0.154)

R2NGINARmax(5) R2NGINAR1(5)

CML RMS CML RMS

M̂ = (0.662, 30.181) 4.173 M̂ = (0.669, 30.179) 4.169
α̂ = 0.007 α̂ = 0.007

φ̂ =


1 0 0 0 0

0.822 0.178 0 0 0
0.332 0.392 0.276 0 0
0.239 0.194 0.335 0.232 0
0.001 0.246 0.160 0.346 0.247

 φ̂ = (0.258, 0.432, 0.130, 0.140, 0.040)


