
Filomat 35:14 (2021), 4645–4655
https://doi.org/10.2298/FIL2114645S

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this article, we introduce and study a new family PΣ(δ, λ, k, γ, α, β, r) of normalized analytic
and λ-pseudo-starlike bi-univalent functions by using the Horadam polynomials, which is associated with
a certain convolution operator defined in the open unit disk U. We establish the bounds for |a2| and
|a3|, where a2, a3 are the initial Taylor-Maclaurin coefficients. Furthermore, we obtain the Fekete-Szegö
inequality for functions in the classPΣ(δ, λ, k, γ, α, β, r), which we have introduced here. We indicate several
special cases and consequences for our results. Finally, we comment on the recent usages, especially in
Geometric Function Theory of Complex Analysis, of the basic (or q-) calculus and also of its trivial and
inconsequentional (p, q)-variation involving an obviously redundant parameter p.

1. Introduction, Motivation and Preliminaries

We denote byA the class of functions which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}

and have the following normalized form:

f (z) = z +

∞∑
n=2

anzn. (1)
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We also denote by S the subclass ofA consisting of functions which are also univalent inU. According to
the Koebe one-quarter theorem [10], every function f ∈ S has an inverse f−1 defined by

f−1
(

f (z)
)

= z (z ∈ U)

and
f
(

f−1(w)
)

= w
(
|w| < r0( f ); r0( f ) =

1
4

)
,

where

1(w) = f−1(w) = w − a2w2 +
(
2a2

2 − a3

)
w3
−

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (2)

A function f ∈ A is said to be bi-univalent inU if both f and f−1 are univalent inU. Let Σ stand for the
class of bi-univalent functions in U given by (1). For a brief historical account and for several interesting
examples of functions in the class Σ, see the pioneering work on this subject by Srivastava et al. [47], which
actually revived the study of bi-univalent functions in recent years. From the work of Srivastava et al. [47],
we choose to recall the following examples of functions in the class Σ :

z
1 − z

, − log(1 − z) and
1
2

log
(1 + z

1 − z

)
.

We notice that the class Σ is not empty. However, the Koebe function is not a member of Σ.
In a considerably large number of sequels to the aforementioned work of Srivastava et al. [47], several

different subclasses of the bi-univalent function class Σ were introduced and studied analogously by the
many authors (see, for example, [8, 12, 29, 36, 39, 40, 45, 48, 53, 54, 61, 62, 64, 65]), but only non-sharp
estimates on the initial coefficients |a2| and |a3| in the Taylor-Maclaurin expansion (1) were obtained in most
(if not all) of the recent papers. The problem to find the general coefficient bounds on the Taylor-Maclaurin
coefficients

|an| (n ∈N; n = 3)

for functions f ∈ Σ is still not completely addressed for many of the subclasses of the bi-univalent function
class Σ (see, for example, [36, 48, 53]).

The Fekete-Szegö functional
∣∣∣a3 − µa2

2

∣∣∣ for f ∈ S is well known for its rich history in the field of Geometric
Function Theory. Its origin was in the disproof by Fekete and Szegö [11] of the Littlewood-Paley conjecture
that the coefficients of odd univalent functions are bounded by unity. The functional has since received
great attention, particularly in the study of many subclasses of the family of univalent functions. This topic
has become of considerable interest among researchers in Geometric Function Theory (see, for example,
[41, 46, 52]).

Definition 1. A function f ∈ A is said to be λ-pseudo-starlike function of order ρ
(
0 5 ρ < 1

)
in U if (see

[6])

<

z
(

f ′(z)
)λ

f (z)

 > ρ (z ∈ U; λ = 1).

With a view to recalling the principle of subordination between analytic functions, let the functions f
and 1 be analytic inU. We say that the function f is subordinate to 1, if there exists a Schwarz function ω,
which is analytic inUwith

ω(0) = 0 and |ω(z)| < 1 (z ∈ U),

such that
f (z) = 1

(
ω(z)

)
.

This subordination is denoted by

f ≺ 1 or f (z) ≺ 1(z) (z ∈ U).
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It is well known that, if the function 1 is univalent inU, then (see [21])

f ≺ 1 (z ∈ U) ⇐⇒ f (0) = 1(0) and f (U) ⊆ 1(U).

Recently, Hörçum and Koçer [15] considered the so-called Horadam polynomials hn(r), which are given
by the following recurrence relation (see also Horadam and Mahon [14]):

hn(r) = prhn−1(r) + qhn−2(r) (r ∈ R; n ∈N = {1, 2, 3, · · · }) (3)

with
h1(r) = a and h2(r) = br,

for some real constants a, b, p and q. The characteristic equation of the recurrence relation (3) is given by

t2
− prt − q = 0.

This equation has the following two real roots:

α =
pr +

√
p2r2 + 4q
2

and β =
pr −

√
p2r2 + 4q
2

.

Remark 1. By selecting particular values of a, b, p and q, the Horadam polynomial hn(r) reduces to several
known polynomials. Some of these special cases are recorded below.

1. Taking a = b = p = q = 1, we obtain the Fibonacci polynomials Fn(r).

2. Taking a = 2 and b = p = q = 1, we get the Lucas polynomials Ln(r).

3. Taking a = q = 1 and b = p = 2, we have the Pell polynomials Pn(r).

4. Taking a = b = p = 2 and q = 1, we find the Pell-Lucas polynomials Qn(r).

5. Taking a = b = 1, p = 2 and q = −1, we obtain the Chebyshev polynomials Tn(r) of the first kind.

6. Taking a = 1, b = p = 2 and q = −1, we have the Chebyshev polynomials Un(r) of the second kind.

These polynomials, the families of orthogonal polynomials and other special polynomials, as well as
their extensions and generalizations, are potentially important in a variety of disciplines in many branches
of science, especially in the mathematical, statistical and physical sciences. For more information associated
with these polynomials, see [13, 14, 18, 19].

The generating function of the Horadam polynomials hn(r) is given as follows (see [15]):

Π(r, z) =

∞∑
n=1

hn(r)zn−1 =
a + (b − ap)rz
1 − prz − qz2 . (4)

Srivastava et al. [33] have already applied the Horadam polynomials in a context involving analytic and
bi-univalent functions. The investigation by Srivastava et al. [33] was followed by such works as those by
Al-Amoush [2], Wanas and Alina [63] and Abirami et al. [1].

Recently, Wanas [60] introduced the following convolution operator Wk,γ
α,β : A→A defined by

Wk,γ
α,β f (z) = z +

∞∑
n=2

[
Φn(k, α, β)

]γ anzn, (5)
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where

Φn(k, α, β) =

k∑
m=1

(
k
m

)
(−1)m+1

(
αm + nβm

αm + βm

)
(6)

(
α ∈ R; β = 0 with α + β > 0; m, γ ∈N0 =N ∪ {0}

)
.

Remark 2. The operator Wk,γ
α,β is a generalization of several known operators considered in earlier investi-

gations which are being recalled below.

1. For k = 1, the operator W1,γ
α,β ≡ Iγα,β was introduced and studied by Swamy [58].

2. For k = β = 1, γ = −µ,<(µ) > 1 and α ∈ C \Z−0 , the operator W1,−µ
α,1 ≡ Jµ,α was investigated by Srivastava

and Attiya [35]. The operator Jµ,α is now popularly known in the literature as the Srivastava-Attiya operator.
Various applications of the Srivastava-Attiya operator are found in [25, 37, 38, 42, 51] and in the references
cited in each of these earlier works.

3. For k = β = 1 and α > −1, the operator W1,γ
α,1 ≡ Iγα was investigated by Cho and Srivastava [9].

4. For k = α = β = 1, the operator W1,γ
1,1 ≡ Iγ was considered by Uralegaddi and Somanatha [59].

5. For k = α = β = 1, γ = −σ and σ > 0, the operator W1,−σ
1,1 ≡ Iσ was introduced by Jung et al. [16]. The

operator Iσ is widely known as the Jung-Kim-Srivastava integral operator.

6. For k = β = 1, γ = −1 and α > −1, the operator W1,−1
α,1 ≡ Lα was studied by Bernardi [7].

7. For α = 0, k = β = 1 and γ = −1, the operator W1,−1
0,1 ≡ u was investigated by Alexander [3].

8. For k = 1, α = 1 − β and β ≥ 0, the operator W1,γ
1−β,β ≡ Dγ

β was given by Al-Oboudi [4].

9. For k = 1, α = 0 and β = 1, the operator W1,γ
0,1 ≡ Sγ was considered by Sălăgean [24].

Remark 3. In a recently-published survey-cum-expository review article by Srivastava [29], the so-called
(p, q)-calculus was exposed to be a rather trivial and inconsequential variation of the classical q-calculus,
the additional parameter p being redundant or superfluous (see, for details, [29, p. 340]). Srivastava [29]
also pointed out how the Hurwitz-Lerch Zeta function as well as its multi-parameter extension, which is
popularly known as the λ-generalized Hurwitz-Lerch Zeta function (see, for details, [26]), have motivated
the studies of several other families of extensively- and widely-investigated linear convolution operators
which emerge essentially from the Srivastava-Attiya operator [35] (see also [27], [28], [30] and [31]).

2. A Set of Main Results

We begin this section by defining the new subclass PΣ(δ, λ, k, γ, α, β, r).

Definition 2. For δ ∈ C \ {0}, λ = 1 and r ∈ R, a function f ∈ Σ is said to be in the class PΣ(δ, λ, k, γ, α, β, r) if
it satisfies the following subordination conditions:

1 +
1
δ


z
((

Wk,γ
α,β f (z)

)′)λ
Wk,γ
α,β f (z)

− 1

 ≺ Π(r, z) + 1 − a
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and

1 +
1
δ


w

((
Wk,γ
α,β1(w)

)′)λ
Wk,γ
α,β1(w)

− 1

 ≺ Π(r,w) + 1 − a,

where a is a real constant and the function 1 = f−1 is given by (2).

Our first main result is asserted by Theorem 1 below.

Theorem 1. For δ ∈ C \ {0} , λ = 1 and r ∈ R, let f ∈ A be in the class PΣ(δ, λ, k, γ, α, β, r). Then

|a2| 5
δ |br|

√
|br|√∣∣∣∣[δ ((3λ − 1)Φγ

3 (k, α, β) + (2λ(λ − 2) + 1)Φ2γ
2 (k, α, β)

)
b − p (2λ − 1)2

]
br2 − qa (2λ − 1)2

∣∣∣∣
and

|a3| 5
δ |br|

(3λ − 1)
∣∣∣Φγ

3 (k, α, β)
∣∣∣ +

δ2b2r2

(2λ − 1)2 Φ
2γ
2 (k, α, β)

.

Proof. Let f ∈ PΣ(δ, λ, k, γ, α, β, r). Then there are two analytic functions u, v : U −→ U given by

u(z) = u1z + u2z2 + u3z3 + · · · (z ∈ U) (7)

and

v(w) = v1w + v2w2 + v3w3 + · · · (w ∈ U), (8)

with
u(0) = v(0) = 0 and max {|u(z)| , |v(w)|} < 1 (z,w ∈ U),

such that

1
δ


z
((

Wk,γ
α,β f (z)

)′)λ
Wk,γ
α,β f (z)

− 1

 = Π(r,u(z)) − a

and

1
δ


w

((
Wk,γ
α,β1(w)

)′)λ
Wk,γ
α,β1(w)

− 1

 = Π(r, v(w)) − a.

Equivalently, we have

1
δ


z
((

Wk,γ
α,β f (z)

)′)λ
Wk,γ
α,β f (z)

− 1

 = h1(r) + h2(r)u(z) + h3(r)u2(z) + · · · (9)

and

1
δ


w

((
Wk,γ
α,β1(w)

)′)λ
Wk,γ
α,β1(w)

− 1

 = h1(r) + h2(r)v(w) + h3(r)v2(w) + · · · . (10)
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Combining (7), (8), (9) and (10), we find that

1
δ


z
((

Wk,γ
α,β f (z)

)′)λ
Wk,γ
α,β f (z)

− 1

 = h2(r)u1z +
[
h2(r)u2 + h3(r)u2

1

]
z2 + · · · (11)

and

1
δ


w

((
Wk,γ
α,β1(w)

)′)λ
Wk,γ
α,β1(w)

− 1

 = h2(r)v1w +
[
h2(r)v2 + h3(r)v2

1

]
w2 + · · · . (12)

It is well known that, if
max {|u(z)| , |v(w)|} < 1 (z,w ∈ U),

then ∣∣∣u j

∣∣∣ 5 1 and
∣∣∣v j

∣∣∣ 5 1 (∀ j ∈N). (13)

Now, by comparing the corresponding coefficients in (11) and (12), and after some simplification, we
have

(2λ − 1)Φγ
2 (k, α, β)
δ

a2 = h2(r)u1, (14)

(3λ − 1)Φγ
3 (k, α, β)

δ
a3 +

(2λ(λ − 2) + 1) Φ
2γ
2 (k, α, β)

δ
a2

2

= h2(r)u2 + h3(r)u2
1, (15)

−
(2λ − 1)Φγ

2 (k, α, β)
δ

a2 = h2(r)v1 (16)

and

(3λ − 1)Φγ
3 (k, α, β)

δ
(2a2

2 − a3) +
(2λ(λ − 2) + 1)Φ2γ

2 (k, α, β)
δ

a2
2

= h2(r)v2 + h3(r)v2
1. (17)

It follows from (14) and (16) that

u1 = −v1 (18)

and

2 (2λ − 1)2 Φ
2γ
2 (k, α, β)

δ2 a2
2 = h2

2(r)(u2
1 + v2

1). (19)

If we add (15) to (17), we find that

2
[
(3λ − 1)Φγ

3 (k, α, β) + (2λ(λ − 2) + 1)Φ2γ
2 (k, α, β)

]
δ

a2
2

= h2(r)(u2 + v2) + h3(r)(u2
1 + v2

1). (20)
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Upon substituting the value of u2
1 + v2

1 from (19) into the right-hand side of (20), we deduce that

a2
2 =

δ2h3
2(r)(u2 + v2)

2
[
δh2

2(r)
(
(3λ − 1)Φγ

3 (k, α, β) + (2λ(λ − 2) + 1)Φ2γ
2 (k, α, β)

)
− h3(r) (2λ − 1)2

] . (21)

By further computations using (3), (13) and (21), we obtain

|a2| 5
δ |br|

√
|br|√∣∣∣∣[δ ((3λ − 1)Φγ

3 (k, α, β) + (2λ(λ − 2) + 1)Φ2γ
2 (k, α, β)

)
b − p (2λ − 1)2

]
br2 − qa (2λ − 1)2

∣∣∣∣ .

Next, if we subtract (17) from (18), we can easily see that

2(3λ − 1)Φγ
3 (k, α, β)

δ
(a3 − a2

2) = h2(r)(u2 − v2) + h3(r)(u2
1 − v2

1). (22)

Also, in view of (18) and (19), we find from (22) that

a3 =
δh2(r)(u2 − v2)

2(3λ − 1)Φγ
3 (k, α, β)

+
δ2h2

2(r)(u2
1 + v2

1)

2 (2λ − 1)2 Φ
2γ
2 (k, α, β)

.

Thus, by applying (3), we obtain

|a3| 5
δ |br|

(3λ − 1)
∣∣∣Φγ

3 (k, α, β)
∣∣∣ +

δ2b2r2

(2λ − 1)2 Φ
2γ
2 (k, α, β)

.

This completes the proof of Theorem 1.

In the next theorem, we present the Fekete-Szegö inequality for functions in the classPΣ(δ, λ, k, γ, α, β, r).

Theorem 2. For δ ∈ C \ {0} , λ = 1 and r, µ ∈ R, let f ∈ A be in the class PΣ(δ, λ, k, γ, α, β, r). Then

∣∣∣a3 − µa2
2

∣∣∣ 5



δ |br|
(3λ − 1)

∣∣∣Φγ
3 (k, α, β)

∣∣∣
∣∣∣µ − 1

∣∣∣ 5
∣∣∣∣[δ ((3λ − 1)Φγ

3 (k, α, β) + (2λ(λ − 2) + 1)Φ2γ
2 (k, α, β)

)
b − p (2λ − 1)2

]
br2
− qa (2λ − 1)2

∣∣∣∣
δb2r2(3λ − 1)

∣∣∣Φγ
3 (k, α, β)

∣∣∣


δ2
|br|3

∣∣∣µ − 1
∣∣∣∣∣∣∣[δ ((3λ − 1)Φγ

3 (k, α, β) + (2λ(λ − 2) + 1)Φ2γ
2 (k, α, β)

)
b − p (2λ − 1)2

]
br2 − qa (2λ − 1)2

∣∣∣∣
∣∣∣µ − 1

∣∣∣ =
∣∣∣∣[δ ((3λ − 1)Φγ

3 (k, α, β) + (2λ(λ − 2) + 1)Φ2γ
2 (k, α, β)

)
b − p (2λ − 1)2

]
br2
− qa (2λ − 1)2

∣∣∣∣
δb2r2(3λ − 1)

∣∣∣Φγ
3 (k, α, β)

∣∣∣
 .
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Proof. It follows from (21) and (22) that

a3 − µa2
2 =

δh2(r)(u2 − v2)
2(3λ − 1)Φγ

3 (k, α, β)
+

(
1 − µ

)
a2

2

=
δh2(r)(u2 − v2)

2(3λ − 1)Φγ
3 (k, α, β)

+
δ2h3

2(r)(u2 + v2)
(
1 − µ

)
2
[
δh2

2(r)
(
(3λ − 1)Φγ

3 (k, α, β) + (2λ(λ − 2) + 1)Φ2γ
2 (k, α, β)

)
− h3(r) (2λ − 1)2

]
=

h2(x)
2

ψ(µ, r) +
δ

(3λ − 1)Φγ
3 (k, α, β)

 u2 +

ψ(µ, r) −
δ

(3λ − 1)Φγ
3 (k, α, β)

 v2

 ,
where

ψ(µ, r) =
δ2h2

2(r)
(
1 − µ

)
δh2

2(r)
(
(3λ − 1)Φγ

3 (k, α, β) + (2λ(λ − 2) + 1)Φ2γ
2 (k, α, β)

)
− h3(r) (2λ − 1)2

.

Thus, according to (3), we have

∣∣∣a3 − µa2
2

∣∣∣ 5



δ |br|
(3λ − 1)

∣∣∣Φγ
3 (k, α, β)

∣∣∣
0 5

∣∣∣ψ(µ, r)
∣∣∣ 5 δ

(3λ − 1)
∣∣∣Φγ

3 (k, α, β)
∣∣∣


|br| .
∣∣∣ψ(µ, r)

∣∣∣
∣∣∣ψ(µ, r)

∣∣∣ = δ

(3λ − 1)
∣∣∣Φγ

3 (k, α, β)
∣∣∣
 ,

which, after simple computation, yields

∣∣∣a3 − µa2
2

∣∣∣ 5



δ |br|
(3λ − 1)

∣∣∣Φγ
3 (k, α, β)

∣∣∣
∣∣∣µ − 1

∣∣∣ 5
∣∣∣∣[δ ((3λ − 1)Φγ

3 (k, α, β) + (2λ(λ − 2) + 1)Φ2γ
2 (k, α, β)

)
b − p (2λ − 1)2

]
br2
− qa (2λ − 1)2

∣∣∣∣
δb2r2(3λ − 1)

∣∣∣Φγ
3 (k, α, β)

∣∣∣


δ2
|br|3

∣∣∣µ − 1
∣∣∣∣∣∣∣[δ ((3λ − 1)Φγ

3 (k, α, β) + (2λ(λ − 2) + 1)Φ2γ
2 (k, α, β)

)
b − p (2λ − 1)2

]
br2 − qa (2λ − 1)2

∣∣∣∣
∣∣∣µ − 1

∣∣∣ =
∣∣∣∣[δ ((3λ − 1)Φγ

3 (k, α, β) + (2λ(λ − 2) + 1)Φ2γ
2 (k, α, β)

)
b − p (2λ − 1)2

]
br2
− qa (2λ − 1)2

∣∣∣∣
δb2r2(3λ − 1)

∣∣∣Φγ
3 (k, α, β)

∣∣∣
 .

We have thus completed the proof of Theorem 2.
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3. Corollaries and Consequences

Our main results (Theorem 1 and Theorem 2) can be specialized to deduce a number of known or new
results as their corollaries and consequences dealing with the initial Taylor-Maclaurin coefficient inequali-
ties and the Fekete-Szegö inequalities. We choose to record here one example in which, by putting µ = 1 in
Theorem 2, we are led to the following corollary.

Corollary. For δ ∈ C \ {0} , λ = 1 and r ∈ R, let f ∈ A be in the class PΣ(δ, λ, k, γ, α, β, r). Then∣∣∣a3 − a2
2

∣∣∣ 5 δ |br|
(3λ − 1)

∣∣∣Φγ
3 (k, α, β)

∣∣∣ .
Remark 4. By taking particular values of the parameters δ, λ, γ, a, b, p and q, in our main results (Theorem 1
and Theorem 2), we can derive a number of known results. Some of these special cases are recorded below.

1. If we put γ = 0 and δ = λ = 1 in Theorem 1 and Theorem 2, we have the results for the well-known class
S∗Σ(r) of bi-starlike functions which was studied recently by Srivastava et al. [33].

2. If we put γ = 0, δ = a = 1, b = p = 2, q = −1 and r −→ t in Theorem 1 and Theorem 2, we have the results
for the class LBΣ(t) of λ-Pseudo bi-starlike functions which was considered recently by Magesh and Bulut
[20].

3. If we put γ = 0, δ = λ = a = 1, b = p = 2, q = −1 and r −→ t in Theorem 1 and Theorem 2, we obtain the
results for the class S∗Σ(t) of bi-starlike functions which was considered recently by Altınkaya and Yalçin [5].

4. Concluding Remarks and Observations

In our present investigation, we have introduced and studied a (presumably new) classPΣ(δ, λ, k, γ, α, β, r)
of normalized analytic and λ-pseudo-starlike bi-univalent functions in the open unit disk U by applying
the Horadam polynomials. This λ-pseudo-starlike bi-univalent function class is associated with a certain
convolution operator. We have established the bounds for the initial Taylor-Maclaurin coefficients |a2| and
|a3| of functions belonging to the λ-pseudo-starlike bi-univalent function class which we have defined in
this article. Furthermore, we have successfully solved the Fekete-Szegö problem for functions in the same
class PΣ(δ, λ, k, γ, α, β, r) λ-pseudo-starlike bi-univalent functions. We have also considered a number of
special cases and consequences for our main results (Theorem 1 and Theorem 2).

We conclude our investigation by remarking that, in order to motivate further researches on the subject-
matter of this article, we have chosen to draw the attention of the interested readers toward a considerably
large number of related recent publications on the subjects which we have discussed here. One of these
directions for further researches should be motivated by a recently-published survey-cum-expository re-
view article by Srivastava [29]. With this point in view, the attention of the interested reader is drawn
toward the possibility of investigating the basic (or q-) extensions of the results which are presented in this
paper. However, as already pointed out by Srivastava [29], their further extensions using the so-called
(p, q)-calculus will be rather trivial and inconsequential variations of the suggested extensions which are
based upon the classical q-calculus, the additional parameter p being redundant or superfluous (see, for
details, [29, p. 340] and [32, pp. 1511–1512]). With a view to aiding the interested reader, we choose to cite
several recent developments (see [17], [22], [23], [34], [44], [55] and [57]) on various usages of the basic (or
q-) calculus in Geometric Function Theory of Complex Analysis.
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