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Abstract. In this paper we give some conditions such that there is an equivalence between probability mea-
sures and distribution functions defined on a separable linearly ordered topological space like it happens
in the classical case. What is more, we prove that there is a one-to-one relationship between a probability
measure and the pseudo-inverse of its cumulative distribution function.

1. Introduction

The study of measures on topological spaces (see [6]) lies in the intersection of functional analysis,
measure theory, general topology and probability theory and is a very wide research field, with multiple
connection between fields.

In this paper we are concerned with linearly ordered topological spaces (LOTS). The study of measures
on LOTS is also of interest (see [2, 5, 14, 20–22]).

On the other hand, the description of probability measures by using a cumulative distribution function
(cdf) is standard in mathematics, due to the benefit and simplification that provides a cdf over a probability
measure. Indeed, there are some studies where the equivalence between probability measures and distri-
bution functions has been treated. For example, in [16] it is proved the equivalence between probability
measures and fuzzy intervals in the real line. On the other hand, in a similar research line, probabilistic
metric and normed spaces provide a certain relationship between topology and probability measures. See
[3] for further reference about this topic.

However, as far as we know, there has been no attempt to extend the theory of a cdf to a more general
framework, where a first natural step is to deal with a probability measure on an ordered space. This work
collects some results on a theory of a cdf on a separable LOTS.

This theory was first described in [11], where we showed that the cdf plays a similar role to that
played in the classical case and studied its pseudo-inverse, which allowed us to generate samples of the
probability measure that we used to define the distribution function. The concept of distribution function
was generalized in another way in [24].
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In [12], we extended a cdf defined on a separable LOTS, X, to its Dedekind-MacNeille completion,
DM(X). That completion is, indeed, a compactification. Moreover, we proved that each function satisfying
the properties of a cdf on DM(X) is the cdf of a probability measure defined on DM(X). Indeed, if X
is compact, a similar result can be obtained in this context. Finally, the compactification DM(X) lets us
generate samples of a distribution in X.

By following this research line, the next step is exploring some conditions on X such that, given a
function F with the properties of a cdf, we can ensure that there exists a unique probability measure on
X such that its cdf is F. Furthermore, we will show that there is a one-to-one relationship between the
pseudo-inverse of a cdf and its probability measure.

2. Preliminaries

2.1. Measure theory

We first recall some definitions and results from [13].
Let X be a set. If R is a non-empty collection of subsets of X, we say that R is a ring if it is closed under

complement and finite union. A non-empty collection of subsets of X,A, is a σ-algebra if it is closed under
complement and countable union and X ∈ A.

For a given topological space, (X, τ), its Borel σ-algebra is defined as the σ-algebra generated by the open
sets of X.

A set mapping is said to be σ-additive if µ(
⋃
∞

n=1 An) =
∑
∞

n=1 µ(An) for each countable collection {An}
∞

n=1
of pairwise disjoint sets inA.

Given a measurable space (Ω,A), a measure µ is a non-negative and σ-additive set mapping defined on
A such that µ(∅) = 0. Moreover, it holds that the restriction of a measure to a sub-σ-algebra is a measure.

Some properties of a measure are its monotonicity (which means that µ(A) ≤ µ(B), for each A ⊆ B)
and the following results: (1) if An is a monotonically non-decreasing sequence of sets (which means that
An ⊆ An+1, for each n ∈ N) then µ(An) → µ(

⋃
n∈N An); (2) if An is monotonically non-increasing (which

means that An+1 ⊆ An, for each n ∈N) and µ(A1) < ∞, then µ(An)→ µ(
⋂

n∈N An).

Definition 2.1. ([7, Def. 1.5.1.]) Suppose that µ is a non-negative set function on domainA ⊂ 2X. A set A is
called µ-measurable (or Lebesgue measurable with respect to µ) if, for any ε > 0, there exists Aε ∈ A such
that µ∗(A4Aε) < ε, where µ∗ is the outer measure defined by µ∗(A) = inf

{∑∞
n=1 µ(An) : An ∈ A,A ⊂

⋃
∞

n=1 An
}

and 4 denotes the symmetric difference, that is, A 4 B = (A \ B) ∪ (B \ A). The class of µ-measurable sets is
denoted byAµ.

Proposition 2.2. ([7, Section 1.5]) Every set A ∈ Aµ is the support of a measurable space by restricting µ to the
class of µ-measurable subsets of A, which is a σ-algebra in A.

Definition 2.3. ([7, Section 3.6]) Let X and Y be two spaces with σ-algebras A1 and A2 and let f : X → Y
be a measurable function. Then, for any bounded (or bounded from below) measure µ onA1, the formula
µ ◦ f−1 given by µ( f−1(B)), for each B ∈ A2, defines a measure on A2 called the image of the measure µ
under the mapping f .

2.2. Ordered spaces and the Dedekind-MacNeille completion

First, we recall the definition of a linear order and a linearly ordered topological space:

Definition 2.4. ([19, Chapter 1]) A partially ordered set (P,≤) (that is, a set P with the binary relation ≤
that is reflexive, antisymmetric and transitive) is totally ordered if the elements of every pair x, y ∈ P are
comparable, namely, either x ≤ y or y ≤ x. In this case, the order is said to be total or linear.
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For further reference about partially ordered sets see, for example, [9] and, for more about for ordered
sets, see [8].

On a linearly ordered set (X,≤), for each a, b ∈ X with a < b, we define the set ]a, b] = {x ∈ X : a < x ≤ b}
and, analogously, we define ]a, b[, [a, b] and [a, b[ for all a, b ∈ X. Moreover, (≤ a) is given by (≤ a) = {x ∈ X :
x ≤ a}. (< a), (≥ a) and (> a) are defined similarly.

The definition of the order topology is the following one:

Definition 2.5. ([1, Part II, 39]) Let X be a set which is linearly ordered by ≤, we define the order topology
τ on X by taking the subbasis {(< a) : a ∈ X} ∪ {(> a) : a ∈ X}.

Definition 2.6. ([17, Section 1]) A linearly ordered topological space (abbreviated LOTS) is a triple (X, τ,≤)
where (X,≤) is a linearly ordered set and where τ is the topology of the order ≤.

Remark 2.7. Note that an open basis of X with respect to τ is given by {]a, b[: a < b, a, b ∈ X} ∪ {(< a) : a ∈
X} ∪ {(> a) : a ∈ X}.

Definition 2.8. ([23, Def. 2.16 and 2.17]) Let P be an ordered set and let A ⊆ P. Then:

1. l is called a lower bound of A if, and only if, we have l ≤ a, for each a ∈ A.
2. u is called an upper bound of A if, and only if, we have u ≥ a, for each a ∈ A.

We denote by Al and Au, respectively, the set of lower and upper bounds of A.

Definition 2.9. ([23, Def. 3.18]) Let P be an ordered set and let A ⊆ P. Then:

1. The point u is called the lowest upper bound or supremum or join of A iff u ∈ Au and for each p ∈ Au

we have that p ≥ u.
2. The point l is called the greatest lower bound or infimum or meet of A iff l ∈ Al and for each p ∈ Al we

have that p ≤ l.

Some results that we need from [1], with respect to the order topology, are collected in the next propo-
sition:

Proposition 2.10. ([1, Part II, 39]) Let X be a linearly ordered space, then:

1. The order topology on X is compact if, and only if, the order is complete, that is, if, and only if, every nonempty
subset of X has a greatest lower bound and a least upper bound.

2. X is T5.

Definition 2.11. ([10, Section 4.1]) We say that a set A ⊆ X is decreasing (respectively increasing) if given
a ∈ A and x < a (respectively x > a), then x ∈ A.

The next two results will be useful in the context of decreasing and increasing sets.

Lemma 2.12. ([12, Lemma 3.8]) Let X be a separable LOTS and A ⊆ X. If A is decreasing (respectively increasing)
and it does not have a maximum (respectively a minimum), then there exists an increasing sequence (respectively
decreasing sequence) an ∈ A, such that

⋃
n∈N(≤ an) = A (respectively

⋃
n∈N(≥ an) = A).

Lemma 2.13. ([12, Lemma 4.1]) Let X be a separable LOTS and F : X → R be a non-decreasing function and let
(an) be an increasing (respectively decreasing) sequence on a decreasing (respectively increasing) set A ⊆ X such that
A =

⋃
(≤ an) (respectively A =

⋃
(≥ an)), then F(an)→ sup F(A) (respectively F(an)→ inf F(A)).
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2.3. The cdf on a separable LOTS
In what follows we will assume that X is a separable LOTS and collect all results and definitions that we

need from [11]. First, we recall that, given x ∈ X, it is left-isolated (respectively right-isolated) if (< x) = ∅
(respectively (> x) = ∅) or there exists z ∈ X such that ]z, x[= ∅ (respectively there exists z ∈ X such that
]x, z[= ∅). Moreover, if x ∈ X is both right- and left-isolated, then it is said to be isolated.

Moreover, given x ∈ X and ν a topology defined on X, we say that a sequence (xn) is monotonically right
ν-convergent (respectively monotonically left ν-convergent) to x if xn

ν
→ x and x < xn+1 < xn (respectively

xn < xn+1 < x), for each n ∈N.
Points in X can be characterized in terms of monotonically sequences as the next result shows.

Proposition 2.14. ([11, Prop. 3.11]) Let x ∈ X. Then x is not left-isolated (respectively right-isolated) if, and only
if, there exists a monotonically left τ-convergent (respectively monotonically right τ-convergent) to x sequence.

Given a probability measure µ on X, we define the mapping F : X→ [0, 1] given by F(x) = µ(≤ x) as the
cdf of µ. Its properties are collected in the next proposition.

Proposition 2.15. ([11, Prop. 4.6]) Let F be a cdf. Then:

1. F is monotonically non-decreasing.
2. F is right τ-continuous.
3. If there does not exist min X, then inf F(X) = 0.
4. sup F(X) = 1.

It holds that the fact that µ({x}) = 0, for each x ∈ X implies that F is τ-continuous at x. Moreover, if x is
isolated, then F is continuous at x.

From a probability measure µ on X, we also define the mapping F− : X → [0, 1], by F−(x) = µ(< x),
for each x ∈ X. F− is related to the F according to the equality F−(x) = sup F(< x). It also holds that
F(x) = F−(x) + µ({x}). The properties of F− are those we collect in the next result.

Proposition 2.16. ([11, Prop. 4.18]) Let µ be a probability measure on X and F its cdf, then:

1. F− is monotonically non-decreasing.
2. F− is left τ-continuous.
3. inf F−(X) = 0.
4. If there does not exist the maximum of X, then sup F−(X) = 1.

Proposition 2.17. ([11, Prop. 4.17]) Let µ be a probability measure on X and F its cdf. Let x ∈ X and (xn) be a
monotonically left τ-convergent sequence to x then F(xn)→ F−(x).

Concerning the Dedekind-MacNeille completion we cite some definitions and results from [23] next:
The Dedekind-MacNeille completion of X consists of cuts. Cuts are all subsets A ⊆ X for which

(Au)l = A. Indeed, recall that, given an ordered set P, its Dedekind-MacNeille completion is defined by
DM(P) = {A ⊆ P : A = (Au)l

} ordered by inclusion, that is, given A,B ∈ DM(X), it holds that A ≤ B if, and
only if, A ⊆ B. It is also referred to as the MacNeille completion or the completion by cuts.

From now on, given a LOTS X, we will denote the order topology on DM(X) by τ′.

Proposition 2.18. ([12, Cor. 3.4]) If X is a separable LOTS, then DM(X) is also a separable LOTS.

Let P be an ordered set. Then DM(P) is a complete lattice. Moreover, the map φDM : P→ DM(P), which
is defined by φDM(p) = (≤ p) is an embedding that preserves all suprema and infima that exist in P. Recall
that, given P,Q two ordered sets, then the mapping f : P → Q is called an (order) embedding if, and only
if, f is injective and for all p1, p2 ∈ P, we have p1 ≤ p2 if, and only if, f (p1) ≤ f (p2).

Note that DM(X) is a compactification of X and that the order embedding is also a topological embedding.
In fact, DM(X) is the smallest order-compactification of X ([4], [15]).

For further reference about cuts and the Dedekind-McNeille completion see, respectively, [18] and [19].
According to [12], the pseudo-inverse of a cdf can be naturally defined on DM(X) as follows:
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Definition 2.19. ([12, Def. 5.1]) Let F be a cdf. We define the pseudo-inverse of F as G : [0, 1] → DM(X)
given by G(r) = A, for each r ∈ [0, 1], where A = Bl and B = {x ∈ X : F(x) ≥ r}.

G is monotonically non-decreasing and left τ-continuous.
Let F be the cdf of the probability measure µ on X, then F can be extended to a cdf on DM(X), F̃, that

is defined from the probability measure µ̃ which is defined by µ̃(A) = µ(φ−1(A)), for each A ∈ σ(DM(X)).
What is more, it holds that F̃ ◦φ = F and F̃− ◦φ = F− (see [12, Lemma 4.6] and [12, Cor. 4.11]). According to
the properties that we proved in [11] about the pseudo-inverse of a cdf and, by taking into account that G is
the pseudo-inverse of F̃ if we extend F to DM(X), we can relate G to F and F̃ as the next proposition shows.

Proposition 2.20. Let F be a cdf and let x ∈ X and r ∈ [0, 1]. Then:

1. ([12, Prop. 7.4.2]) G(F(x)) ≤ φ(x).

2. ([12, Prop. 7.4.3]) F̃(G(r)) ≥ r.
3. ([12, Prop. 7.4.4]) G(r) ≤ φ(x) if, and only if, r ≤ F(x).
4. ([12, Prop. 7.4.5]) F(x) < r if, and only if, G(r) > φ(x).

5. ([12, Prop. 5.6]) G(r) = inf{A ∈ DM(X) : F̃(A) ≥ r}.

In [11] it is shown the uniqueness of a measure with respect to its cdf.

Proposition 2.21. ([11, Prop. 7.3]) Let Fµ and Fδ be the cdfs of the measures µ and δ satisfying Fµ = Fδ, then µ = δ
on the Borel σ-algebra of (X, τ).

Moreover, a cdf F can be defined from F− as the next result states:

Proposition 2.22. ([11, Prop. 4.13]) Let F be a cdf, then F(x) = inf F−(> x), for each x ∈ X with x , max X.

Additionally, we can prove that the value of F(x) can be obtained from the pseudo-inverse:

Proposition 2.23. Let X be a separable LOTS. If F is the cdf of a probability measure on X, then F(x) = sup G−1(≤
φ(x)), for each x ∈ X.

Proof. Let x ∈ X. By Proposition 2.20.3, it holds that G(r) ≤ φ(x) if, and only if, F(x) ≥ r, for each r ∈ [0, 1].
Hence, sup G−1(≤ φ(x)) = sup{r ∈ [0, 1] : G(r) ≤ φ(x)} = sup{r ∈ [0, 1] : F(x) ≥ r} = F(x).

Now, we prove the uniqueness of the measure with respect to F− and the pseudo-inverse.

Corollary 2.24. Let Fµ and Fδ be respectively the cdfs of the measures µ and δ. If Fµ− = Fδ−, then µ = δ on the Borel
σ-algebra of (X, τ).

Proof. By Proposition 2.22, F(x) = inf F−(x), for each x ∈ X and, consequently, Fµ = Fδ. Hence, by Proposition
2.21, µ = δ on the Borel σ-algebra of (X, τ).

Corollary 2.25. Let Fµ and Fδ be respectively the cdfs of the measures µ and δ. If Gµ = Gδ, then µ = δ on the Borel
σ-algebra of (X, τ).

Proof. By Proposition 2.23, F(x) = sup G−1(≤ φ(x)), for each x ∈ X and, consequently, Fµ = Fδ. Hence, by
Proposition 2.21, µ = δ on the Borel σ-algebra of (X, τ).
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3. Defining a probability measure from a cdf

In [12] it was proven that each cdf on a compact separable LOTS, X, is defined from a unique probability
measure on X with respect to its Borel σ-algebra, as the next theorem states:

Theorem 3.1. ([12, Th. 7.7]) Let X be a compact separable LOTS and F : X→ [0, 1] a monotonically non-decreasing
and right τ-continuous function satisfying sup F(X) = 1. Then there exists a unique probability µ on σ(X) such that
F = Fµ.

Moreover, the next results were proven in order to justify that each cdf on X can be extended to a cdf
defined on DM(X) from a probability measure on this last space.

Lemma 3.2. ([12, Lemma 3.1]) Let A ∈ DM(X) be a left-isolated or right-isolated cut such that A , min DM(X)
(respectively A , max DM(X)), then there exists x ∈ X such that A = (≤ x).

The next result lets us claim that each cdf can be extended to a cdf on the Dedekind-MacNeille completion
and that there exists a probability measure on DM(X) such that its cdf is the last one.

Theorem 3.3. ([12, Th. 7.8]) Let X be a separable LOTS and F : X→ [0, 1] a monotonically non-decreasing and right
τ-continuous function satisfying sup F(X) = 1. Then the function F̃ : DM(X) → [0, 1] given by F̃(A) = inf F(Au)
(F̃(A) = 1 if Au = ∅) is the cdf of a probability measure on DM(X). Moreover, F̃ is an extension of F to DM(X).

Lemma 3.4. Let X be a separable LOTS and let (xn) be a τ-convergent sequence to x. Suppose that there exists z ∈ X
such that xn ≤ z for each n ∈N, then x ≤ z.

Proof. Suppose that x > z. The convergence of (xn) gives us that there exists n0 ∈ N such that xn > z, for
each n ≥ n0, a contradiction with the fact that xn ≤ z, for each n ∈N.

In this section we explore some conditions such that given a function, F, with the properties of a cdf on
a separable LOTS, then there exists a probability measure, µ, on X such that Fµ = F. Indeed, the converse
relationship between a measure and its cdf is well-known. According to [11] and [12], the cdf of a probability
measure on a separable LOTS, X, is right τ-continuous, monotonically non-decreasing and sup F(X) = 1
and inf F(X) = 0 if there does not exist min X (see Proposition 2.15). In addition to this properties, a cdf
verifies some other conditions stated in the next proposition.

In what follows, when we write a statement like sup F−(A) = inf F−(Au), for each A ∈ DM(X), we mean
for each A ∈ DM(X) such that the expression makes sense. In this case A must be nonempty (so that
sup F−(A) makes sense) and Au must be nonempty (so that inf F−(Au) makes sense). Note that A can be
empty if X does not have a minimum and A = min DM(X) and Au can be empty if X does not have a
maximum and A = max DM(X).

Proposition 3.5. Let X be a separable LOTS and F : X→ [0, 1] a cdf defined from a probability measure µ, then:

1. ([12, Prop. 4.3]) sup F(A) = inf F(Au), for each A ∈ DM(X).
2. sup F−(A) = inf F−(Au), for each A ∈ DM(X).
3. sup F(A) = sup F−(A), for each A ∈ DM(X) \ φ(X).
4. inf F(Au) = inf F−(Au), for each A ∈ DM(X) \ φ(X).
5. sup G−1(< A) = sup F(A), for each A ∈ DM(X) \ φ(X).
6. inf F(Au) = inf G−1(> A), for each A ∈ DM(X) \ φ(X).
7. sup G−1(< A) = inf G−1(> A), for each A ∈ DM(X) \ φ(X).

Proof. The first item was proven in [12] so we just have to show the others:
(2) Let A ∈ DM(X). In case that A ∈ φ(X), the equality is clear. Now, let A ∈ DM(X) \ φ(X), then

A ∩ Au = ∅. Since A is decreasing and it does not have a maximum, by Lemma 2.12, there exists an
increasing sequence (an) in A such that A =

⋃
(≤ an). Analogously, since Au is increasing and it does not
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have a minimum, we can consider a decreasing sequence in Au, (bn), such that Au =
⋃

(≥ bn). Moreover,
Lemma 2.13 lets us claim that F−(an) → sup F−(A) and F−(bn) → inf F−(Au). Now, note that [an, bn[ is a
monotonically non-increasing sequence, which implies that [an, bn[→

⋂
n∈N[an, bn[. Indeed,

⋂
n∈N[an, bn[= ∅,

which gives us thatµ([an, bn[)→ µ(∅) = 0, that is, F−(bn)−F−(an)→ 0. Both convergences F−(an)→ sup F−(A)
and F−(bn)→ inf F−(Au) let us conclude that inf F−(Au) = sup F−(A).

(3) Let A ∈ DM(X) \ φ(X) with A , min DM(X). By Lemma 3.2, A is not isolated.
≥) This inequality is clear if we take into account that F−(x) ≤ F(x), for each x ∈ X.
≤) Since A is not left-isolated and A , min DM(X), we can consider a monotonically non-decreasing

sequence (An) in DM(X), such that An
τ′
→ A. Now, let an ∈ An+1 \ An, for each n ∈ N. Note that an ∈ A since

An ⊂ A, for each n ∈ N. Given a ∈ A, then there exists n ∈ N such that an > a and, hence, it follows that
F(a) ≤ F−(an) ≤ sup F−(A), which lets us conclude that sup F(A) ≤ sup F−(A).

(4)] Let A ∈ DM(X) \ φ(X) with A , max DM(X). By Lemma 3.2, A is not isolated.
≥) This inequality is clear if we take into account that F−(x) ≤ F(x), for each x ∈ X.
≤) Since A is not right-isolated and A , max DM(X), we can consider a monotonically non-increasing

sequence An such that An
τ′
→ A. Now, let an ∈ Au

n+1 \ Au
n, for each n ∈ N. Note that an ∈ Au since A ⊂ An,

for each n ∈ N. Given a ∈ Au, then there exists n ∈ N such that an < a and, hence, it follows that
inf F(Au) ≤ F(an) ≤ F−(a), which lets us conclude that inf F(Au) ≤ inf F−(Au).

(5)] Let A ∈ DM(X) \ φ(X).
≥) Let a ∈ A, by Proposition 2.23, F(a) = sup G−1(≤ φ(a)) ≤ sup G−1(< A), so we have that sup F(A) ≤

sup G−1(< A).
≤) Let r ∈ G−1(< A), then G(r) < A, so we can consider a ∈ A\G(r), and hence, G(r) ≤ φ(a). By Proposition

2.23, F(a) = sup{r′ ∈ [0, 1] : G(r′) ≤ φ(a)}. Note that r ≤ F(a) and, consequently, r ≤ sup F(A), which lets us
conclude that sup G−1(< A) ≤ sup F(A).

(6) Let A ∈ DM(X) \ φ(X).
≤) Suppose that inf F(Au) > inf G−1(> A), then there exists r ∈ [0, 1] such that r < inf F(Au) and G(r) > A.

Since r < inf F(Au), r < F(a), for each a ∈ Au. By Proposition 2.20.3, G(r) ≤ φ(a), for each a ∈ Au, which means
that G(r) ≤ A, a contradiction with the fact that G(r) > A.
≥) Suppose that inf F(Au) < inf G−1(> A). Now, let r = inf G−1(> A) and consider a sequence (rn) such

that inf F(Au) < rn < r and rn → r. By the left-continuity of G, G(rn) → G(r). Moreover, the fact that rn < r
implies that G(rn) ≤ A. Consequently, G(r) ≤ A by Lemma 3.4. What is more, the fact that inf F(Au) < r
means that there exists a ∈ Au such that F(a) < r and, by Proposition 2.20.4, G(r) > φ(a) > A. G(r) > A is a
contradiction with the fact that G(r) ≤ A. Thus, inf F(Au) ≥ inf G−1(> A).

(7) It immediately follows from items 1, 5 and 6.

Moreover, a cdf always satisfies:

Proposition 3.6. Let X be a separable LOTS and F : X → [0, 1] be a cdf. It follows that G(0) = min DM(X).
Moreover, if X does not have a maximum then, G−1(max DM(X)) ⊆ {1}, and, if X does not have a minimum, then
G−1(min DM(X)) = {0}.

Proof. First, we prove that G(0) = min DM(X).
By Proposition 2.20.5, we have that G(0) = inf{C ∈ DM(X) : F̃(C) ≥ 0}. Since F̃ is a cdf, it holds that

F̃(C) ≥ 0 for each C ∈ DM(X). Moreover, the fact that DM(X) is compact means that inf{C ∈ DM(X) : F̃(C) ≥
0} is, indeed, a minimum, which lets us conclude that G(0) = min DM(X).

Now, suppose that X does not have a minimum. This implies, by Proposition 2.15, that inf F(X) = 0. We
prove that G−1(min DM(X)) ⊆ {0}.

Suppose that there exists r ∈]0, 1] such that G(r) = min DM(X). By Proposition 2.20.5, G(r) = inf{C ∈
DM(X) : F̃(C) ≥ r}. Thus, given x ∈ X it holds that φ(x) > min DM(X) due to the fact that there does not exist
the minimum of X. Hence, F(x) = F̃(φ(x)) ≥ F̃(G(r)) ≥ r (see Proposition 2.20.2). Consequently, F(x) ≥ r, for
each x ∈ X, a contradiction with the fact that inf F(X) = 0.
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Finally, consider the case in which X does not have a maximum. We prove that G−1(max DM(X)) ⊆ {1}.
Suppose that there exists r ∈ [0, 1[ such that G(r) = max DM(X). Note that, given x ∈ X, it holds that
φ(x) < max DM(X) = G(r) due to the fact that there does not exist the maximum of X. Now, by Proposition
2.20.4, φ(x) < G(r) implies that F(x) < r, a contradiction with the fact that sup F(X) = 1. We conclude that
G−1(max DM(X)) ⊆ {1}.

Example 3.7. Let X = Q+
0 , that is, the set of non-negative rationals, and F : X→ [0, 1] the function given by

F(x) = 1− e−x, for each x ∈ X. Consider ≤ as the usual order in X and suppose that there exists a probability
measure, µ, on X such that Fµ = F. Hence, 1 = µ(X) = µ(

⋃
x∈X{x}) ≤

∑
x∈X µ({x}) = 0, a contradiction,

which means that there does not exist any probability measure such that its cdf is F. Note that in this case
DM(X) \ φ(X) is not countable.

The last example suggests considering the countability of DM(X) \ φ(X) in order to be able to get a
probability measure on X such that its cdf is a function satisfying the properties in Proposition 2.15.

The main result of this section is the following one:

Theorem 3.8. Let X be a separable LOTS such that DM(X) \ φ(X) is countable and F : X→ [0, 1] a monotonically
non-decreasing and right τ-continuous function satisfying sup F(X) = 1 and sup F(A) = inf F(Au), for each
A ∈ DM(X). Moreover, inf F(X) = 0 if there does not exist the minimum of X. Then there exists a unique
probability measure on X, µ, such that F = Fµ.

Proof. By Theorem 3.3, the function F̃ : DM(X)→ [0, 1] given by F̃(A) = inf F(Au), for each A ∈ DM(X) is an
extension of F, which means that F̃(≤ x) = F(x), for each x ∈ X and F̃ is the cdf of a probability measure, µ̃,
on DM(X). Now, define the measure µ by µ(A) = µ̃(φ(A)), for each A ⊆ X. We show that φ(X) is measurable
with respect to the Borel σ-algebra of DM(X). Indeed, note that given A ∈ DM(X), {A} is closed with respect
to the order topology of DM(X), which means that {A} ∈ σ(DM(X)). Hence, the fact that DM(X) \ φ(X) is
countable lets us claim that DM(X) \ φ(X) is the countable union of elements in σ(DM(X)), which implies
that DM(X) \ φ(X) ∈ σ(DM(X)). Hence, its complement belongs to the Borel σ-algebra of DM(X), that is
φ(X) ∈ σ(DM(X)), which lets us conclude that φ(X) is measurable. Hence, Proposition 2.2 lets us claim that
µ̃ is a measure on σ(φ(X)). Now, considering the map φ−1 : φ(X) → X, Definition 2.3 gives us that µ is a
measure with respect to σ(X).

Now, we prove a claim which is crucial to show that µ is a probability measure on X.

Claim 3.9. Let A ∈ DM(X) \ φ(X) be such that A , min DM(X), then F̃−(A) = sup F(A).

Proof. Let A ∈ DM(X) \ φ(X), then Lemma 3.2 lets us claim that A is not left-isolated. Now, by Proposition

2.14, there exists a sequence (An) in DM(X) such that An
τ′
→ A and An < An+1 < A, for each n ∈ N. Now, let

an ∈ An \ An−1, for each n ≥ 2.
≤) Let B ∈ DM(X) be such that B < A, then, by the definition of an, there exists n ∈ N such that

B < φ(an) < A. What is more, sup F(A) ≥ F(an) = F̃(φ(an)) ≥ F̃(B) where we have used the monotonicity of F̃
as a cdf. Hence, sup F(A) ≥ supB<A F̃(B) = F̃−(A), for each A ∈ DM(X) \ φ(X).
≥) Let a ∈ A then φ(a) < A. Moreover, F(a) = F̃(φ(a)) ≤ supB<A F̃(B) = F̃−(A). Therefore, F̃−(A) ≥ F(a), for

each a ∈ A, which means that F̃−(A) ≥ sup F(A).

Finally we prove that µ(X) = 1. Note that we can write DM(X) = φ(X) ∪ (DM(X) \ φ(X)), which
implies that µ̃(DM(X)) = µ̃(φ(X) ∪ (DM(X) \ φ(X)). Now, the σ-additivity of µ̃ gives us that µ̃(DM(X)) =
µ̃(φ(X) ∪ (DM(X) \ φ(X))) = µ̃(φ(X)) + µ̃(DM(X) \ X). Since µ̃ is a probability measure on DM(X), we have
that µ̃(DM(X)) = 1. The fact that DM(X) \ φ(X) is countable implies that µ̃(DM(X) \ φ(X)) = 0. Indeed, to
prove that, we first show the next claim:

Claim 3.10. µ̃({A}) = 0, for each A ∈ DM(X) \ φ(X).
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Proof. Let A ∈ DM(X) \ φ(X). Then µ̃({A}) = F̃(A) − F̃−(A). Now, we distinguish two cases depending on
whether A = min DM(X) or not:

Suppose that A = min DM(X), in which case Au = X. Note that there does not exist the minimum of X.
Indeed, if there exists min X, then φ(min X) = A, which contradicts the fact that A ∈ DM(X) \ φ(X). Hence,
the definition of F̃ and the initial assumption that inf F(X) = 0 let us claim that F̃(A) = inf F(Au) = inf F(X) = 0.
On the other hand, since F̃ is a cdf on DM(X), it holds, by Proposition 2.16, that inf F̃−(DM(X)) = 0 and,
consequently, F̃−(A) = 0. Therefore, µ̃({A}) = 0.

If A , min DM(X), by taking into account the definition of F̃ and Claim 3.9, it follows that µ̃({A}) =
inf F(Au)− sup F(A). Finally, inf F(Au)− sup F(A) = 0 by the initial assumption in the theorem, which lets us
conclude that µ̃({A}) = 0.

Hence, by the previous claim and the σ-additivity of µ̃ as a measure, we can write µ̃(DM(X) \ φ(X)) =
µ̃(

⋃
A∈DM(X)\φ(X){A}) =

∑
A∈DM(X)\φ(X) µ̃({A}) = 0. Consequently, 1 = µ̃(DM(X)) = µ̃(φ(X))+ µ̃(DM(X)\φ(X)) =

µ̃(φ(X)) = µ(X).
The uniqueness of the measure immediately follows from Proposition 2.21.

To end with this section we introduce some results whose main goal is to define a probability measure
from a function F− satisfying the properties that we collect in Proposition 2.16 and from a function G
satisfying the properties of the pseudo-inverse of a cdf.

Corollary 3.11. Let X be a separable LOTS such that DM(X) \ φ(X) is countable and let F− : X → [0, 1] be a
monotonically non-decreasing, left τ-continuous function such that inf F−(X) = 0 and sup F−(A) = inf F−(Au), for
each A ∈ DM(X). Moreover, sup F−(X) = 1 if there does not exist the maximum of X. Then there exists a unique
probability measure on X, µ, such that Fµ− = F−.

Proof. Let us define F : X→ [0, 1] by F(x) = inf F−(> x) if (> x) , ∅ and F(x) = 1 if x = max X.
First of all, we prove the next claims which are crucial in the rest of the proof:

Claim 3.12. F−(x) ≤ F(x), for each x ∈ X.

Proof. It immediately follows from the definition of F and the monotonicity of F−.

Claim 3.13. Let a, b ∈ X be such that a < b, then F(a) ≤ F−(b).

Proof. Let a, b ∈ X be such that a < b then inf F−(> a) ≤ F−(b), that is, F(a) ≤ F−(b).

Claim 3.14. Let (xn) be a monotonically right τ-convergent sequence to x. Then F−(xn)→ F(x).

Proof. Let (xn) be a monotonically right τ-convergent sequence to x. By the previous claim, it holds that
F(x) ≤ F−(xn) since x < xn. Note that F−(xn) is a monotonically non-increasing sequence with a lower bound,
F(x). Hence, F−(xn) → r′ for some r′ ≥ F(x). Note that F−(xn) ≥ r′, for each n ∈ N. Now, suppose that
F(x) < r′, then, by the definition of F, there exists y > x such that F−(y) < r′. Since xn → x, there exists m ∈N
such that x < xm < y and, hence, F−(xm) ≤ F−(y) < r′, which contradicts the fact that F−(xn) ≥ r′ for each
n ∈N. Consequently, r′ = F(x).

Secondly, we show that F is a cdf. Indeed,
1. The fact that F− is monotonically non-decreasing gives us that F satisfies that property too.
2. F is right τ-continuous. Let (xn) be a monotonically right τ-convergent sequence to x, then by Claim

3.13, we have that F(x) ≤ F−(xn+1) and F(xn+1) ≤ F−(xn). Moreover, Claim 3.12 gives us that F−(xn+1) ≤ F(xn+1).
Hence, if we join all previous inequalities, it follows that F(x) ≤ F−(xn+1) ≤ F(xn+1) ≤ F−(xn). Finally, by
taking limits and using the fact that F−(xn) → F(x) (see Claim 3.14), we conclude that F(xn) → F(x), that is,
F is right τ-continuous.

3. sup F(X) = 1. We distinguish two cases depending on whether there exists the maximum of X or not:
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(a) Suppose that there does not exist max X, then by Claim 3.12, it holds that F−(x) ≤ F(x), for each x ∈ X,
which gives us that sup F−(X) ≤ sup F(X). By taking into account that sup F−(X) = 1, we conclude that
sup F(X) = 1.

(b) If there exists max X, then by the definition of F we have that F(max X) = 1 and, consequently,
sup F(X) = 1.

4. inf F(X) = 0 if there does not exist the minimum of X. Since X is increasing and it does not
have a minimum, by Lemma 2.12 we can consider a decreasing sequence (an) in X such that X =

⋃
(≥ an).

Moreover, the fact that F is monotonically non-decreasing lets us claim, by Lemma 2.13, that F(an)→ inf F(X).
What is more, the monotonicity of F− implies that F−(an) → inf F−(X) = 0. By Claim 3.12, we have that
inf F−(X) ≤ inf F(X) and, by Claim 3.13 it holds that F(an+1) ≤ F−(an). Therefore, the next inequality follows
0 ≤ inf F(X) ≤ F(an+1) ≤ F−(an). By taking limits, we conclude that inf F(X) = 0.

Note that it is obvious that sup F(A) = inf F(Au), for each A ∈ φ(X). Now, we prove a claim that will be
crucial to get the equality sup F(A) = inf F(Au), for each A ∈ DM(X) \ φ(X).

Claim 3.15. Let A ∈ DM(X) \ φ(X), then sup F(A) = sup F−(A) and inf F(Au) = inf F−(Au).

Proof. Let A ∈ DM(X) \φ(X) then A is not isolated by Lemma 3.2. First we prove that sup F(A) = sup F−(A),
for each n ∈N
≥) It is clear if we take into account Claim 3.12 which gives us that F−(x) ≤ F(x), for each x ∈ X.
≤) Since A is not left-isolated, we can consider a monotonically non-decreasing sequence (An) such that

An
τ′
→ A. Now, let an ∈ An+1 \An, for each n ∈N. Note that an ∈ A since An ⊆ A, for each n ∈N. Given a ∈ A,

then there exists n ∈ N such that an > a and, hence by Claim 3.13 it follows that F(a) ≤ F−(an) ≤ sup F−(A),
which lets us conclude that sup F(A) ≤ sup F−(A).

Now, we prove the equality inf F(Au) = inf F−(Au).
≥) It immediately follows from Claim 3.12 due to the fact that F−(x) ≤ F(x), for each x ∈ X.
≤) Since A is not right-isolated, we can consider a monotonically non-increasing sequence (An) such

that An
τ′
→ A. Now, let an ∈ Au

n+1 \ Au
n, for each n ∈ N. Note that an ∈ Au since A ⊂ An, for each

n ∈ N. Given a ∈ Au, then there exists n ∈ N such that an < a and, hence by Claim 3.13 it follows that
inf F(Au) ≤ F(an) ≤ F−(a), which lets us conclude that inf F(Au) ≤ inf F−(Au).

The previous claim gives us that sup F(A) = sup F−(A) and inf F(Au) = inf F−(Au), for each A ∈ DM(X) \
φ(X), which means that the condition sup F−(A) = inf F−(Au), for each A ∈ DM(X) \ φ(X) implies that
inf F(Au) = sup F(A), for each A ∈ DM(X) \ φ(X). Hence, Theorem 3.8 lets us conclude that F is the cdf of a
probability measure, µ, defined on X.

Finally we show that Fµ− = F−. For that purpose, given x ∈ X, we distinguish two cases depending on
whether x is left-isolated or not:

1. Suppose that x is not left-isolated, then, by Proposition 2.14, there exists a monotonically left τ-
convergent sequence to x. Let (xn) be that sequence. On the one hand, since F = Fµ is a cdf, we have that
Fµ(xn) → Fµ−(x) (see Proposition 2.17). Moreover, Claim 3.12 gives us that F−(xn) ≤ F(xn) and, by Claim
3.13, F(xn) ≤ F−(xn+1). Hence, if we join the previous inequalities, we have that Fµ(xn) = F(xn) ≤ F−(xn+1) ≤
F(xn+1) = Fµ(xn+1). Now, by taking limits in the previous expression, since Fµ(xn) → Fµ−(x), we have that
F−(xn+1)→ Fµ−(x).

On the other hand, the left τ-continuity of F− means that F−(xn)→ F−(x).
The facts that F−(xn)→ Fµ−(x) and F−(xn)→ F−(x) let us conclude that F−(x) = Fµ−(x).
2. Suppose that x is left-isolated, then it can happen:
(a) There exists z ∈ X such that ]z, x[= ∅. Note that the fact that Fµ is the cdf defined from µ gives us that

Fµ−(x) = µ(< x) = µ(≤ z) = Fµ(z). Now, Theorem 3.8 lets us claim that Fµ(z) = F(z). By the definition of F, it
holds that F(z) = inf F−(> z) = inf F−(≥ x) = F−(x), which finishes the proof.

(b) If (< x) = ∅, then x = min X and, consequently, Fµ−(x) = 0 = F−(x) by hypothesis.
Hence Fµ− = F−. The uniqueness of the measure immediately follows from Corollary 2.24.
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Corollary 3.16. Let X be a separable LOTS such that DM(X) \ φ(X) is countable and let G : [0, 1] → DM(X) be
a monotonically non-decreasing and left τ-continuous function such that sup G−1(< A) = inf G−1(> A), for each
A ∈ DM(X) \ φ(X), G(0) = min DM(X), G−1(max DM(X)) ⊆ {1} if there does not exist the maximum of X and
G−1(min DM(X)) = {0} if there does not exist the minimum of X. Then there exists a unique probability measure on
X, µ, such that G is the pseudo-inverse of Fµ.

Proof. First of all, we use the fact that DM(X) is separable as a consequence of the separability of X (see
Proposition 2.18).

Let us define F : X→ [0, 1] by F(x) = sup{r ∈ [0, 1] : G(r) ≤ φ(x)} = sup G−1(≤ φ(x)).
Note that 0 ∈ G−1(≤ φ(x)) for each x ∈ X, since G(0) = min DM(X), and hence F is well defined.
First of all, we prove a claim which will be crucial to show the right continuity of F.

Claim 3.17. Let x ∈ X and r ∈ [0, 1], then F(x) < r if, and only if, G(r) > φ(x).

Proof. First, note that if r = 0 the statement is trivial, so we can suppose that r > 0.
⇒) Suppose that F(x) < r, then sup{r′ ∈ [0, 1] : G(r′) ≤ φ(x)} < r, which means that r < {r′ ∈ [0, 1] : G(r′) ≤

φ(x)}, which implies that G(r) > φ(x).
⇐) Suppose now that G(r) > φ(x). We distinguish two cases:
1. Suppose that F(x) > r, then sup{r′ ∈ [0, 1] : G(r′) ≤ φ(x)} > r, which means that there exists r′ ∈ [0, 1]

with r′ > r such that G(r′) ≤ φ(x). Hence, the monotonicity of G gives us that G(r) ≤ G(r′) ≤ φ(x). Thus,
G(r) ≤ φ(x), a contradiction with the initial assumption.

2. Suppose now that F(x) = r and let (rn) be a left convergent sequence to r with rn ∈ [0, r[ for each n ∈N,
then sup{r′ ∈ [0, 1] : G(r′) ≤ φ(x)} > rn, for each n ∈ N. Hence, given n ∈ N, there exists r′ ∈ [0, 1] with
r′ > rn and such that G(r′) ≤ φ(x). Hence, the monotonicity of G gives us that G(rn) ≤ G(r′) ≤ φ(x). Thus,
G(rn) ≤ φ(x), for each n ∈N. Since G is left τ-continuous by hypothesis, by taking limits and using Lemma
3.4, we conclude that G(r) ≤ φ(x), which is a contradiction with the initial assumption.

Secondly, we show that F is a cdf. For this purpose we start proving its properties as cdf:
1. F is monotonically non-decreasing. Indeed, it immediately follows from the monotonicity of G and

the definition of F.
2. F is right τ-continuous. Let (xn) be a monotonically right τ-convergent sequence to x. Note that

F(x) ≤ F(xn) for each n ∈ N and F(xn+1) ≤ F(xn), that is, F(xn) is a monotonically non-increasing sequence
with a lower bound, which means that F(xn) → r′ for some r′ ≥ F(x). Suppose that r′ > F(x), then there
exists r ∈ [0, 1] such that F(x) < r < r′. The previous claim gives us that φ(x) < G(r) and G(r) ≤ G(r′) since
G is monotonically non-decreasing. Since (xn) is a monotonically right τ-convergent sequence to x, there
exists n ∈N such that φ(xn) < G(r). By the previous claim, this fact implies that F(xn) < r, which contradicts
the fact that F(xn) ≥ r, for each n ∈N. Hence, F(x) = r′.

3. sup F(X) = 1. Note that if there exists the maximum of X, then F(max X) = 1 by definition of F.
Suppose that there does not exist the maximum of X and that sup F(X) , 1. Then we can consider r ∈ [0, 1[
such that r > sup F(X). Now, we claim that G(r) = max DM(X). Indeed, suppose that G(r) , max DM(X),
then we can choose x ∈ X such that φ(x) > G(r) and, hence, by Claim 3.17, we have that F(x) ≥ r which
contradicts the fact that r > sup F(X). Consequently, G(r) = max DM(X), which is a contradiction with the
initial assumption G−1(max DM(X)) ⊆ {1}.

4. inf F(X) = 0 if there does not exist the minimum of X. Suppose that inf F(X) , 0, then we can
consider r ∈]0, 1] such that r < inf F(X). Now, we claim that G(r) = min DM(X). Indeed, suppose that
G(r) , min DM(X), then we can choose x ∈ X such that φ(x) < G(r) and, hence, by Claim 3.17, we have
that F(x) < r, a contradiction with the fact that r < inf F(X). Consequently, G(r) = min DM(X), which is a
contradiction with the initial assumption G−1(min DM(X)) = {0}.

Now, we prove a claim that will be crucial to get the equality sup F(A) = inf F(Au), for each A ∈
DM(X) \ φ(X).

Claim 3.18. Let A ∈ DM(X) \ φ(X), then sup F(A) = sup G−1(< A) and inf F(Au) = inf G−1(> A).
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Proof. Let A ∈ DM(X) \ φ(X). First we prove that sup F(A) = sup G−1(< A).
≤) Let a ∈ A, then F(a) = sup G−1(≤ φ(a)) ≤ sup G−1(< A), so we have that sup F(A) ≤ sup G−1(< A).
≥) Let r ∈ G−1(< A), then G(r) < A, so we can consider a ∈ A \ G(r), that is, G(r) ≤ φ(a). Now, according

to the definition of F from G, F(a) = sup{r′ ∈ [0, 1] : G(r′) ≤ φ(a)}. Note that r ≤ F(a). What is more,
r ≤ F(a) ≤ sup F(A), which implies that sup G−1(< A) ≤ sup F(A).

Now, we prove the equality inf F(Au) = inf G−1(> A). Given A ∈ DM(X) \ φ(X):
≤) Suppose that inf F(Au) > inf G−1(> A), then there exists r ∈ [0, 1] such that r < inf F(Au) and G(r) > A.

Since r < inf F(Au), r < F(a), for each a ∈ Au. By Claim 3.17, G(r) ≤ φ(a), for each a ∈ Au, which means that
G(r) ≤ A, a contradiction with the fact that G(r) > A.
≥) Suppose that inf F(Au) < inf G−1(> A), then there exists b ∈ Au such that F(b) < inf G−1(> A).

Since inf G−1(> A) = sup G−1(< A) by hypothesis, we have that F(b) < sup G−1(< A). Hence, there exists
r ∈ G−1(< A) such that F(b) < r. Equivalently, there exists r ∈ [0, 1] with G(r) < A such that F(b) < r. Now,
Claim 3.17 gives us that G(r) > φ(b). The fact that (< A) is decreasing together with the facts that G(r) < A
and G(r) > φ(b) let us conclude that b ∈ A, a contradiction.

By the previous claim, the condition sup G−1(< A) = inf G−1(> A), for each A ∈ DM(X) \ φ(X) implies
that sup F(A) = inf F(Au), for each A ∈ DM(X) \ φ(X), so Theorem 3.8 lets us conclude that F is the cdf of a
probability measure, µ, defined on X.

Now, we prove another claim that will help us in showing the equality Gµ = G. For that purpose, and
by taking into account that F is a cdf, we will use its extension to DM(X), F̃.

Claim 3.19. F̃(G(r)) ≥ r, for each r ∈ [0, 1].

Proof. Let r ∈ [0, 1] and suppose that F̃(G(r)) < r, then infx∈G(r)u F(x) < r. Hence, there exists x ∈ G(r)u such
that F(x) < r. Now, by Claim 3.17 it follows that G(r) > φ(x), which means that x < G(r)u, a contradiction.
Consequently, F̃(G(r)) ≥ r.

Finally, we show that Gµ = G.
≥) Let r ∈ [0, 1] and A ∈ DM(X) such that F̃(A) ≥ r. Now, let x ∈ Au, then F̃(φ(x)) ≥ F̃(A) ≥ r. The fact that

F̃ is an extension of F gives us that F̃(φ(x)) = F(x). Since F(x) ≥ r, by Claim 3.17, we have that G(r) ≤ φ(x).
By the arbitrariness of x, we conclude that G(r) ≤ A and, consequently, inf{A ∈ DM(X) : F̃(A) ≥ r} ≥ G(r),
that is, Gµ(r) ≥ G(r).
≤) By Claim 3.19, r ≤ F̃(G(r)), for each r ∈ [0, 1]. Now, by taking into account that Gµ is the pseudo-inverse

of F̃ as a cdf, its monotonicity gives us that Gµ(r) ≤ Gµ(F̃(G(r))). Finally, by taking into account Proposition
2.20.1, it follows that Gµ(F̃(G(r))) ≤ G(r) so we can conclude that Gµ(r) ≤ G(r).

The uniqueness of the measure immediately follows from Corollary 2.25.

Once we have proven that a measure can be determined from F− and G when given some conditions on
them and DM(X), we get two immediate results:

Corollary 3.20. Let X be a compact separable LOTS and F− : X → [0, 1] a monotonically non-decreasing, left τ-
continuous function such that inf F−(X) = 0. Then there exists a unique probability measure µ on the Borel σ-algebra
of X such that Fµ− = F−.

Proof. Note that the fact that X is compact means that DM(X) = φ(X) which implies that DM(X) \φ(X) = ∅.
Since given A ∈ DM(X), there exists a ∈ X such that A = φ(a), it is clear that sup F−(A) = inf F−(Au). Hence,
by taking into account the hypothesis on F− and Corollary 3.11, we conclude that there exists a probability
measure µ on the Borel σ-algebra of X such that Fµ− = F−. Moreover, Corollary 2.24 ensures that µ is
unique.

Corollary 3.21. Let X be a compact separable LOTS and G : X → [0, 1] a monotonically non-decreasing and left
τ-continuous function satisfying G(0) = min X and G(1) = max X. Then there exists a unique probability measure
µ on the Borel σ-algebra of X such that G is the pseudo-inverse of Fµ.
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Proof. Since X is compact, DM(X) = φ(X) which implies that DM(X) \ φ(X) = ∅. Now, by taking into
account the hypothesis on G and Corollary 3.16, we conclude that there exists a probability measure µ on
the Borel σ-algebra of X such that G is the pseudo-inverse of Fµ. Moreover, Corollary 2.25 ensures that µ is
unique.

4. Examples

Next, we show some examples in which it is possible to define a probability measure on X from a
function satisfying the properties of a cdf by taking into account the theory that has been developed in the
previous sections.

Example 4.1. Let X = ({0} ∪N) × [0, 1] and ≤ be the lexicographical order in X. Consider the function
F : X→ [0, 1] given by F(x, y) = 1 − 1

2 e−(x+y)
−

1
2 e−x, for each (x, y) ∈ X.

Note that in this case DM(X) \ φ(X) = {X}. Roughly speaking, DM(X) coincides with the one-point
compactification of X since the only cut that we add when we consider DM(X) is X.

We have already seen that DM(X) \ φ(X) is countable. Moreover, by the definition of F it holds that
F is a monotonically non-decreasing and right τ-continuous function (indeed, F is continuous) satisfying
sup F(X) = 1 and sup F(A) = inf F(Au), for each A ∈ DM(X). Finally, Theorem 3.8 lets us conclude that there
exists a unique probability measure µ on X such that F is its cdf.

Example 4.2. Let X = ({0} ∪N) × [0, 1] and ≤ be the lexicographical order in X. Consider the function
F− : X→ [0, 1] given by F−(x, y) = 1− 1

2 e−(x+y)
−

1
2 e−x, for each (x, y) ∈ X\{(x, 0) : x ∈N} and F−(x, 0) = 1− e+1

2 e−x,
for each x ∈N.

We have already seen that DM(X) \ φ(X) is countable. Note that F− is continuous in X \ {(x, 0) : x ∈ N}
so it is left τ-continuous. Moreover, given (x, 0) for some x ∈N, it holds that F− is left τ-continuous at (x, 0)
since this point is left-isolated.

On the other hand, by the definition of F− it holds that F− is monotonically non-decreasing and it satisfies
sup F−(X) = 1 and sup F−(A) = inf F−(Au), for each A ∈ DM(X). Finally, Corollary 3.11 lets us conclude that
there exists a unique probability measure, µ, on X such that Fµ− = F−.

Example 4.3. Let X = ({0} ∪N) × [0, 1] and ≤ be the lexicographical order in X. Consider the function
G : DM(X)→ [0, 1] given by G(r) = (≤ min{(x, y) ∈ X : x + y ≥ ln(1 − r)−1

}), for each r ∈ [0, 1[ and G(1) = X.
Note that G satisfies the conditions of Corollary 3.16, which means that there exists a probability measure
µ on X such that G is the pseudo-inverse of Fµ.

Indeed, by taking into account Proposition 2.23, we can define Fµ by Fµ(x, y) = 1 − e−(x+y), for each
(x, y) ∈ X.

The next example shows a function that is not a cdf.

Example 4.4. Let X = ({0} ∪ N)×]0, 1[ and ≤ be the lexicographical order in X. Consider the function
F : X→ [0, 1] given by F(x, y) = 1 − 1

2x , for each (x, y) ≥ (1, 0) and F(x, y) = 0 otherwise.
Note that DM(X)\φ(X) is countable, F is right τ-continuous, monotonically non-decreasing, inf F(X) = 0

and sup F(X) = 1.
However, if we consider the cut A = (< (1, 1)), the condition sup F(A) = inf F(Au) does not hold. In

this case Au = (> (2, 0)). Note that sup F(A) = 1
2 and inf F(Au) = 3

4 . Hence, sup F(A) , inf F(Au) and, by
Proposition 3.5.1, F is not the cdf of a probability measure on X.

In order to end with this section, we introduce a simple real example where our theory is essential to
get the probability distribution:

Example 4.5. Consider three cdfs that are the lifetime of three different light bulbs. The distributions are
exponential with means 800, 1000 and 1200 hours. Consider a system with three light bulbs one of each
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type. Find the probability that, at least, one of the light bulbs of this type has a lifetime of more than 900
hours.

In the classical case we can define the random variables X1 ∼ ε( 1
800 ),X2 ∼ ε( 1

1000 ) and X3 ∼ ε( 1
1200 ).

Note that the corresponding cdfs, F1,F2 and F3 are a particular case of a cdf according to the developed
theory. Furthermore, the idea of modelling the case in which three light bulbs work together is considering
the set X = [0,∞[×{0, 1, 2} and ≤ as the lexicographical order in X. It holds that X is a separable LOTS
and that DM(X) \ φ(X) = {X}. The function F : X → [0, 1] defined by F(x, y) = 1

3 (F1(x) + F2(x) + F3(x)) is
monotonically non-decreasing, right τ-continuous and sup F(A) = inf F(Au), for each A ∈ DM(X). Since
DM(X) \φ(X) is countable, Theorem 3.8 lets us ensure that there exists a probability measure on X such that
its cdf is F. Hence, it is possible for us to know the probability we want by calculating 1 − F(900, y), for any
y ∈ {0, 1, 2}.

5. Conclusions

This work continues the research line started in [11] and further developed in [12]. Indeed, in [12]
the authors proposed an open question in order to look for conditions to ensure that a function satisfying
the properties of a cdf on a separable linearly ordered topological space is, indeed, the cdf of a probability
measure on that space. That question seems to be natural since the main goal of this research line is extending
the classical theory of distribution functions to a more general context: the case in which we work with a
separable linearly ordered topological space. In this paper, authors answer that question through Theorem
3.8. Before stating that result, authors prove some propositions which consist of necessary conditions for
a cdf which is defined on a separable LOTS. Some of that conditions, together with the basic properties
of a cdf (proven in [11]), are sufficient conditions to ensure that there exists a probability measure on the
Borel σ-algebra of the space, such that its cdf is the function satisfying the properties. What is more,
that probability measure is unique. Once we have proven the main theorem of the paper, two corollaries
have arisen (see Corollary 3.11 and Corollary 3.16). In them, we give conditions to guarantee that from a
function satisfying the properties of F− and G we can get a probability measure whose cdf gives us F− and
G, respectively.

Finally, we show some examples in which the one-to-one relationship between a probability measure
and F, F− or G holds.
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