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Abstract. In this paper, we mainly discuss linear deformations of a Hom-Lie-Yamaguti algebra and
introduce the notion of a Hom-Nijenhuis operator. We introduce the notion of a product structure on a
Hom-Lie-Yamaguti algebra, which is a Hom-Nijenhuis operator E satisfying E2 = Id. There is a product
structure on an involutive Hom-Lie-Yamaguti algebra if and only if the Hom-Lie-Yamaguti algebra is the
direct sum of two subalgebras (as vector spaces). At the same time, we also introduce the notion of a
complex structure on a Hom-Lie-Yamaguti algebra. Finally, we add a compatibility condition between a
product structure and a complex structure to introduce the notion of a complex product structure on an
involutive Hom-Lie-Yamaguti algebra.

1. Introduction

Hom-type algebras were studied by many researchers. The first examples coming from q-deformations
of Witt and Virasora algebras are Hom-Lie algebras, see [9]. The notion of a Lie-Yamaguti algebra was
introduced in [12], and can be traced back to [15] and [16]. Roughly speaking, a Lie-Yamaguti algebra
owns both a binary operation and a ternary operation that satisfy some compatibility conditions. It is an
algebraic structure that generalizes a Lie algebra and a Lie triple system simultaneously. See [6], [17] for
more details about recent studies on Lie-Yamaguti algebras. In [8], the authors introduced the concept of
Hom-Lie-Yamaguti algebras. It is a Hom-type generalization of a Lie-Yamaguti algebra in [5], a general
Lie triple system in [15, 16] and a Lie triple algebra in [11]. The authors studied the formal deformations
of Hom-Lie-Yamaguti algebras in [13]. In [18], the authors give general representation and cohomology
theory of Hom-Lie-Yamaguti algebras.

A Nijenhuis operator on a Lie algebra can generate its trivial deformation, and plays an important role in
the study on integrability of nonlinear evolution equations [7]. Product structures and complex structures on
a Lie algebra can be viewed as special Nijenhuis operators. Namely, the Nijenhuis condition on a Lie algebra
is exactly the integrability condition of an almost product structure (an almost complex structure) being
a product structure (complex structure). See [1]-[4] for more details about product structures, complex
structures and complex product structures on Lie algebras. In [14], the authors discussed Nijenhuis
operators, product structures and complex structures on Lie-Yamaguti algebras.
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The purpose of this paper is to introduce and study Nijenhuis operators, product structures, complex
structures and complex product structures on involutive Hom-Lie-Yamaguti algebras, which are natural
generalizations of those on Lie-Yamaguti algebras.

This paper is organized as follows. In section 2, we recall the notions of a Hom-Lie-Yamaguti algebra
and its (2,3)-cohomology group.

In section 3, we study linear deformations of a Hom-Lie-Yamaguti algebra and introduce the notion of
a Hom-Nijenhuis operator on a Hom-Lie-Yamaguti algebra. We show that a Hom-Nijenhuis operator on a
Hom-Lie-Yamaguti algebra can generate a trivial linear deformation.

In section 4, we introduce the notion of a product structure on a Hom-Lie-Yamaguti algebra, and prove
that an involutive Hom-Lie-Yamaguti algebra is the direct sum of two subalgebras (as vector spaces) if and
only if there is a product structure on it. In particular, we give several special product structures, which are
called strict product structures, abelian product structures and perfect product structures, respectively, and
they give rise to special decompositions of the original Hom-Lie-Yamaguti algebra, respectively.

In section 5, we introduce the notion of a complex structure on a Hom-Lie-Yamaguti algebra and study
it parallel to the case of product structures.

In section 6, by adding a compatibility condition between a product structure and a complex structure
we introduce the notion of a complex product structure on an involutive Hom-Lie-Yamaguti algebra.

Throughout this paper, we work on an algebraically closed fieldK of characteristic 0.

2. Preliminaries

In this section, we first recall some basic definitions of Hom-Lie-Yamaguti algebras.

Definition 2.1. A Hom-Lie-Yamaguti algebra (or HLYA for short) consists of a vector space L together with a linear
map α : L → L, a bilinear map [·, ·] : L × L → L and a trilinear map {·, ·, ·} : L × L × L → L such that, for all
xi, yi ∈ L(i = 1, 2, 3), the following conditions are satisfied:

• (HLY01) α([x1, x2]) = [α(x1), α(x2)];

• (HLY02) α({x1, x2, x3}) = {α(x1), α(x2), α(x3)};

• (HLY1) [x1, x2] + [x2, x1] = 0;

• (HLY2) {x1, x2, x3} + {x2, x1, x3} = 0;

• (HLY3) [[x1, x2], α(x3)] + c.p. + {x1, x2, x3} + c.p. = 0;

• (HLY4) {[x1, x2], α(y1), α(y2)} + {[x2, y1], α(x1), α(y2)} + {[y1, x1], α(x2), α(y2)} = 0;

• (HLY5) {α(x1), α(x2), [y1, y2]} = [{x1, x2, y1}, α2(y2)] + [α2(y1), {x1, x2, y2}];

• (HLY6) {α2(x1), α2(x2), {y1, y2, y3}} = {{x1, x2, y1}, α2(y2), α2(y3)} + {α2(y1), {x1, x2, y2}, α2(y3)}
+ {α2(y1), α2(y2), {x1, x2, y3}},

where c.p. means cyclic permutations with respect to x1, x2, x3. We denote a HLYA by (L, [·, ·], {·, ·, ·}, α) or simply by
L.

Definition 2.2. A homomorphism between two HLYAs (L, [·, ·], {·, ·, ·}, α) and (L′, [·, ·]′, {·, ·, ·}′, α′) is a linear map
f : L→ L′ satisfying fα = α′ f and

f ([x1, x2]) = [ f (x1), f (x2)]′, f ({x1, x2, x3}) = { f (x1), f (x2), f (x3)}′,

for all xi ∈ L(i = 1, 2, 3).

Definition 2.3. Let (L, [·, ·], {·, ·, ·}, α) be a HLYA, ϕ : L × L → L a bilinear map and ω : L × L × L → L a trilinear
map. Then a pair (ϕ,ω) is called a (2,3)-cocycle if for all x1, x2, x3, y1, y2, y3 the following conditions hold:
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• ϕ(α(x1), α(x2)) = α(ϕ(x1, x2));

• ω(α(x1), α(x2), α(x3)) = α(ω(x1, x2, x3));

• ϕ([x1, x2], α(x3)) + c.p. + [ϕ(x1, x2), α(x3)] + c.p. + ω(x1, x2, x3) + c.p. = 0;

• ω([x1, x2], α(y1), α(y2)) + c.p. + {ϕ(x1, x2), α(y1), α(y2)} + c.p. = 0;

• ω(α(x1), α(x2), [y1, y2]) + {α(x1), α(x2), ϕ(y1, y2)} = ϕ(α2(y1), {x1, x2, y2}) + [α2(y1), ω(x1, x2, y2)]
+ϕ({x1, x2, y1}, α2(y2)) + [ω(x1, x2, y1), α2(y2)];

• ω(α2(x1), α2(x2), {y1, y2, y3}) + {α2(x1), α2(x2), ω(y1, y2, y3)} = ω({x1, x2, y1}, α2(y2), α2(y3))
+ {ω(x1, x2, y1), α2(y2), α2(y3)} + ω(α2(y1), {x1, x2, y2}, α2(y3)) + {α2(y1), ω(x1, x2, y2), α2(y3)}
+ ω(α2(y1), α2(y2), {x1, x2, y3}) + {α2(y1), α2(y2), ω(x1, x2, y3)}.

Now we introduce the definition of the (2, 3)-cohomology group of a HLYA.

Definition 2.4. A pair (ϕ,ω) is called a (2,3)-coboundary if there exits a linear map N ∈ gl(L), such that for any
x, y, z ∈ L, the following conditions hold:

• Nα(x) = αN(x), ϕ(α(x), α(y)) = αϕ(x, y), ω(α(x), α(y), α(z)) = αω(x, y, z);

• ϕ(x, y) = [Nx, y] + [x,Ny] −N[x, y];

• ω(x, y, z) = {Nx, y, z} + {x,Ny, z} + {x, y,Nz} −N{x, y, z}.

We denote by Z(2,3)(L,L) and B(2,3)(L,L) the set of (2,3)-cocycles and the set of (2,3)-coboundaries,
respectively. Then the quotient space Z(2,3)(L,L)/B(2,3)(L,L) is called the (2, 3)-cohomology group of a
Hom-Lie-Yamaguti algebra, and denoted byH (2,3)(L,L). In the following, we see that the (2, 3)-cohomology
group can characterize equivalent deformations of a Hom-Lie-Yamaguti algebra.

3. Linear deformations of Hom-Lie-Yamaguti algebras and Nijenhuis operators

In this section, we discuss linear deformations of Hom-Lie-Yamaguti algebras, and introduce the defi-
nition of a Nijenhuis operator on a Hom-Lie-Yamaguti algebra, which can generate a trivial deformation.
Moreover, Nijenhuis operators are the main tool to define product structures and complex structures on a
Hom-Lie-Yamaguti algebra in the following sections.

Definition 3.1. Let (L, [·, ·], {·, ·, ·}, α) be a HLYA, ϕ : L × L → L and ω,ψ : L × L × L → L be a bilinear map
and trilinear maps satisfying ϕ(α(x), α(y)) = αϕ(x, y), ω(α(x), α(y), α(z)) = αω(x, y, z), ψ(α(x), α(y), α(z)) =
αψ(x, y, z). Consider the following linear operators: for all x, y, z ∈ L,

[x, y]t = [x, y] + tϕ(x, y), (1)
{x, y, z}t = {x, y, z} + tω(x, y, z) + t2ψ(x, y, z). (2)

For all t ∈ K, if (L, [·, ·]t, {·, ·, ·}t, α) are HLYAs, then we say that (ϕ,ω,ψ) generates a linear deformation of the HLYA
(L, [·, ·], {·, ·, ·}, α).

Now we’ll give the relation between the deformations and cohomologies of HLYA.

Theorem 3.2. Let (L, [·, ·], {·, ·, ·}, α) be a HLYA, ϕ : L × L → L and ω,ψ : L × L × L → L be a bilinear map and
trilinear maps. Then the triple (ϕ,ω,ψ) generates a linear deformation of L if and only if the following conditions are
satisfied:

(a) (ϕ,ω) is a (2,3)-cocycle;
(b) (ϕ,ψ) defines a HLYA structure on L;
(c) the following equations hold:
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• (c1) ψ([x1, x2], α(y1), α(y2)) + ω(ϕ(x1, x2), α(y1), α(y2)) + ψ([x2, y1], α(x1), α(y2))
+ω(ϕ(x2, y1), α(x1), α(y2)) + ψ([y1, x1], α(x2), α(y2)) + ω(ϕ(y1, x1), α(x2), α(y2)) = 0;

• (c2) ω(α(x1), α(x2), ϕ(y1, y2)) + ψ(α(x1), α(x2), [y1, y2]) = ϕ(α2(y1), ω(x1, x2, y2))
+[α2(y1), ψ(x1, x2, y2)] + ϕ(ω(x1, x2, y1), α2(y2)) + [ψ(x1, x2, y1), α2(y2)];

• (c3) ψ(α2(x1), α2(x2), {y1, y2, y3}) + ω(α2(x1), α2(x2), ω(y1, y2, y3)) + {α2(x1), α2(x2), ψ(y1, y2, y3)}
= ψ({x1, x2, y1}, α2(y2), α2(y3)) + ω(ω(x1, x2, y1), α2(y2), α2(y3)) + {ψ(x1, x2, y1), α2(y2), α2(y3)}
+ ψ(α2(y1), {x1, x2, y2}, α2(y3)) + ω(α2(y1), ω(x1, x2, y2), α2(y3)) + {α2(y1), ψ(x1, x2, y2), α2(y3)}
+ ψ(α2(y1), α2(y2), {x1, x2, y3}) + ω(α2(y1), α2(y2), ω(x1, x2, y3)) + {α2(y1), α2(y2), ψ(x1, x2, y3)};

• (c4) ψ(α2(x1), α2(x2), ω(y1, y2, y3)) + ω(α2(x1), α2(x2), ψ(y1, y2, y3))
= ψ(ω(x1, x2, y1), α2(y2), α2(y3)) + ω(ψ(x1, x2, y1), α2(y2), α2(y3)) + ψ(α2(y1), ω(x1, x2, y2), α2(y3))
+ ω(α2(y1), ψ(x1, x2, y2), α2(y3)) + ψ(α2(y1), α2(y2), ω(x1, x2, y3)) + ω(α2(y1), α2(y2), ψ(x1, x2, y3)),

for all x1, x2, x3, y1, y2, y3 ∈ L.

Proof. If the triple (ϕ,ω,ψ) generates a linear deformation ([·, ·]t, {·, ·, ·}t) of a HLYA (L, [·, ·], {·, ·, ·}, α), then
by Definition 3.1 for all t, (L, [·, ·]t, {·, ·, ·}t, α) is a HLYA. By [[x1, x2]t, α(x3)]t + c.p. + {x1, x2, x3}t + c.p. = 0, we
have

ϕ([x1, x2], α(x3)) + c.p. + [ϕ(x1, x2), α(x3)] + c.p. + ω(x1, x2, x3) + c.p. = 0; (3)
ϕ(ϕ(x1, x2), α(x3)) + c.p. + ψ(x1, x2, x3) + c.p. = 0. (4)

By {[x1, x2]t, α(y1), α(y2)}t + {[x2, y1]t, α(x1), α(y2)}t + {[y1, x1]t, α(x2), α(y2)}t = 0, we have

ω([x1, x2], α(y1), α(y2)) + c.p. + {ϕ(x1, x2), α(y1), α(y2)} + c.p. = 0; (5)
ψ([x1, x2], α(y1), α(y2)) + c.p. + ω(ϕ(x1, x2), α(y1), α(y2)) + c.p. = 0; (6)
ψ(ϕ(x1, x2), α(y1), α(y2)) + c.p. = 0. (7)

By {α(x1), α(x2), [y1, y2]t}t = [{x1, x2, y1}t, α2(y2)]t + [α2(y1), {x1, x2, y2}t]t, we have

ω(α(x1), α(x2), [y1, y2]) + {α(x1), α(x2), ϕ(y1, y2)} = ϕ({x1, x2, y1}, α
2(y2))

+[ω(x1, x2, y1), α2(y2)] + ϕ(α2(y1), {x1, x2, y2}) + [α2(y1), ω(x1, x2, y1)]; (8)
ω(α(x1), α(x2), ϕ(y1, y2)) + ψ(α(x1), α(x2), [y1, y2]) = ϕ(ω(x1, x2, y1), α2(y2))

+[ψ(x1, x2, y1), α2(y2)] + ϕ(α2(y1), ω(x1, x2, y2)) + [α2(y1), ψ(x1, x2, y2)]; (9)
ψ(α(x1), α(x2), ϕ(y1, y2)) = ϕ(ψ(x1, x2, y1), α2(y2)) + ϕ(α2(y1), ψ(x1, x2, y2)). (10)

By {α2(x1), α2(x2), {y1, y2, y3}t}t = {{x1, x2, y1}t, α2(y2), α2(y3)}t+{α2(y1), {x1, x2, y2}t, α2(y3)}t+{α2(y1), α2(y2), {x1, x2, y3}t}t,
we have

ω(α2(x1), α2(x2), {y1, y2, y3}) + {α2(x1), α2(x2), ω(y1, y2, y3)}
= ω({x1, x2, y1}, α

2(y2), α2(y3)) + {ω(x1, x2, y1), α2(y2), α2(y3)} + ω(α2(y1), {x1, x2, y2}, α
2(y3))

+{α2(y1), ω(x1, x2, y2), α2(y3)} + ω(α2(y1), α2(y2), {x1, x2, y3}) + {α2(y1), α2(y2), ω(x1, x2, y3)}; (11)

ψ(α2(x1), α2(x2), {y1, y2, y3}) + ω(α2(x1), α2(x2), ω(y1, y2, y3)) + {α2(x1), α2(x2), ψ(y1, y2, y3)}
= ψ(α2(x1), α2(x2), {y1, y2, y3}) + ω(ω(α2(x1), α2(x2), y1), y2, y3) + ω(α2(y1), ω(x1, x2, y2), α2(y3))
+{ψ(x1, x2, y1), α2(y2), α2(y3)} + ψ(α2(y1), {x1, x2, y2}, α

2(y3)) + {α2(y1), ψ(x1, x2, y2), α2(y3)}
+ψ(α2(y1), α2(y2), {x1, x2, y3}) + ω(α2(y1), α2(y2), ω(x1, x2, y3)) + {α2(y1), α2(y2), ψ(x1, x2, y3)}; (12)

ψ(α2(x1), α2(x2), ω(y1, y2, y3)) + ω(α2(x1), α2(x2), ψ(y1, y2, y3))
= ψ(ω(x1, x2, y1), α2(y2), α2(y3)) + ω(ψ(x1, x2, y1), α2(y2), α2(y3)) + ψ(α2(y1), ω(x1, x2, y2), α2(y3))
+ω(α2(y1), ψ(x1, x2, y2), α2(y3)) + ψ(α2(y1), α2(y2), ω(x1, x2, y3)) + ω(α2(y1), α2(y2), ψ(x1, x2, y3)); (13)
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ψ(α2(x1), α2(x2), ψ(y1, y2, y3)) = ψ(ψ(x1, x2, y1), α2(y2), α2(y3))
+ψ(α2(y1), ψ(x1, x2, y2), α2(y3)) + ψ(α2(y1), α2(y2), ψ(x1, x2, y3)). (14)

By (3), (5), (8) and (11), we can obtain (a) is satisfied. By (4), (7), (10) and (14), we can obtain (b) is satisfied.
By (6), (9), (12) and (13), we can obtain (c) is satisfied. The conclusion thus follows.

Definition 3.3. (i) Let (L, [·, ·]t, {·, ·, ·}t, α) and (L, [·, ·]′t, {·, ·, ·}
′

t, α) be two linear deformations of a HLYA (L, [·, ·], {·, ·, ·}, α)
generated by (ϕ,ω,ψ) and (ϕ′, ω′, ψ′), respectively. They are called equivalent if there exists a linear map N ∈ gl(L)
such that

Tt = Id + tN : (L, [·, ·]′t, {·, ·, ·}
′

t, α)→ (L, [·, ·]t, {·, ·, ·}t, α)

is a homomorphism.
(ii) A linear deformation (L, [·, ·]t, {·, ·, ·}t, α) of a HLYA (L, [·, ·], {·, ·, ·}, α) is said to be trivial if it is equivalent to

(L, [·, ·], {·, ·, ·}, α).
More precisely, if two linear deformations are equivalent, we have

(Id + tN)[x, y]′t = [x + tNx, y + tNy]t, (15)
(Id + tN){x, y, z}′t = {x + tNx, y + tNy, z + tNz}t. (16)

Expanding each side of (15) and comparing the coefficients of t, we get

ϕ′(x, y) − ϕ(x, y) = [Nx, y] + [x,Ny] −N[x, y]. (17)

Similarly, with respect to (16), we obtain that

ω′(x, y, z) − ω(x, y, z) = {Nx, y, z} + {x,Ny, z} + {x, y,Nz} −N{x, y, z}. (18)

By (17) and (18), we obtain that equivalent classes of linear deformations of a HLYA can be characterized
by the (2, 3)-cohomology group of a HLYA. That is

Theorem 3.4. Let (L, [·, ·]′t, {·, ·, ·}
′

t, α) and (L, [·, ·]t, {·, ·, ·}t, α) be two linear deformations of a HLYA (L, [·, ·], {·, ·, ·}, α)
generated by (ϕ′, ω′, ψ′) and (ϕ,ω,ψ), respectively. Then (ϕ′, ω′) and (ϕ,ω) are in the same cohomology class in the
cohomology groupH (2,3)(L,L).

In the sequel, we introduce the notion of a Hom-Nijenhuis operator on a HLYA by considering trivial
deformations. Let (L, [·, ·]t, {·, ·, ·}t, α) be a trivial deformation of a HLYA (L, [·, ·], {·, ·, ·}, α) generated by
(ϕ,ω,ψ). Then there exists a linear map N ∈ gl(L) such that Tt = Id + tN satisfies:

Tt[x, y]t = [Tt(x),Tt(y)], (19)
Tt{x, y, z}t = {Tt(x),Tt(y),Tt(y)}. (20)

By expanding each side of (19) and comparing the coefficients of ti, we have

[Nx,Ny] = Nϕ(x, y); (21)
ϕ(x, y) = [x,Ny] + [Nx, y] −N[x, y]. (22)

Similarly, with respect to (20), we get

ω(x, y, z) = {Nx, y, z} + {x,Ny, z} + {x, y,Nz} −N{x, y, z}; (23)
ψ(x, y, z) = {Nx,Ny, z} + {Nx, y,Nz} + {x,Ny,Nz} −Nω(x, y, z); (24)

{Nx,Ny,Nz} = Nψ(x, y, z). (25)

Definition 3.5. Let (L, [·, ·], {·, ·, ·}, α) be a HLYA. A Linear map N : L→ L is called a Hom-Nijenhuis operator on L
if for all x, y, z ∈ L, the following conditions are satisfied:

[Nx,Ny] = N([x,Ny] + [Nx, y] −N[x, y]); (26)
{Nx,Ny,Nz} = N({Nx,Ny, z} + {Nx, y,Nz} + {x,Ny,Nz}) −N2({Nx, y, z}

+{x,Ny, z} + {x, y,Nz}) + N3
{x, y, z}; (27)

Nα(x) = αN(x). (28)
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Remark 3.6. When a HLYA reduces to a Hom-Lie triple system, namely, the binary bracket [·, ·] is 0, we obtain the
notion of a Nijenhuis operator on a Hom-Lie triple system obviously, which we can refer to [10].

It is obvious that a trivial deformation of a HLYA gives rise to a Hom-Nijenhuis operator. In the sequel,
we show that the converse is also true.

Lemma 3.7. Let (L, [·, ·], {·, ·, ·}, α) be a HLYA and (T, β) a vector space endowed with a binary [·, ·]′ and a ternary
bracket {·, ·, ·}′. If there exists an isomorphism between vector spaces f : T→ L such that for any x, y, z ∈ T,

fβ(x) = α f (x); (29)
f ([x, y]′) = [ f (x), f (y)]; (30)

f ({x, y, z}′) = { f (x), f (y), f (z)}, (31)

then (T, [·, ·]′, {·, ·, ·}′, β) is a HLYA.

Proof. Since f : T→ L is an isomorphism, by (30) and (31), we can get that

[x, y]′ = f−1[ f (x), f (y)]; {x, y, z}′ = f−1
{ f (x), f (y), f (z)},

for any x, y, z ∈ T, then the conclusion follows by a direct computation.

Theorem 3.8. Let N : L → L be a Hom-Nijenhuis operator on a HLYA (L, [·, ·], {·, ·, ·}, α). Then a deformation can
be obtained by letting

ϕ(x, y) = [Nx, y] + [x,Ny] −N[x, y]; (32)
ω(x, y, z) = {Nx, y, z} + {x,Ny, z} + {x, y,Nz} −N{x, y, z}; (33)
ψ(x, y, z) = {Nx,Ny, z} + {Nx, y,Nz} + {x,Ny,Nz} −Nω(x, y, z), (34)

for any x, y, z ∈ L. Moreover, this deformation is trivial.

Proof. By the fact that N is a Hom-Nijenhuis operator, the given maps ϕ,ω,ψ satisfy [Nx,Ny] = Nϕ(x, y),
{Nx,Ny,Nz} = Nψ(x, y, z) for all x, y, z ∈ L. Hence, the given maps ϕ,ω and ψ satisfy Conditions (21)-(25).
Therefore, Tt = Id + tN is a homomorphism from (L, [·, ·]t, {·, ·, ·}t, α) to (L, [·, ·], {·, ·, ·}, α). For t sufficiently
small, Tt is an isomorphism between vector spaces. By Lemma 3.7, we can deduce that (L, [·, ·]t, {·, ·, ·}t, α)
is a HLYA for t sufficiently small. Thus, (ϕ,ω,ψ) generates a linear deformation. It is obvious that the
deformation is trivial.

Corollary 3.9. Let N : L → L be a Hom-Nijenhuis operator on a HLYA (L, [·, ·], {·, ·, ·}, α). Then (L, ϕ, ψ, α) is a
HLYA, and N is homomorphism from (L, ϕ, ψ, α) to (L, [·, ·], {·, ·, ·}, α).

4. Product structures of Hom-Lie-Yamaguti algebras

In this section, we always suppose that (L, [·, ·], {·, ·, ·}, α) be an involutive HLYA. We introduce the notion
of a product structure on a HLYA using the Hom-Nijenhuis operator that we introduced in the above
section. Moreover, we find some special product structures, which give special decompositions of the
HLYA.

Definition 4.1. Let (L, [·, ·], {·, ·, ·}, α) be a HLYA. An almost product structure on L is a linear map E : L → L
satisfying E2 = Id (E , ±Id) and αE = Eα. An almost product structure is called a product structure if the following
integrability conditions are satisfied: for any x, y, z ∈ L,

[(αE)x, (αE)y] = (αE)[(αE)x, y] + (αE)[x, (αE)y] − [x, y], (35)
{(αE)x, (αE)y, (αE)z} = (αE){(αE)x, (αE)y, z} + (αE){x, (αE)y, (αE)z} + (αE){(αE)x, y, (αE)z}

−{(αE)x, y, z} − {x, (αE)y, z} − {x, y, (αE)z} + (αE){x, y, z}. (36)
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Remark 4.2. A product structure E on a HLYA is exactly a Hom-Nijenhuis operator satisfying E2 = Id.

Remark 4.3. When a HLYA reduces to a Hom-Lie triple system, namely the binary bracket [·, ·] is 0, we obtain the
notion of a product structure on a Hom-Lie triple system immediately, which we can refer to [10].

We consider the vector spaces L+ = ker(αE − IdL) and L− = ker(αE + IdL) as eigenspaces corresponding
to the eigenvalues 1 and −1 of αE, respectively.

Theorem 4.4. Let (L, [·, ·], {·, ·, ·}, α) be a HLYA. Then there exists a product structure on L if and only if L admits a
decomposition:

L = L+ ⊕ L−,

where L+ and L− are Hom-Lie-Yamaguti subalgebras of L.

Proof. Let E be a product structure on L. By E2 = Id, we have that L = L+ ⊕ L− as vector spaces, where L+

and L− are eigenspaces corresponding to the eigenvalues 1 and −1 of αE, respectively. For any x, y, z ∈ L+ ,
Since (αE)(x) = x and αE = Eα, we have

(αE)(α(x)) = α((Eα)x) = α((αE)x) = α(x),

which givesα(x) ∈ L+. Similarly, we can obtainα(x′) ∈ L−, for any x′ ∈ L−. Then we prove [x, y], {x, y, z} ∈ L+.
For any x, y, z ∈ L+,

(αE){x, y, z} = {(αE)x, (αE)y, (αE)z} + {(αE)x, y, z} + {x, (αE)y, z} + {x, y, (αE)z}
−(αE){(αE)x, (αE)y, z} − (αE){x, (αE)y, (αE)z} − (αE){(αE)x, y, (αE)z}

= 4{x, y, z} − 3(αE){x, y, z}.

Thus, we have (αE){x, y, z} = {x, y, z}. Moreover, we have

[(αE)x, (αE)y] = 2(αE)[x, y] − [x, y].

Combining this formula with [(αE)x, (αE)y] = [x, y] , we can get that (αE)[x, y] = [x, y]. Hence,

[x, y], {x, y, z} ∈ L+,

which implies that L+ is a Hom-Lie-Yamaguti subalgebra. Similarly, we can get that L− is a Hom-Lie-
Yamaguti subalgebra.

Conversely, let L = L+ ⊕ L− be a decomposition of L, where L = L+ and L = L− are Hom-Lie-Yamaguti
subalgebras of L. We define a linear map E : L→ L by

E(x + l) = α(x) − α(l), ∀x ∈ L+, l ∈ L−.

It’s easy to prove E2 = Id.
Since L+ is a Hom-Lie-Yamaguti subalgebra of L , for all x, y, z ∈ L+, we have

(αE)[(αE)x, y] + (αE)[x, (αE)y] − [x, y] = 2(αE)[x, y] − [x, y] = [(αE)x, (αE)y],

{(αE)x, (αE)y, (αE)z} + {(αE)x, y, z} + {x, (αE)y, z} + {x, y, (αE)z}
−(αE){(αE)x, (αE)y, z} − (αE){x, (αE)y, (αE)z} − (αE){(αE)x, y, (αE)z}

= 4{x, y, z} − 3(αE){x, y, z} = (αE){x, y, z},

which implies that (35) and (36) hold for all x, y, z ∈ L+ . Similarly, we can show that (35) and (36) hold for
all x, y, z ∈ L. Thus, E is a product structure on L.

In the sequel, we study three important cases in detail, which are called strict, abelian and perfect
product structures, respectively.
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Proposition 4.5. Let E be an almost product structure on a HLYA (L, [·, ·], {·, ·, ·}, α). If E satisfies the following
equations

(αE)[x, y] = [(αE)x, y], (37)
(αE){x, y, z} = {(αE)x, y, z}, (38)
(αE){x, y, z} = {x, y, (αE)z}, (39)

for all x, y, z ∈ L, then E is a product structure on L such that

[L+,L−] = 0, {L+,L−, ·} = {L+, ·,L−} = {L−, ·,L+} = 0,

i.e. L is the direct sum of two Hom-Lie-Yamaguti subalgebras.

Proof. By (37), (38), (39) and E2 = Id, we have

(αE)[(αE)x, y] + (αE)[x, (αE)y] − [x, y] = [(αE)2x, y] + [(αE)x, (αE)y] − [x, y] = [(αE)x, (αE)y],

{(αE)x, (αE)y, (αE)z} + {(αE)x, y, z} + {x, (αE)y, z} + {x, y, (αE)z}
−(αE){(αE)x, (αE)y, z} − (αE){(αE)x, y, (αE)z} − (αE){x, (αE)y, (αE)z}

= {(αE)x, (αE)y, (αE)z} + (αE){x, y, z} + {x, (αE)y, z} + {x, y, (αE)z}
−{(αE)x, (αE)y, (αE)z} − {(αE)2x, y, (αE)z} − {x, (αE)y, (αE)2z}

= (αE){x, y, z},

then E is a product structure on L.
For all x, y ∈ L+, l ∈ L−, e ∈ L,

(αE)[x, l] = [(αE)x, l] = [x, l],

which implies that [L+,L−] ⊂ L+. On the other hand, we have

(αE)[x, l] = −[(αE)l, x] = −[x, l],

which implies that [L+,L−] ⊂ L−, therefore, we have [L+,L−] = 0.
Meanwhile (αE){x, l, e} = {(αE)x, l, e} = {x, l, e}, which implies that {L+,L−, ·} ⊂ L+. On the other hand, we

have
(αE){x, l, e} = −(αE){l, x, e} = {l, x, e} = −{x, l, e},

which implies that {L+,L−, ·} ⊂ L−. Thus, we obtain that

{L+,L−, ·} = 0.

Moreover, we have that (αE){x, e, l} = {(αE)x, e, l} = {x, e, l}. While on the other hand, by (39), we have that
(αE){x, e, l} = {x, e, (αE)l} = −{x, e, l}. Thus, we obtain that

{L+, ·,L−} = 0.

Similarly, we can get that {L−, ·,L+} = 0.

Definition 4.6. An almost product structure on a HLYA (L, [·, ·], {·, ·, ·}, α) is called a strict product structure if (37),
(38) and (39) hold.

Corollary 4.7. Let (L, [·, ·], {·, ·, ·}, α) be a HLYA. Then there is a strict product structure on L if and only if L admits
a decomposition:

L = L+ ⊕ L−,

where L+ and L− are Hom-Lie-Yamaguti subalgebras of L such that

[L+,L−] = 0, {L+,L−, ·} = {L+, ·,L−} = {L−, ·,L+} = 0.
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Proposition 4.8. Let E be an almost product structure on a HLYA (L, [·, ·], {·, ·, ·}, α). If E satisfies the following
equations

[(αE)x, (αE)y] = −[x, y], (40)
{x, y, z} = −{x, (αE)y, (αE)z} − {(αE)x, (αE)y, z} − {(αE)x, y, (αE)z}, (41)

for all x, y, z ∈ L, then E is a product structure on L such that L+ and L− are abelian Hom-Lie-Yamaguti subalgebras
of L.

Proof. By (40), (41) and E2 = Id, we have

(αE)[(αE)x, y] + (αE)[x, (αE)y] − [x, y]
= −(αE)[(αE)2x, (αE)y] + (αE)[x, (αE)y] + [(αE)x, (αE)y] = [(αE)x, (αE)y],

{(αE)x, (αE)y, (αE)z} + {(αE)x, y, z} + {x, (αE)y, z} + {x, y, (αE)z}
−(αE){(αE)x, (αE)y, z} − (αE){(αE)x, y, (αE)z} − (αE){x, (αE)y, (αE)z}

= {(αE)x, (αE)y, (αE)z} + (αE){x, y, z} + {x, (αE)y, z} + {x, y, (αE)z}
−{(αE)x, (αE)y, (αE)z} − {(αE)2x, y, (αE)z} − {x, (αE)y, (αE)2z}

= (αE){x, y, z},

then E is a product structure on L.
For all x, y, z ∈ L+, we have [(αE)x, (αE)y] = [x, y], by (40), we obtain [x, y] = 0. And by (41), we have

{x, y, z} = −{x, (αE)y, (αE)z} − {(αE)x, (αE)y, z} − {(αE)x, y, (αE)z} = −3{x, y, z}, which implies that

{x, y, z} = 0.

Similarly for all l,m,n ∈ L−, we also have [l,m] = 0, {l,m,n} = 0. Thus, L+ and L− are abelian Hom-Lie-
Yamaguti subalgebras of L.

Definition 4.9. An almost product structure on a HLYA (L, [·, ·], {·, ·, ·}, α) is called an abelian product structure if
(40) and (41) hold.

Corollary 4.10. Let (L, [·, ·], {·, ·, ·}, α) be a HLYA. Then there is an abelian product structure on L if and only if L
admits a decomposition:

L = L+ ⊕ L−,

where L+ and L− are abelian Hom-Lie-Yamaguti subalgebras of L.

Proposition 4.11. Let E be an almost product structure on a HLYA (L, [·, ·], {·, ·, ·}, α) . If E satisfies the following
equations

[(αE)x, (αE)y] = (αE)[(αE)x, y] + (αE)[x, (αE)y] − [x, y], (42)
(αE){x, y, z} = {(αE)x, (αE)y, (αE)z}, (43)

for all x, y, z ∈ L, then E is a product structure on L such that

{L−,L−,L+} ⊂ L+, {L+,L−,L−} ⊂ L+, {L+,L+,L−} ⊂ L−, {L+,L−,L+} ⊂ L−.

Proof. By (43) and E2 = Id, we have

{(αE)x, (αE)y, (αE)z} + {(αE)x, y, z} + {x, (αE)y, z} + {x, y, (αE)z}
−(αE){(αE)x, (αE)y, z} − (αE){(αE)x, y, (αE)z} − (αE){x, (αE)y, (αE)z}

= (αE){x, y, z} + {(αE)x, y, z} + {x, (αE)y, z} + {x, y, (αE)z}
−{(αE)2x, (αE)2y, (αE)z} − {(αE)2x, (αE)y, (αE)2z} − {(αE)x, (αE)2y, (αE)2z}

= (αE){x, y, z},



L. Dong, L. Ma / Filomat 35:15 (2021), 5115–5130 5124

so E is a product structure on a HLYA L. For any x, y ∈ L+, l ∈ L−, we have (αE){x, y, l} = {(αE)x, (αE)y, (αE)l} =
−{x, y, l}, which implies that

{L+,L+,L−} ⊂ L−.

Similarly, we can prove that {L−,L−,L+} ⊂ L+, {L+,L−,L−} ⊂ L+, {L+,L−,L+} ⊂ L−.

Definition 4.12. An almost product structure on a HLYA (L, [·, ·], {·, ·, ·}, α) is called a perfect product structure if
(42) and (43) hold.

Corollary 4.13. Let (L, [·, ·], {·, ·, ·}, α) be a HLYA. Then there is a perfect product structure on L if and only if L
admits a decomposition:

L = L+ ⊕ L−,

where L+ and L− are abelian Hom-Lie-Yamaguti subalgebras of L such that

{L−,L−,L+} ⊂ L+, {L+,L−,L−} ⊂ L+, {L+,L+,L−} ⊂ L−, {L+,L−,L+} ⊂ L−.

Example 4.14. We consider a 2-dimensional involutive HLYA (L, [·, ·], {·, ·, ·}, α) with a basis {e1, e2}, where the
nonzero brackets and α are given by

[e1, e2] = e2, {e1, e2, e2} = e1,

α1 =

(
1 0
0 −1

)
or α2 =

(
a 0
0 1

)
, (a2 = 1).

Then

E =

(
1 0
0 −1

)
is a perfect product structure on L.

Example 4.15. We consider a 4-dimensional involutive HLYA (L, [·, ·], {·, ·, ·}, α) with a basis {e1, e2, e3, e4}, where the
nonzero brackets and α are given by

[e1, e2] = 2e4, {e1, e2, e1} = e4,

α =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 .
Then

E =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


is an abelien product structure and a perfect product structure on L, respectively.

5. Complex structures of Hom-Lie-Yamaguti algebras

In this section, we always suppose that (L, [·, ·], {·, ·, ·}, α) be an involutive HLYA. We introduce the notion
of a complex structure on a real Hom-Lie-Yamaguti algebra. There are also some special complex structures,
totally parallelling to the case of product structures.
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Definition 5.1. Let (L, [·, ·], {·, ·, ·}, α) be a HLYA. An almost complex structure on L is a linear map J : L → L
satisfying J2 = −Id and αJ = Jα. An almost complex structure is called a complex structure if the following
integrability conditions are satisfied:

[(αJ)x, (αJ)y] = (αJ)[(αJ)x, y] + (αJ)[x, (αJ)y] + [x, y],
(αJ){x, y, z} = −(αJ){(αJ)x, (αJ)y, (αJ)z} + {(αJ)x, y, z} + {x, (αJ)y, z} + {x, y, (αJ)z}

+(αJ){(αJ)x, (αJ)y, z} + (αJ){(αJ)x, y, (αJ)z} + (αE){x, (αJ)y, (αJ)z},

for any x, y, z ∈ L.

Remark 5.2. A complex structure J on a HLYA is exactly a Hom-Nijenhuis operator satisfying J2 = −Id.

Remark 5.3. When a HLYA reduces to a Hom-Lie triple system, namely the binary bracket [·, ·] is 0, we obtain the
notion of a complex structure on a Hom-Lie triple system immediately, which we can refer to [10].

Denote by LC = L ⊗R C = {x + iy : x, y ∈ L} the complexification of the real Hom-Lie-Yamaguti algebra
L, which is obviously a Hom-Lie-Yamaguti algebra. Let σ be the conjugation map in LC, i.e.

σ(x + iy) = x − iy, ∀ x, y ∈ L.

Linear maps J, α : L→ L can be naturally extended to a linear map JC, αC : LC → LC by

JC(x + iy) = Jx + iJy, αC(x + iy) = α(x) + iα(y), ∀ x, y ∈ L.

Theorem 5.4. Let (L, [·, ·], {·, ·, ·}, α) be a HLYA. Then there exists a complex structure on L if and only if there is a
decomposition of LC:

LC = Li ⊕ L−i,

where Li and L−i are Hom-Lie-Yamaguti subalgebras of LC suah that L−i = σ(Li).

Proof. Let J be a complex structure on L. We extend the linear map J : L → L to JC : LC → LC as above.
Then we can obtain J2

C
= −Id. Furthermore, we can prove that JC is a complex structure on JC. Let i and −i

be the eigenvalues of αJC, Li and L−i the corresponding eigenspaces, i.e.

Li = {x − i(αJ)x : x ∈ L}, L−i = {x + i(αJ)x : x ∈ L}.

Then LC = Li ⊕ L−i as vector spaces. Obviously, L−i = σ(Li). For all X,Y,Z ∈ Li, we have (αC JC)[(αC JC)X,Y] +
(αC JC)[X, (αC JC)Y] + [X,Y] = 2i(αC JC)[X,Y] + [X,Y]. Combining this formula with [(αC JC)X, (αC JC)Y] =
−[X,Y], we have

(αC JC)[X,Y] = i[X,Y].

Moreover, we have

(αC JC){X,Y,Z}
= −{(αC JC)X, (αC JC)Y, (αC JC)Z} + {(αC JC)X,Y,Z} + {X, (αC JC)Y,Z} + {X,Y, (αC JC)Z}

+(αC JC){(αC JC)X, (αC JC)Y,Z} + (αC JC){X, (αC JC)Y, (αC JC)Z}
+(αC JC){(αC JC)X,Y, (αC JC)Z} = 4i{X,Y,Z} − 3(αC JC){X,Y,Z}.

Thus, we have
(αC JC){X,Y,Z} = i{X,Y,Z},

which implies that Li is a Hom−Lie−Yamaguti subalgebra. Similarly, we can get that L−i is a Hom-Lie-
Yamaguti subalgebra.

Conversely, if LC admits a decomposition LC = Li ⊕ L−i, where L−i = σ(Li) and Li are Hom-Lie-Yamaguti
subalgebras of L. Then we define a map JC : LC → LC by

JC(X + σY) = iαC(X) − iσ(αC(Y)), ∀ X,Y ∈ Li.
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Then we have J2
C

(X + σY) = JC(iαC(X) + σ(αC(−iY))) = −Id(X + σY).
For any X,Y,Z ∈ Li, we get

(αC JC)[(αC JC)X,Y] + (αC JC)[X, (αC JC)Y] + [X,Y]
= 2i(αC JC)[X,Y] + [X,Y] = [(αC JC)X, (αC JC)Y],

and

−{(αC JC)X, (αC JC)Y, (αC JC)Z} + {(αC JC)X,Y,Z} + {X, (αC JC)Y,Z} + {X,Y, (αC JC)Z}
+(αC JC){(αC JC)X, (αC JC)Y,Z} + (αC JC){X, (αC JC)Y, (αC JC)Z}
+(αC JC){(αC JC)X,Y, (αC JC)Z} = 4i{X,Y,Z} − 3(αC JC){X,Y,Z}

= (αC JC){X,Y,Z}.

Thus, JC is a complex structure on Li. Similarly, we can get that JC is a complex structure on LC. Since
(JCσ)(X +σ(Y)) = iY− iσ(X) = (σJC)(X +σ(Y)), thus, we have JCσ = σJC. Hence, there is a well-defined linear
map J ∈ gl(L) given by J := JC|L, which is a complex structure on L.

Parallel to the case of product structures, there are also some special complex structures on a HLYA. In
the sequel, we study three important cases in detail, which are called the strict, abelian and perfect complex
structures.

Proposition 5.5. Let J be an almost complex structure on a HLYA (L, [·, ·], {·, ·, ·}, α). If J satisfies the following
equations

(αJ)[x, y] = [(αJ)x, y], (44)
(αJ){x, y, z} = {(αJ)x, y, z}, (45)
(αJ){x, y, z} = {x, y, (αJ)z}, (46)

for all x, y, z ∈ L, then J is a complex structure on L such that

[Li,L−i] = 0, {Li,L−i, ·} = {Li, ·,L−i} = {L−i, ·,Li} = 0,

where Li and L−i are two Hom-Lie-Yamaguti subalgebras of LC such that L−i = σ(Li).

Proof. By (44), (45), (46) and J2 = −Id, we have

(αJ)[(αJ)x, y] + (αJ)[x, (αJ)y] + [x, y] = [(αJ)2x, y] + [(αJ)x, (αJ)y] + [x, y] = [(αJ)x, (αJ)y],

−{(αJ)x, (αJ)y, (αJ)z} + {(αJ)x, y, z} + {x, (αJ)y, z} + {x, y, (αJ)z}
+(αJ){(αJ)x, (αJ)y, z} + (αJ){(αJ)x, y, (αJ)z} + (αJ){x, (αJ)y, (αJ)z}

= −{(αJ)x, (αJ)y, (αJ)z} + (αJ){x, y, z} + {x, (αJ)y, z} + {x, y, (αJ)z}
+{(αJ)x, (αJ)y, (αJ)z} + {(αJ)2x, y, (αJ)z} + {x, (αJ)y, (αJ)2z}

= (αJ){x, y, z}.

Then J is a complex structure on L.
For all X,Y,Z ∈ Li, σ(Z) ∈ L−i, M ∈ LC, by (44), we have

(αC JC)[X, σ(Z)] = [(αC JC)X, σ(Z)] = i[X, σ(Z)],

which implies that [Li,L−i] ⊂ Li. On the other hand, we have

(αC JC)[X, σ(Z)] = −(αC JC)[σ(Z),X] = −i[X, σ(Z)],

which implies that [Li,L−i] ⊂ L−i, therefore, we have [Li,L−i] = 0.
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Meanwhile (αC JC){X, σ(Z),M} = {(αC JC)X, σ(Z),M} = i{X, σ(Z),M}, which implies that {Li,L−i, ·} ⊂ Li. On
the other hand, we have

(αC JC){X, σ(Z),M} = −{(αC JC)σ(Z),X,M} = −i{X, σ(Z),M},

which implies that {Li,L−i, ·} ⊂ L−i. Thus, we obtain that

{Li,L−i, ·} = 0.

Moreover, we have that (αC JC){X,M, σ(Z)} = {(αC JC)X,M, σ(Z)} = i{X,M, σ(Z)}. While on the other hand, by
(46), we have that (αC JC){X,M, σ(Z)} = {X,M, (αC JC)σ(Z)} = −i{X,M, σ(Z)}. Thus, we obtain that

{Li, ·,L−i} = 0.

Similarly, we can get that {L−i, ·,Li} = 0.

Definition 5.6. An almost complex structure on a HLYA (L, [·, ·], {·, ·, ·}, α) is called a strict complex structure if
(44), (45) and (46) hold.

Corollary 5.7. Let (L, [·, ·], {·, ·, ·}, α) be a HLYA. Then there is a strict complex structure on L if and only if LC admits
a decomposition:

LC = Li ⊕ L−i,

where Li and L−i are Hom-Lie-Yamaguti subalgebras of LC such that L−i = σ(Li).

Proposition 5.8. Let J be an almost complex structure on a HLYA (L, [·, ·], {·, ·, ·}, α). If J satisfies the following
equations

[(αJ)x, (αJ)y] = [x, y], (47)
{x, y, z} = {x, (αJ)y, (αJ)z} + {(αJ)x, (αJ)y, z} + {(αJ)x, y, (αJ)z}, (48)

for all x, y, z ∈ L, then J is a complex structure on L such that Li and L−i = σ(Li) are abelian Hom-Lie-Yamaguti
subalgebras of L.

Proof. By (47), (48) and J2 = −Id, we have

(αJ)[(αJ)x, y] + (αJ)[x, (αJ)y] + [x, y] = (αJ)[(αJ)2x, (αJ)y] + (αJ)[x, (αJ)y] + [(αJ)x, (αJ)y] = [(αJ)x, (αJ)y],

−{(αJ)x, (αJ)y, (αJ)z} + {(αJ)x, y, z} + {x, (αJ)y, z} + {x, y, (αJ)z}
+(αJ){(αJ)x, (αJ)y, z} + (αJ){(αJ)x, y, (αJ)z} + (αJ){x, (αJ)y, (αJ)z}

= −{(αJ)x, (αJ)2y, (αJ)2z} + {(αJ)2x, (αJ)2y, (αJ)z} + {(αJ)2x, (αJ)y, (αJ)2z}
+{(αJ)x, y, z} + {x, (αJ)y, z} + {x, y, (αJ)z} + (αJ){x, y, z}

= (αJ){x, y, z},

then J is a complex structure on L.
For all X,Y,Z ∈ Li, we have [(αC JC)X, (αC JC)Y] = −[X,Y], by (47), we obtain [X,Y] = 0. So, we obtain

[Li,Li] = 0.

And by (48), we have {X,Y,Z} = {X, (αJ)Y, (αJ)Z} + {(αJ)X, (αJ)Y,Z} + {(αJ)X,Y, (αJ)Z} = −3{X,Y,Z}, which
implies that

{Li,Li,Li} = 0.

Thus, Li is an abelian Hom-Lie-Yamaguti subalgebra of L. Similarly L−i is also an abelian Hom-Lie-Yamaguti
subalgebra of L.
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Definition 5.9. An almost complex structure on a HLYA (L, [·, ·], {·, ·, ·}, α) is called an abelian complex structure if
(47) and (48) hold.

Corollary 5.10. Let (L, [·, ·], {·, ·, ·}, α) be a HLYA. Then there is an abelian complex structure on L if and only if L
admits a decomposition:

L = Li ⊕ L−i,

where Li and L−i = σ(Li) are abelian Hom-Lie-Yamaguti subalgebras of L.

Proposition 5.11. Let J be an almost complex structure on a HLYA (L, [·, ·], {·, ·, ·}, α) . If J satisfies the following
equations

[(αJ)x, (αJ)y] = (αJ)[(αJ)x, y] + (αJ)[x, (αJ)y] + [x, y], (49)
(αJ){x, y, z} = −{(αJ)x, (αJ)y, (αJ)z}, (50)

for all x, y, z ∈ L, then J is a complex structure on L such that

{L−i,L−i,Li} ⊂ Li, {Li,L−i,L−i} ⊂ Li, {Li,Li,L−i} ⊂ L−i, {Li,L−i,Li} ⊂ L−i,

where Li and L−i = σ(Li) are Hom-Lie-Yamaguti subalgebras of L.

Proof. By (50) and J2 = −Id, we have

−{(αJ)x, (αJ)y, (αJ)z} + {(αJ)x, y, z} + {x, (αJ)y, z} + {x, y, (αJ)z}
+(αJ){(αJ)x, (αJ)y, z} + (αJ){(αJ)x, y, (αJ)z} + (αJ){x, (αJ)y, (αJ)z}

= (αJ){x, y, z} + {(αJ)x, y, z} + {x, (αJ)y, z} + {x, y, (αJ)z}
−{(αJ)2x, (αJ2)y, (αJ)z} − {(αJ)2x, (αJ)y, (αJ2)z} − {(αJ)x, (αJ)2y, (αJ)2z}

= (αJ){x, y, z},

so J is a complex structure on L.
For any X,Y ∈ Li, σ(z) ∈ L−i, we have

(αC JC){X,Y, σ(z)} = −{(αC JC)X, (αC JC)Y, (αC JC)σ(Z)} = −i{X,Y, σ(z)},

which implies that
{Li,Li,L−i} ⊂ L−i.

Similarly, we can prove that {L−i,L−i,Li} ⊂ Li, {Li,L−i,L−i} ⊂ Li, {Li,L−i,Li} ⊂ L−i.

Definition 5.12. An almost complex structure on a HLYA (L, [·, ·], {·, ·, ·}, α) is called a perfect complex structure if
(49) and (50) hold.

Corollary 5.13. Let (L, [·, ·], {·, ·, ·}, α) be a HLYA. Then there is a perfect complex structure on L if and only if LC
admits a decomposition:

LC = Li ⊕ L−i,

where Li and L−i = σ(Li) are Hom-Lie-Yamaguti subalgebras of L such that

{L−i,L−i,Li} ⊂ Li, {Li,L−i,L−i} ⊂ Li, {Li,Li,L−i} ⊂ L−i, {Li,L−i,Li} ⊂ L−i.

Example 5.14. Consider the 2-dimensional involutive HLYA (L, [·, ·], {·, ·, ·}, α) given in Example 4.14, α = α2 and
a = 1. Considering its complex structure,

J =

(
0 1
−1 0

)
is an abelien complex structure on L.
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6. Complex product structures of Hom-Lie-Yamaguti algebras

In this section, by adding a compatibility condition between a product structure and a complex structure
on an involutive HLYA, we introduce the notion of a complex product structure.

Proposition 6.1. Let (L, [·, ·], {·, ·, ·}, α) be a complex HLYA. Then the following statements are equivalent:
(i) E is a product structure on L;
(ii) J = iE is a complex structure on L.

Proof. Let E be a product structure on L. Then we have J2 = i2E2 = −Id. Moreover, we can get

(αJ)[(αJ)x, y] + (αJ)[x, (αJ)y] + [x, y]
= i(αE)[i(αE)x, y] + i(αE)[x, i(αE)y] + [x, y] = −(αE)[(αE)x, y] − (αE)[x, (αE)y] + [x, y]
= −[(αE)x, (αE)y] = [(αJ)x, (αJ)y],

and

−{(αJ)x, (αJ)y, (αJ)z} + {(αJ)x, y, z} + {x, (αJ)y, z} + {x, y, (αJ)z}
+(αJ){(αJ)x, (αJ)y, z} + (αJ){(αJ)x, y, (αJ)z} + (αJ){x, (αJ)y, (αJ)z}

= −{i(αE)x, i(αE)y, i(αE)z} + {i(αE)x, y, z} + {x, i(αE)y, z} + {x, y, i(αE)z}
+i(αE){i(αE)x, i(αE)y, z} + i(αE){i(αE)x, y, i(αE)z} + i(αE){x, i(αE)y, i(αE)z}

= i(αE){x, y, z} = (αJ){x, y, z}.

Thus, J is a complex structure on L. The converse part can be proved similarly.

In the sequel, we give the definition of a complex product structure on a real Hom-Lie-Yamaguti algebra.

Definition 6.2. Let (L, [·, ·], {·, ·, ·}, α) be a real HLYA. A complex product structure on L is a pair (J,E) consisting of
a complex structure J and a product structure E such that

JE = −EJ.

In the following, we see that a complex product structure on a real Hom-Lie-Yamaguti algebra can be
obtained from a given complex structure and a product structure under some certain conditions.

Theorem 6.3. Let J be a complex structure and E a product structure on a real Hom-Lie-Yamaguti algebra
(L, [·, ·], {·, ·, ·}, α). Then (J,E) is a complex product structure on L if and only if

L− = (Jα)L+,

where L± are the eigenspaces corresponding to the eigenvalues ±1 of αE.

Proof. Let (J,E) be a complex product structure. Then by Theorem 4.4, L has a decomposition L = L+⊕L−
such that both L+ and L− are Hom-Lie-Yamaguti subalgebras of L. On one hand,

−(JE)(L+) = −(JEα)(α(L+)) = −(Jα)((Eα)(L+)) = −(Jα)(L+),

and
(EJ)(L+) = (EJα)(α(L+)) = (Eα)((Jα)(L+)),

so we can obtain (Jα)(L+) ⊆ L−. On the other hand,

−(JE)(L−) = −(JEα)(α(L−)) = (Jα)(L−),

and
(EJ)(L−) = (EJα)(α(L−)) = (Eα)((Jα)(L−)),

so we can obtain (Jα)(L−) ⊆ L+, i.e. (Jα)2(L−) ⊆ (Jα)(L+), which implies L− ⊆ (Jα)(L+). Thus L− = (Jα)(L+).
Conversely, for any x ∈ L+, y ∈ L−, we have (αE)(αJ)(x + y) = (αE)((αJ)y + (αJ)x) = (αJ)y − (αJ)x =

−(αJ)(αE)(x + y), which implies that EJ = −JE. Thus, (J,E) is a complex product structure on L.
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Example 6.4. Consider the 2-dimensional involutive HLYA (L, [·, ·], {·, ·, ·}, α) given in Example 4.14 and Example
5.14. Then (J,E) is a complex product structure, where

E =

(
1 0
0 −1

)
and J =

(
0 1
−1 0

)
.
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