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Abstract. The goal of the paper is to deliberate conformal Ricci soliton and ∗-conformal Ricci soliton within
the framework of paracontact geometry. Here we prove that if an η-Einstein para-Kenmotsu manifold
admits conformal Ricci soliton and ∗-conformal Ricci soliton, then it is Einstein. Further we have shown
that 3-dimensional para-cosymplectic manifold is Ricci flat if the manifold satisfies conformal Ricci soliton
where the soliton vector field is conformal. We have also constructed some examples of para-Kenmotsu
manifold that admits conformal and ∗-conformal Ricci soliton and verify our results.

1. Introduction

The notion of almost paracontact manifold was first introduced by Sato [23]. Later Kaneyuki and
Williams [15] associated pseudo-Riemannian metric with an almost paracontact manifold after Taka-
hashi [26] intoduced pseudo- Riemannian metric in contact manifold, in particular, in Sasakian manifold.
Zamkovoy in [30] proved that any almost paracontact structure admits a pseudo-Riemannian metric with
signature (n + 1,n). In recent years paracontact geometry has become area of interest for many authors ([5],
[18], [16]). On the analogy of Kenmotsu manifold, Welyczko [28] introduced the notion of para-Kenmotsu
manifold. Para-Kenmotsu manifold (in short p-Kenmotsu manifold) and special para-Kenmotsu manifold
(briefly sp-Kenmotsu manifold) was studied by many authors, namely: Blaga [4], Adigond and Bagewadi
[1], Prakasha and Vikas [20], Sinha and Prasad [24] and many others.

A pseudo-Riemannian manifold (M, 1) admits a Ricci soliton which is a generalization of Einstein metric
if there exists a smooth vector field V and a constant λ such that

1
2
LV1 + S + λ1 = 0,
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where LV denotes Lie derivative along the direction V and S denotes the Ricci curvature tensor of the
manifold. The vector field V is called potential vector field and λ is called soliton constant.

The Ricci soliton is a self-similar solution of the Hamilton’s Ricci flow [12] which is defined by the
geometric evolution equation ∂1(t)

∂t = −2S(1(t)) with initial condition 1(0) = 1 where 1(t) is a one-parameter
family of metrices on M. The potential vector field V and soliton constantλplay vital roles while determining
the nature of the soliton. A soliton is said to be shrinking, steady or expanding according as λ < 0, λ = 0
or λ > 0. Now if V is zero or Killing then the Ricci soliton reduces to Einstein manifold and the soliton is
called trivial soliton.

In 2005, Fischer [10] has introduced conformal Ricci flow which is a variation of the classical Ricci flow
equation that modifies the unit volume constraint to a scalar curvature constraint. The conformal Ricci flow
equation was given by

∂1

∂t
+ 2(S +

1

n
) = −p1,

r(1) = −1,

where r(1) is the scalar curvature of the manifold, p is scalar non-dynamical field and n is the dimension of
the manifold. Corresponding to the aforementioned conformal Ricci flow equation, Basu and Bhattacharyya
[2] introduced the notion of conformal Ricci soliton equation as a generalization of Ricci soliton equation is
given by

LV1 + 2S + [2λ − (p +
2
n

)]1 = 0. (1)

In 2014, Kaimakamis and Panagiotidou [14] modified the definition of Ricci soliton where they have used
∗-Ricci tensor S∗ which was introduced by Tachibana [25], in place of Ricci tensor S. The ∗-Ricci tensor S∗ is
defined by

S∗(X,Y) =
1
2

(trace{φ.R(X, φY)})

for all vector fields X and Y on M. They have used the concept of ∗-Ricci soliton within the framework of
real hypersurfaces of a complex space form. A pseudo-Riemannian metric 1 is called a ∗-Ricci soliton if
there exists a constant λ and a vector field V such that

LV1 + 2S∗ + 2λ1 = 0.

Further Majhi and Dey [17] in 2020 revised the aforementioned definition of ∗-Ricci soliton with the help of
(1) and defined ∗-conformal Ricci soliton as

LV1 + 2S∗ + [2λ − (p +
2
n

)]1 = 0. (2)

As follows in the literature, Ricci soliton on paracontact geometry studied by many authors ([3], [6], [21]). In
particular, Calvaruso and Perrone [6] explicitly studied Ricci soliton on 3-dimensional almost paracontact
manifolds. Conformal Ricci solitons have been studied in many contexts: on Kenmotsu manifold [2], on
3- dimensional trans-Sasakian manifold [8], on f -Kenmotsu manifold ([13], [19]) etc. by many authors.
In 2018, Ghosh and Patra [11] first studied ∗-Ricci soliton on almost contact metric manifolds. The case
of ∗-Ricci soliton in para-Sasakian manifold was treated by Prakasha and Veeresha in [22]. Recently in
2019, Venkatesha, Kumara and Naik [27] considered the metric of η-Einstein para-Kenmotsu manifold as
∗-Ricci soliton and proved that the manifold is Einstein. Erken [9] in 2019 considered Yamabe solitons
on 3-dimensional para-cosymplectic manifold and proved some vital results like the manifold is either
η-Einstein or Ricci flat.

Motivated by above mentioned works, in this paper, we consider conformal Ricci soliton and ∗-conformal
Ricci soliton in the framework of para-Kenmotsu manifold and conformal Ricci soliton in the framework
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of 3- dimensional para-cosymplectic manifold. We have organized this paper as follows: in first section we
look back on some elementary properties of para-Kenmotsu manifolds; in later section first we prove that if
a para-Kenmotsu manifold satisfies conformal Ricci soliton then LVξ is orthogonal to ξ or the manifold is
Einstein, secondly we prove that an η-Einstein para-kenmotsu manifold is Einstein if it admits a conformal
Ricci soliton and then we prove the same for ∗-Conformal Ricci soliton. In the next section, we consider
3-dimensional para-coysmplectic manifold with a conformal Ricci soliton and deduce some relations on
the scalar curvature of the manifold and finally, we provide some examples to verify our results.

2. Some preliminaries on para-Kenmotsu manifold

A (2n + 1)-dimensional smooth manifold M is said to have an almost paracontact structure if it admits
a vector field ξ, (1,1)-tensor field φ and a 1-form η satisfying the following conditions

i)φ2 = I − η ⊗ ξ, (3)

ii)η(ξ) = 1. (4)

iii) φ induces on the 2n-dimensional distribution D ≡ ker(η), an almost paracomplex structure P i.e.,
P

2
≡ Iχ(M) and the eigensubbundles D+ and D−, corresponding to the eigenvalues 1, −1 of P respectively,

have equal dimension n; henceD = D+
⊕D

−.
If a manifold with an almost paracontact structure (M, φ, ξ, η) admits a pseudo-Riemannian metric 1 of
signature (n + 1,n) such that

1(φX, φY) = −1(X,Y) + η(X)η(Y) (5)

holds for any X,Y ∈ χ(M), then 1 is called compatible metric and the manifold (M, φ, ξ, η, 1) is called almost
paracontact metric manifold. If an almost paracontact metric manifold satisfies

(∇Xφ)Y = 1(φX,Y)ξ − η(Y)φX (6)

for arbitrary vector fields X and Y, then the manifold is called almost para-Kenmotsu manifold. The
normality of an almost paracontact structure (M, φ, ξ, η) is equivalent to vanishing of the (1,2)-torsion tensor
defined by Nφ(X,Y) = [φ,φ](X,Y) − 2dη(X,Y)ξ, where [φ,φ] is the Nijenhuis torsion tensor of φ and is
defined by [φ,φ](X,Y) = φ2[X,Y] + [φX, φY] − φ[φX,Y] − φ[X, φY] for any X,Y ∈ χ(M). A normal almost
para-Kenmotsu manifold is called para-Kenmotsu manifold.
The following properties hold on a (2n + 1)-dimensional para-Kenmotsu manifold

φ(ξ) = 0, (7)
η ◦ φ = 0, (8)
∇Xξ = X − η(X)ξ, (9)

(∇Xη)Y = 1(X,Y) − η(X)η(Y), (10)
Qξ = −2nξ, (11)

R(X,Y)ξ = η(X)Y − η(Y)X, (12)
R(X, ξ)Y = 1(X,Y)ξ − η(Y)X, (13)

(Lξ1)(X,Y) = 2[1(X,Y) − η(X)η(Y)], (14)

for any X,Y ∈ χ(M) where, L and ∇ are the operators of Lie differentiation and covariant differentiation of
1 respectively. Q denotes the Ricci operator associated with the Ricci tensor S defined by S(X,Y) = 1(QX,Y)
and R denotes the Riemannian curvature tensor.
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3. A para-Kenmotsu metric as conformal Ricci soliton

In this section we consider the metric of para-Kenmotsu manifold as a conformal Ricci soliton. The
following lemma will be used to prove one of the our main results.

Lemma 3.1. Let (M, φ, ξ, η, 1) be a (2n + 1)-dimensional para-Kenmotsu manifold. Then the Ricci operator satisfies

(LξQ)X = −2QX − 4nX = (∇ξQ)X (15)

for any vector field X on M.

Proof. From (14), we have (Lξ1)(Y,Z) = 2[1(Y,Z)− η(Y)η(Z)] for all Y,Z ∈ χ(M). Covariant derivative of that
along an arbitrary vector field X on M and use of the equation (10), leads to

(∇XLξ1)(Y,Z) = 2[2η(X)η(Y)η(Z) − 1(X,Y)η(Z) − 1(X,Z)η(Y)] (16)

for all Y,Z ∈ χ(M). Again from Yano [29], we have the following commutation formula

(LV∇X1 − ∇XLV1 − ∇[V,X]1)(Y,Z) = −1((LV∇)(X,Y),Z) − 1((LV∇)(X,Z),Y), (17)

where 1 is the metric connection i.e., ∇1 = 0. So, the above equation reduces to

(∇XLV1)(Y,Z) = 1((LV∇)(X,Y),Z) + 1((LV∇)(X,Z),Y). (18)

for all vector fields X, Y, Z on M. Combining (16) and (18), we have

1((Lξ∇)(X,Y),Z) + 1((Lξ∇)(X,Z),Y) = 2[2η(X)η(Y)η(Z) − 1(X,Y)η(Z) − 1(X,Z)η(Y)].

By a straightforward combinatorial computation, the foregoing equation yields

(Lξ∇)(Y,Z) = 2[η(Y)η(Z)ξ − 1(Y,Z)ξ] (19)

for all Y,Z ∈ χ(M). Taking covariant derivative of the above equation with respect to an arbitrary vector
field X on M and using (9) and (10), we have

(∇XLξ∇)(Y,Z) = 2[1(X,Y)η(Z)ξ + 1(Y,Z)η(X)ξ + 1(X,Z)η(Y)ξ − 1(Y,Z)X + η(Y)η(Z)X − 3η(X)η(Y)η(Z)].

From Yano [29], we have the well known commutation formula

(LVR)(X,Y)Z = (∇XLV∇)(Y,Z) − (∇YLV∇)(X,Z). (20)

From here we can compute

(LξR)(X,Y)Z = 2[1(X,Z)Y − 1(Y,Z)X + η(Y)η(Z)X − η(X)η(Z)Y] (21)

for all vector fields X, Y, Z on M. Contracting (21) over X we get

(LξS)(Y,Z) = 4n[η(Y)η(Z) − 1(Y,Z)]. (22)

The Lie derivative of S(Y,Z) = 1(QY,Z) along the direction of ξ, yields

(LξS)(Y,Z) = (Lξ1)(QY,Z) + 1((LξQ)Y,Z). (23)

On the other hand, replacing X and Y by QY and Z respectively in (14) and using (11), we have

(Lξ1)(QY,Z) = 2[1(QY,Z) + 2nη(Y)η(Z)]. (24)
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Combining (22), (23) and (24) all together, we infer

(LξQ)Y = −2QY − 4nY (25)

for any Y ∈ χ(M). Again we know that

(LξQ)Y = Lξ(QY) −Q(LξY)
= ∇ξ(QY) − ∇QYξ −Q(∇ξY) + Q(∇Yξ)
= (∇ξQ)Y − ∇QYξ + Q(∇Yξ).

By virtue of (9) and (11) we see that (LξQ)Y = (∇ξQ)Y for arbitrary vector field Y. Hence the result is
proved.

Theorem 3.2. If the metric 1 of a para-Kenmotsu manifold (M, φ, ξ, η, 1) of dimension > 3 represents a conformal
Ricci soliton then either of the following properties holds:

i) The Lie derivative of ξ in the direction of the potential vector field V of the soliton i.e., LVξ is orthogonal to ξ.
ii) The manifold is Einstein with Einstein constant −2n.

Proof. Let M be a (2n+1) dimensional para-Kenmotsu manifold where n > 1. From (12), we have R(X, ξ)ξ =
η(X)ξ − X. Now Lie derivative of the Riemannian curvature along the vector field V, yields

(LVR)(X, ξ)ξ = ((LVη)X)ξ − 1(X,LVξ)ξ + 2η(LVξ)X (26)

for all vector fields X on M. Now the covariant derivative of (1) along an arbitrary vector field Z ∈ χ(M)
provides

(∇ZLV1)(X,Y) = −2(∇ZS)(X,Y) (27)

for any X,Y ∈ χ(M). Using (18), we can rewrite (27) as

1((LV∇)(X,Y),Z) + 1((LV∇)(X,Z),Y) = −2(∇ZS)(X,Y).

By a straightforward combinatorial computation and using the symmetry of the (1,2)-tensor LV∇, the
aforementioned yields

1((LV∇)(X,Y),Z) = (∇ZS)(X,Y) − (∇XS)(Y,Z) − (∇YS)(Z,X). (28)

Again differentiating the above equation covariantly with respect to an arbitrary vector field X of M and
using (9), we can find from (11) that

(∇XQ)ξ = −QX − 2nX (29)

for all X ∈ χ(M). Making use of (15) and (29) and considering Y = ξ in (28), we achieve

(LV∇)(X, ξ) = 2QX + 4nX (30)

for any vector field X on M. Now considering covariant derivative of the last equation with respect to an
arbitrary vector field Y of M and using (9), we acquire

(∇YLV∇)(X, ξ) = 2(∇YQ)X − (LV∇)(X,Y) + 2η(Y)QX + 4nη(Y)X. (31)

Now letting Z = ξ in (20) and using (31) in the foregoing equation, we have

(LVR)(X,Y)ξ = 4n[η(X)Y − η(Y)X] + 2[(∇XQ)Y − (∇YQ)X] + 2[η(X)QY − η(Y)QX] (32)



S. Sarkar et al. / Filomat 35:15 (2021), 5001–5015 5006

for all X,Y ∈ χ(M). Considering Y = ξ in the aforementioned equation and using (11) and (15) in it, we
obtain

(LVR)(X, ξ)ξ = 0. (33)

Now, taking into account (1), the Lie derivative of 1(ξ, ξ) = 1 along the direction of V leads to

η(LVξ) = λ −
p
2
−

1
2n + 1

− 2n. (34)

Again, using (11) and letting Y = ξ, (1) implies

(LVη)X − 1(X,LVξ) = (4n − 2λ + p +
2

2n + 1
)η(X). (35)

After using (33), (34) and (35), the equation (26) reduces to

(2λ − p − 4n −
2

2n + 1
)φ2X = 0. (36)

Since the last equation holds for any X ∈ χ(M), we can conclude that λ =
p
2 + 2n + 1

2n+1 . Using this result in
(34) we have, η(LVξ) = 0. From here the following two cases have arisen

Case-I: LVξ is orthogonal to ξ.

Case-II: LVξ = 0 for any vector field X of M. Then additionally using the value of λ, (35) reduces to
(LVη)X = 0. Which further can be reduced to LVη = 0, since X is an arbitrary vector field on M.
On other hand, we have a renowned relation (see [29]):

(LV∇)(X,Y) = LX∇XY − ∇XLVY − ∇[V,X]Y, (37)

which holds for arbitrary vector fields X and Y of M. Now replacing Y by ξ and using (9) and the relations
LVξ = 0 and LVη = 0 in the foregoing equation we obtain

(LV∇)(X, ξ) = 0.

Finally substituting this in (30), we get S(X,Y) = −2n1(X,Y) for any arbitrary vector fields X and Y on M.
From this we can conclude that the manifold is Einstein with Einstein constant −2n.

A (2n+1)-dimensional almost para-Kenmotsu metric manifold is said to be η-Einstein para-Kenmotsu
manifold if there exists two smooth functions a and b which satisfies the following relation

S(X,Y) = a1(X,Y) + bη(X)η(Y) (38)

for all X,Y ∈ χ(M). Clearly, if b = 0 then η-Einstein manifold reduces to Einstein manifold. Now considering
X = Y = ξ in the last equation and using (11), we have a + b = −2n. Contracting (38) over X and Y we get
r = (2n + 1)a + b, where r denotes the scalar curvature of the manifold. Solving the last two equations, we
get a = (1 + r

2n ) and b = −(2n + 1 + r
2n ). Using these values we can rewrite (38) as

S(X,Y) = (1 +
r

2n
)1(X,Y) − (2n + 1 +

r
2n

)η(X)η(Y). (39)

Theorem 3.3. Let M be a (2n+1)-dimensional η-Einstein para-Kenmotsu manifold where n > 1. If the metric of the
manifold represents a conformal Ricci soliton, then the manifold is Einstein.
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Proof. Let the metric 1 of an η-Einstein para-Kenmotsu manifold M whose dimension is greater than 3
represents a conformal Ricci soliton. Then clearly it satisfies (1) as well as (39). Combining these two
relations, we have

(LV1)(Y,Z) = (p − 2λ −
r
n
−

4n
2n + 1

)1(Y,Z) + (4n + 2 +
r
n

)η(Y)η(Z) (40)

for all Y,Z ∈ χ(M). Covariant derivative of (40) with respect to an arbitrary vector field X on M and use of
(18), leads to

1((LV∇)(X,Y),Z) + 1((LV∇)(X,Z),Y) =(4n + 2 +
r
n

)[1(X,Y)η(Z) + 1(X,Z)η(Y) − 2η(X)η(Y)η(Z)]

−
Xr
n

[1(Y,Z) + η(Y)η(Z)] (41)

for any vector fields X,Y and Z on M. By straightforward computation of the last equation, keeping the
symmetry of (LV∇) in mind, provides

2n(LV∇)(X,Y) = (Xr)η(Y)ξ − (Xr)Y + (Yr)η(X)ξ − (Yr)X + (Dr)1(X,Y) − (Dr)η(X)η(Y)
+2(4n2 + 2n + r)[1(X,Y)ξ − η(X)η(Y)ξ], (42)

where Dr is the gradient of r. Let us consider a local orthonormal basis of the manifold as {ei}
2n+1
i=1 . Next,

setting X = Y = ei and summing over 1 ≤ i ≤ 2n + 1 in the last equation, we infer

n(LV∇)(ei, ei) = (ξr)ξ + (n − 1)Dr + 2n(4n2 + 2n + r)ξ. (43)

After considering X = Y = ei and summing over i, (28) reduces to 1((LV∇)(ei, ei),Z) = Zr − 1
2 Zr − 1

2 Zr=0.
Since this holds for an arbitrary vector field Z, this can be rewritten as

(LV∇)(ei, ei) = 0. (44)

Comparing (43) and (44), we get (ξr)ξ + (n − 1)Dr + 2n(4n2 + 2n + r) = 0. Taking inner product with ξ this
implies that

ξr = −2(4n2 + 2n + r). (45)

Again it further implies that Dr = (ξr)ξ. Next substituting Y by ξ in (42), we get

2n(LV∇)(X, ξ) = (ξr)(−X + η(X)ξ). (46)

Covariant derivative of the foregoing equation with respect to an arbitrary vector field Y and using (9), (10)
and (46), leads to

2n(∇YLV∇)(X, ξ) = (Y(ξr))(−X+η(X)ξ)−2n(LV∇)(X,Y)+ (ξr)[1(X,Y)ξ+η(X)Y−η(Y)X−η(X)η(Y)ξ]. (47)

Using the relation (47) in (20), we achieve

2n(LVR)(X,Y)ξ = (X(ξr))(−Y + η(Y)ξ) − (Y(ξr))(−X + η(X)ξ) + 2(ξr)(η(Y)X − η(X)Y). (48)

Contracting this over X, we have (LVS)(Y, ξ) = 0, where we have used Dr = (ξr)ξ. Finally using (LVS)(Y, ξ) =
0, (39) and (40) in the Lie derivative of S(Y, ξ) = −2nη(Y), we obtain

2n
(
p − 2λ −

4n
2n + 1

+ 4n + 2
)
η(Y) +

(
1 + 2n +

r
2n

)
1(Y,LVξ) =

(
2n + 1 +

r
2n

)
η(Y)η(LVξ) (49)

for any vector field Y on M. Taking Y = ξ in the last equation, we get λ =
p
2 + 2n + 1

2n+1 . Setting Y = Z = ξ
in (40) and using the value of λ, we obtain η(LVξ) = 0. Using these two relations, the equation (49) can be
written as

(2n(2n + 1) + r)LVξ = 0. (50)
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We suppose r , −2n(2n + 1) on some open set O of M. Then (50) implies that LVξ = 0, which further
implies with help of (9) that ∇ξV = V − η(V)ξ. Using these relations along with (9), (40) and (46) in (37) we
obtain ξr = 0. As Dr = (ξr)ξ, so, Dr = 0 i.e., the scalar curvature is constant. So, from (45), we can find that
r = −2n(2n + 1) on O, which is a contradiction to our assumption that r , −2n(2n + 1) on O. Thus from (50),
we can infer r , −2n(2n + 1) on the entire manifold. Finally from (39), we have S(X,Y) = −2n1(X,Y) for all
X,Y ∈ χ(M). So, the manifold is Einstein with Einstein constant −2n.

4. A para-Kenmotsu metric as ∗-conformal Ricci soliton

In this section we assume that the metric of para-Kenmotsu manifold represents a ∗-conformal Ricci
soliton. Venkatesha, Kumara and Naik[27] have deduced the expression of ∗-Ricci tensor for para-Kenmotsu
manifold as

S∗(X,Y) = −S(X,Y) − (2n − 1)1(X,Y) − η(X)η(Y) (51)

for all vector fields X and Y on M.

Theorem 4.1. Let M2n+1(φ, ξ, η, 1),n > 1 be a η-Einstein para-Kenmotsu manifold. If 1 represents a ∗-conformal
Ricci soliton, then the manifold is Einstein with constant scalar curvature −2n(2n + 1).

Proof. Let M be a (2n + 1)-dimensional η-Einstein para-Kenmotsu manifold of dimension > 3 whose metric
1 represents a ∗-conformal Ricci soliton. So, the relations (2), (39) and (51) are satisfied. Rewriting (2) with
the help of the rest two relations, we have

(LV1)(Y,Z) = (p − 2λ +
r
n

+ 4n +
2

2n + 1
)1(Y,Z) − (4n +

r
n

)η(Y)η(Z) (52)

for all Y,Z ∈ χ(M). Differentiating the above equation with respect to an arbitrary vector field X of M and
using (10), we achieve

(∇XLV1)(Y,Z) =
Xr
n
1(Y,Z) −

Xr
n
η(Y)η(Z) − (4n +

r
n

)[1(X,Y)η(Z) + 1(X,Z)η(Y) − 2η(X)η(Y)η(Z)] (53)

for any vector fields X,Y and Z of M. Again from (18), we know (∇XLV1)(Y,Z) = 1((LV∇)(X,Y),Z) +
1((LV∇)(X,Z),Y). Using this and by a combinatorial computation, keeping in mind thatLV∇ is a symmetric
operator, the foregoing equation gives

2n(LV∇)(X,Y) = (Xr)[Y − η(Y)ξ] + (Yr)[X − η(X)ξ] − (Dr)[1(X,Y) − η(X)η(Y)]
−2(4n2 + r)[1(X,Y) − η(X)η(Y)]ξ. (54)

The covariant derivative of (2) with respect to an arbitrary vector field X, yields

(∇XLV1)(Y,Z) = −2(∇XS∗)(Y,Z). (55)

The straightforward computation and use of the relation (18) in the equation (55), leads to

1((LV∇)(X,Y),Z) = (∇ZS∗)(X,Y) − (∇XS∗)(Y,Z) − (∇YS∗)(Z,X). (56)

Again, taking covariant derivative of (51) with respect to an arbitrary vector field Z of M and then using
(10), we get

(∇ZS∗)(X,Y) = −(∇ZS)(X,Y) − 1(X,Z)η(Y) − 1(Y,Z)η(X) + 2η(X)η(Y)η(Z). (57)

Combining (57) with (56), yields

1((LV∇)(X,Y),Z) = (∇XS)(Y,Z) + (∇YS)(Z,X) − (∇ZS)(X,Y) + 21(X,Y)η(Z) − 2η(X)η(Y)η(Z). (58)
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Now, let us consider a local orthonormal basis {ei}
2n+1
i=1 of the manifold. Replacing X = Y = ei in (54), we

have

2n(LV∇)(ei, ei) = −2(ξr)ξ − 2(n − 1)(Dr) − 4n(4n2 + r)ξ. (59)

Again, substituting X and Y by ei in equation (58) and summing over i, we get

(LV∇)(ei, ei) = 4nξ. (60)

Combining the above two relations we directly have

(ξr)ξ + (n − 1)(Dr) + 2n(4n2 + 2n + r)ξ = 0. (61)

The inner product with respect to ξ, reduces the aforementioned equation to ξr = −2(2n(2n + 1) + r). As
n > 1, using this relation in the equation (61) we easily obtain Dr = (ξr)ξ. After substituting Y by ξ in (54)
and using (3), we infer

2n(LV∇)(X, ξ) = (ξr)φ2(X) (62)

for all X ∈ χ(M). Differentiating (62) with respect to an arbitrary vector field Y and using (9), (10) and (62),
we get

2n(∇YLV∇)(X, ξ) + 2n(LV∇)(X,Y) = (Y(ξr))φ2X − (ξr)[1(X,Y)ξ + η(X)Y − η(Y)X − η(X)η(Y)ξ]. (63)

Using this in the well known formula (20), we have

2n(LVR)(X,Y)ξ = (X(ξr))φ2Y − (Y(ξr))φ2X − 2(ξr)[η(Y)X − η(X)Y] (64)

for all X,Y ∈ χ(M). Contracting the above equation over X and using the relation Dr = (ξr)ξ, we have
(LVS)(Y, ξ) = 0. Using (39), (52) and (LVS)(Y, ξ) = 0 in the Lie derivative of S(Y, ξ) = −2nη(Y), we get

2n
(
p − 2λ +

2
2n + 1

)
η(Y) +

(
2n + 1 +

r
2n

)
[1(Y,LVξ) − η(Y)η(LVξ)] = 0. (65)

In the last equation considering Y = ξ, we obtain λ =
p
2 + 1

2n+1 as n > 1. Again setting Y = Z = ξ in (52), we
have η(LVξ) = 0. Applying these relations, we can rewrite (65) as

(2n(2n + 1) + r)LVξ = 0. (66)

We suppose r , −2n(2n + 1) on some open set O of M. Then from (66), directly we obtain LVξ = 0. From
(9), we deduce that ∇ξV = V − η(V)ξ. Again taking Z = ξ in (52) and using λ =

p
2 + 1

2n+1 , we have LVη = 0.
Using these relations along with (9) and (62) in the identity (37), we obtain ξr = 0. As Dr = (ξr)ξ, so,
Dr = 0 i.e., the scalar curvature r is constant. So, from the relation ξr = −2(2n(2n + 1) + r), we can find
that r = −2n(2n + 1) on O, which is a contradiction to our assumption that r , −2n(2n + 1) on O. Thus
from (66), we can conclude that r = −2n(2n + 1) on the entire manifold M. Moreover from (39), we have
S(X,Y) = −2n1(X,Y) for all X,Y ∈ χ(M). So, the manifold is Einstein with Einstein constant −2n.

5. A 3-dimensional para-cosymplectic metric as conformal Ricci soliton

In 2004, Dacko [7] introduced the notion of para-cosymplectic manifold. The fundamental 2-form Φ is
defined on an almost paracontact metric manifold (M, φ, ξ, η, 1) by Φ(X,Y) = 1(X, φY) for any vector fields
X and Y on M. Clearly the skew-symmetricness of the 2-form Φ inherits from φ.
An almost paracontact metric manifold is said to be almost para- coymplectic if the forms η and Φ are closed,
i.e., dη = 0 and dΦ = 0 respectively. In addition if the normality of almost para-cosymplectic manifold is
fulfilled then the it is called para-cosymplectic manifold. Equivalently we can say an almost paracontact



S. Sarkar et al. / Filomat 35:15 (2021), 5001–5015 5010

metric manifold is para-cosymplectic if the forms η and Φ are parallel with respect to the corresponding
Levi-Civita connection∇ of the metric 1 i.e., ∇η = 0 and∇Φ = 0 respectively. We recall some useful relations
which are satisfied for any para-cosymplectic manifold.

R(X,Y)ξ = 0, (67)
(∇Xφ) = 0, (68)
∇Xξ = 0, (69)

S(X, ξ) = 0, (70)
Qξ = 0, (71)

where X is an arbitrary vector field and R, ∇, S and Q are the usual notations. For the 3-dimensional case,
we have

R(X,Y)Z = 1(Y,Z)QX − 1(X,Z)QY + 1(QY,Z)X − 1(QX,Z)Y −
r
2

[1(Y,Z)X − 1(X,Z)Y]. (72)

Using this result we deduce that 3-dimensional para-cosymplectic manifold satisfies

S(X,Y) =
r
2

[1(X,Y) − η(X)η(Y)], (73)

QX =
r
2

[X − η(X)ξ] (74)

for any X,Y ∈ χ(M).
A vector field V is said to be conformal Killing vector field or simply conformal vector field if there is a

smooth function ρ such that

LV1 = 2ρ1. (75)

ρ is called the conformal coefficient. If we consider the conformal coefficient ρ to be zero then the conformal
vector field reduces to Killing vector field. Now we first prove some lemmas whose results are used to
deduce our main result.

Lemma 5.1 ([29]). If a n-dimensional Riemannian manifold admits a conformal vector field V then we have

(LVS)(X,Y) = −(n − 2)1(∇XDρ,Y) + (∆ρ)1(X,Y), (76)
LVr = 2(n − 1)∆ρ − 2ρr (77)

for any vector fields X and Y, where D and ∆ denote the gradient and Laplacian operator of 1 respectively and r
represents the scalar curvature of the manifold.

Lemma 5.2. If the metric 1 of a 3-dimensional para-cosymplectic manifold represents a conformal Ricci soliton then
the following properties hold

η(LVξ) = λ −
p
2
−

1
3
, (78)

(LVη)ξ = −λ +
p
2

+
1
3
. (79)

Proof. As the vector field ξ is a unit vector field, we have 1(ξ, ξ) = 1. Taking Lie derivative of the previous
relation with respect to vector field V, we have (LV1)(ξ, ξ) + 2η(LVξ) = 0. Using (1), (4) and (73), we acquire

η(LVξ) = λ −
p
2
−

1
3
.

Taking Lie derivative of (4) along the direction of the vector field V and using (78), we achieve

(LVη)ξ = −λ +
p
2

+
1
3
.
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Lemma 5.3. For a 3-dimensional para-cosymplectic manifold, we have

ξ(r) = 0. (80)

Proof. For proof we refer to [9].

Theorem 5.4. If the metric 1 of a 3-dimensional para-cosymplectic manifold (M3, φ, ξ, η, 1) which admits a conformal
vector field V, represents a conformal Ricci soliton then the scalar curvature of the manifold is Harmonic and the
manifold is Ricci flat.

Proof. Combining (1) and (75) for 3-dimensional para-cosymplectic manifold, we have(
2ρ + 2λ − p −

2
3

)
1(X,Y) + 2S(X,Y) = 0

for any X,Y ∈ χ(M). Contracting the above equation, we get

ρ =
1
6

(3p − 6λ − 2r + 2). (81)

Using (81) in (76) and (77), we get

(LVS)(X,Y) =
1
3
1(∇XDr,Y) −

1
3

(∆r)1(X,Y), (82)

LVr = −
1
3

(3p − 6λ − 2r + 2)r −
4
3

(∆r). (83)

Taking Lie derivative of (73) in the direction of the vector field V and using (1), (73), (82) and (83), we have

1(∇XDr,Y) = −
(
∆r+

r2

2

)
1(X,Y)+

[ r
2

(3p−6λ+r+2)+2(∆r)
]
η(X)η(Y)−

3r
2

[
((LVη)X)η(Y)+η(X)((LVη)Y)

]
. (84)

Covariant derivative of (80) along an arbitrary vector field X, yields 1(∇XDr, ξ) = 0. Now setting X = Y = ξ
in the equation (84) and using the aforementioned relation along with the equation (79), we get

∆r = 0. (85)

Hence the scalar curvature r of the manifold is Harmonic.
Now considering Y = ξ in (84) and using the relation 1(∇XDr, ξ) = 0, (85), (79), we obtain the following
relation

r((LVη)X) = r
(p
2

+
1
3
− λ

)
η(X) (86)

for an arbitrary vector field X on M. Making use of the last equation, (74) and (85) in (84), we achieve

∇XDr = −rQX (87)

for any arbitrary X ∈ χ(M). Now contracting it with respect to X, we get ∆r = −r2 and combining with (85),
we infer r = 0 i.e., the manifold is Ricci flat.

6. Examples

In this section we provide some examples to verify our outcomes.
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Example 6.1. We consider the manifold as M = {(x, y, x) ∈ R3
}, where (x, y, z) are the standard coordinates in R3.

The vector fields are defined by

e1 =
∂
∂x
, e2 =

∂
∂y
, e3 = x

∂
∂x

+ y
∂
∂y

+
∂
∂z

are linearly independent at each point on M. The metric 1 is defined by

1(e1, e1) = 1(e3, e3) = 1, 1(e2, e2) = −1, 1(e1, e2) = 1(e2, e3) = 1(e3, e1) = 0.

Let ξ = e3. Then the 1-form η is defined by η(X) = 1(X, e3), for arbitrary X ∈ χ(M), then we have the following
relations

η(e1) = 0, η(e2) = 0, η(e3) = 1.

Let us define the (1,1)-tensor field φ as

φe2 = e1, φe1 = e2, φe3 = 0,

then it satisfies

φ2(X) = X − η(X)e3,

1(φX, φY) = −1(X,Y) + η(X)η(Y)

for arbitrary X,Y ∈ χ(M). Thus (φ, ξ, η, 1) defines an almost paracontact metric structure on M. We can now easily
conclude

[e1, e2] = 0, [e2, e3] = e2, [e1, e3] = e1.

Let ∇ be the Levi-Civita connection of 1. Then the Koszul′s f ormula for arbitrary X,Y,Z ∈ χ(M) is given by

21(∇XY,Z) = X1(Y,Z) + Y1(Z,X) − Z1(X,Y) − 1(X, [Y,Z]) − 1(Y, [X,Z]) + 1(Z, [X,Y]).

Using this we obtain

∇e1 e1 = −e3, ∇e1 e2 = 0, ∇e1 e3 = e1,

∇e2 e1 = 0, ∇e2 e2 = e3, ∇e2 e3 = e2,

∇e3 e1 = 0, ∇e3 e2 = 0, ∇e3 e3 = 0.

From here we can easily verify that the relation (6) is satisfied. Hence the considered manifold is para-Kenmotsu
manifold. The components of the Riemannian curvature tensor are given by

R(e1, e2)e1 = e2, R(e1, e2)e2 = e1, R(e1, e2)e3 = 0,
R(e1, e3)e1 = e3, R(e1, e3)e2 = 0, R(e1, e3)e3 = −e1,

R(e2, e3)e1 = 0, R(e2, e3)e2 = −e3, R(e2, e3)e3 = −e2.

And the components of Ricci tensor and ∗-Ricci tensor are given by

S(e1, e1) = −2, S(e2, e2) = 2, S(e3, e3) = −2,
S∗(e1, e1) = 1, S∗(e2, e2) = −1, S∗(e3, e3) = 0.

From here we can easily deduce that the scalar curvature of the manifold r = −6 and S(X,Y) = −21(X,Y) ∀X,Y ∈
χ(M). Let us define a vector field by

V = (x − 1)
∂
∂x

+ (y − 1)
∂
∂y

+
∂
∂z
.
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Then we can obtain

(LV1)(e1, e1) = 2, (LV1)(e2, e2) = −2, (LV1)(e3, e3) = 0.

Contracting (1) and using the result r = −6 we deduce λ =
p
2 + 19

3 . So 1 defines a conformal Ricci soliton on this
para-Kenmotsu manifold for λ =

p
2 + 19

3 .
Again Contracting (51) we get, r∗ = −r − 4 = 2 (as r = −6). Now contracting (2) and using the previous result we
obtain λ =

p
2 −

5
3 . So, g defines a ∗-conformal Ricci soliton on this para-Kenmotsu manifold for λ =

p
2 −

5
3 .

Example 6.2. Let us consider the set M = {(x, y, z,u, v) ∈ R5
} as our manifold where (x, y, z,u, v) are the standard

coordinates in R5. The vector fields defined below

e1 = e−v ∂
∂x
, e2 = e−v ∂

∂y
, e3 = e−v ∂

∂z
, e4 = e−v ∂

∂u
, e5 =

∂
∂v
,

are linearly independent at each point of M. We define the metric 1 as

1(ei, e j) =


1, if i = j and i, j ∈ {1, 2, 5}
−1, if i = j and i, j ∈ {3, 4}
0, otherwise.

Let η be a 1-form defined by η(X) = 1(X, e5), for arbitrary X ∈ χ(M). Let us define (1,1)-tensor field φ as

φ(e1) = e3, φ(e2) = e4, φ(e3) = e1, φ(e4) = e2, φ(e5) = 0.

Then it satisfies the relations φ2(X) = X − η(X)ξ and η(ξ) = 1, where ξ = e5 and X is an arbitrary vector field on M.
So, (M, φ, ξ, η, 1) defines an almost paracontact structure on M.
We can now deduce that

[e1, e2] = 0, [e1, e3] = 0, [e1, e4] = 0, [e1, e5] = e1,

[e2, e1] = 0, [e2, e3] = 0, [e2, e4] = 0, [e2, e5] = e2,

[e3, e1] = 0, [e3, e2] = 0, [e3, e4] = 0, [e3, e5] = e3,

[e4, e1] = 0, [e4, e2] = 0, [e4, e3] = 0, [e4, e5] = e4,

[e5, e1] = −e1, [e5, e2] = −e2, [e5, e3], = −e3, [e5, e4] = −e4.

Let ∇ be the Levi-Civita connection of 1. Then Koszul′s f ormula is given by

21(∇XY,Z) = X1(Y,Z) + Y1(Z,X) − Z1(X,Y) − 1(X, [Y,Z]) − 1(Y, [X,Z]) + 1(Z, [X,Y]),

for arbitrary X,Y,Z ∈ χ(M). Using this we get

∇e1 e1 = −e5, ∇e1 e2, = 0 ∇e1 e3 = 0, ∇e1 e4 = 0, ∇e1 e5 = e1,

∇e2 e1 = 0, ∇e2 e2 = −e5, ∇e2 e3 = 0, ∇e2 e4 = 0, ∇e2 e5 = e2,

∇e3 e1 = 0, ∇e3 e2 = 0, ∇e3 e3 = e5, ∇e3 e4 = 0, ∇e3 e5 = e3,

∇e4 e1 = 0, ∇e4 e2 = 0, ∇e4 e3 = 0, ∇e4 e4 = e5, ∇e4 e5 = e4,

∇e5 e1 = 0, ∇e5 e2 = 0, ∇e5 e3 = 0, ∇e5 e4 = 0, ∇e5 e5 = 0.

Therefore (∇Xφ)Y = 1(φX,Y)ξ − η(Y)φX is satisfied for arbitrary X,Y ∈ χ(M). So (M, φ, ξ, η, 1) is an almost
para-Kenmotsu manifold. The previous outcomes can easily be verified using this example.
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7. Conclusion

In this article, we have used the methods of local Riemannian or semi-Riemannian geometry to inter-
pretation solutions of (1) and (2) and impregnate Einstein metrics in a large class of metrics of conformal
Ricci solitons and ∗-conformal Ricci solitons on paracontact geometry, specially on para-Kenmotsu and
para-cosymplectic manifold. Our results will not only play an indispensable and incitement role in para-
contact geometry but also it has significant and motivational contribution in the area of further research of
complex geometry, specially on Kähler and para-Kähler manifold etc. and we can think about the physical
interpretation of conformal Ricci solitons and ∗-conformal Ricci solitons also in differential geometry. There
are some questions which arise from our article to study in further research:

(i) Are the results of theorem 3.2 and theorem 3.3 true if we assume the dimension of the manifold as 3?
(ii) Does theorem 4.1 hold without assuming η-Einstein condition?

(iii) If we consider the dimension more than 3, then is theorem 5.4 true?
(iv) What can we say about theorem 5.4 if we assume vector field V is not conformal?
(v) Which results of the our paper are also true in nearly Kenmotsu manifolds or f -Kenmotsu manifolds

or f -cosymplectic manifolds?
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