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Abstract. In this paper, the local function, the weak semi-local function and the local closure function are
compared with each other according to the inclusion relation. We define a new operator by using the weak
semi-local function and investigate its properties. Thanks to this operator, we obtain two new topologies
which are finer than some previously defined topologies.

1. Introduction

In topological spaces, ideals were studied by Kuratowski [12] and Vaidyanathaswamy [21]. In these
studies, the concept of local function was defined by using the concept of ideal. Also, a Kuratowski closure
operator was obtained by using the local function. Ideals in topological spaces was applied in different
branches of mathematics. One of these works was written by Freud who generalized the Cantor-Bendixson
Theorem [6]. Janković and Hamlett developed well-known results in ideal topological spaces and obtained
new results [9]. Apart from all these studies, many special ideal topological spaces were defined by using
the concepts of ideal and local function such as J-Baire spaces [14], J-Alexandroff and J1-Alexandroff
spaces [5],J-Extremally disconnected spaces [10],J-Resolvable spaces andJ-Hyperconnected spaces [4],
J-Rothberger spaces [7].

In 1963, Levine defined the concept of semi-open set [13]. Although the family of all semi-open sets in a
topological space includes the family of all open sets, it is not a topology. However, the family of semi-open
sets in extremally disconnected topological spaces forms a topology [15]. In [22], the concepts of θ-open set
and θ-closed set were given by Veličko. In any given topological space, the family of θ-open sets forms a
topology and this topology is coarser than the given topology.

In recent years, new local operators have been defined apart from the well-known local function. Some
of these are the semi-local function [11], the local closure function [1], the semi-closure local function [8]
and the weak semi-local funtion [24]. In [1], the local closure function and the operator ΨΓ were defined
by Al-Omari and Noiri. Two new topologies was obtained with this operator ΨΓ. In [18], Pavlović gave
an example that one of these two topologies is strictly finer than the other. The concept of weak semi-local
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function was defined and its basic properties were investigated in [24]. Also, it was shown with examples
that the weak semi-local function is different from the other local operators.

In this study, we deal with concepts of local function, local closure function and weak semi-local function.
We compare them according to the inclusion relation and define two different topologies which are finer
than defined topologies by Al-Omari and Noiri in [1].

2. Definitions and Notations

Let (U, τ) be any topological space. We show the interior and the closure of subset M as Int(M) and
Cl(M), respectively. The family of open neighborhoods for any point u is denoted by τu. The family of all
subsets of U is denoted by P(U). The set of natural numbers containing 0 is denoted by ω.

Definition 2.1. ([12]) Let U , ∅ andJ ⊆ P(U). IfJ satifies the following conditions, it is called an ideal on
U:

a) ∅ ∈ J .
b) If M ∈ J and K ⊆M, then K ∈ J .
c) If M,K ∈ J , then M ∪ K ∈ J .

To define an ideal on U, there is no need any topology on U. The family of finite subsets of U and the
family of countable subsets of U form an ideal on the nonempty set U. These ideals denoted by J f in and
Jco, respectively. Let (U, τ) be a topological space and M ⊆ U. A subset M is called nowhere dense, if
Int(Cl(M)) = ∅. A subset M is called discrete set if M ∩Md = ∅ (where Md is derived set of M). A subset
of U is called meager, if it can be written as a countable union of nowhere dense subsets of U. A subset of
U is called relatively compact, if its closure is compact. For a topological space (U, τ), family of nowhere
dense subsets (Jnw), family of closed-discrete subsets (Jcd), family of meager subsets (Jm1) and family of
relatively compact subsets (JK) are an ideal on U. If (U, τ) is a topological space with an ideal J on U, this
space is called an ideal topological space or briefly J-space.

Definition 2.2. ([12]) Let (U, τ) be a J-space and M ⊆ U. An operator (.)∗ : P(U)→ P(U) is defined by

M∗(J , τ) = {u ∈ U : O ∩M < J for every O ∈ τu}

and is called the local function of M with respect to J and τ.

Sometimes we use the notations M∗ or M∗(J) instead of M∗(J , τ).
Let (U, τ) be a topological space. A subset M of U is called θ-open [22], if each point of M has a open

neighborhood O such that Cl(O) ⊆ M. The complement of θ-open set is called θ-closed set. The θ-closure
[22] of a subset M is defined by Clθ(M) = {u ∈ U : Cl(O)∩M , ∅ for every O ∈ τu}. The family of all θ-open
sets in the topological space (U, τ) is denoted by τθ and it is a topology on U. This topology is coaser than
τ. In other words, every θ-open set is an open set [22].

Definition 2.3. ([1]) Let (U, τ) be a J-space and M ⊆ U. An operator Γ : P(U)→ P(U) is defined by

Γ(M)(J , τ) = {u ∈ U : Cl(O) ∩M < J for every O ∈ τu}

and is called the local closure function of M with respect to J and τ.

Sometimes we use the notations Γ(M) or Γ(M)(J) instead of Γ(M)(J , τ).
In [1], Al-Omari and Noiri defined an operator ΨΓ : P(U)→ τ inJ-space (U, τ) as follows: For a subset

M of U,

ΨΓ(M) = {u ∈ U : there exists O ∈ τu such that Cl(O) \M ∈ J}.

It is clear that ΨΓ(M) = U \ Γ(U \M). Moreover, these authors in [1] defined two topologies on U by using
this operator as follows:
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σ = {M ⊆ U : M ⊆ ΨΓ(M)} and σ0 = {M ⊆ U : M ⊆ Int(Cl(ΨΓ(M)))}.

Elements of this topologies are said to be σ-open sets and σ0-open sets, respectively. Every σ-open set is
σ0-open set and moreover, τθ ⊆ σ ⊆ σ0. In [1], a question was asked that ”Is there an example that shows
σ $ σ0 ?” It was answered by Pavlović with an example in which σ $ σ0 [18]. The following diagram was
obtained in [1].

θ-open → open
↓

σ-open → σ0-open

Diagram I

Lemma 2.4. ([1]) In any J-space (U, τ) , the local closure function of a subset M includes its local function i.e.
M∗(J , τ) ⊆ Γ(M)(J , τ).

”When do these two functions coincide?” The following theorem answers this question.

Theorem 2.5. ([18]) In any J-space (U, τ), each of the following conditions implies that M∗ = Γ(M) for any subset
M of U:

a) τ has a clopen base.
b) τ is a T3-space on U.
c) J = Jcd.
d) J = JK.
e) Jnw ⊆ J .
f) J = Jm1.

Definition 2.6. ([13]) In any topological space, the subset M is called semi-open set if there exists an open
set W such that W ⊆M ⊆ Cl(W).

Theorem 2.7. ([13]) In any topological space, a subset M is semi-open if and only if M ⊆ Cl(Int(M)).

The family of all semi-open sets in a topological space (U, τ) is denoted by SO(U). Every open set
is semi-open i.e. τ ⊆ SO(U) [13]. The union of all semi-open subsets contained of M is called the [2]
semi-interior of M and is denoted by sInt(M). The family of all semi-open neighborhood of a point u ∈ U is
denoted by SO(U,u). Obviously, it is τu ⊆ SO(U,u) for every u ∈ U. A subset M is called semi-closed set, if
the complement of M is semi-open [2]. The semi-closure of a subset M is defined as the intersection of all
semi-closed sets containing M and it is denoted by sCl(M) [2]. For every subset M,

Int(M) ⊆ sInt(M) ⊆M ⊆ sCl(M) ⊆ Cl(M).

Definition 2.8. ([24]) Let (U, τ) be J-space and M ⊆ U. An operator ξ : P(U)→ P(U) is defined by

ξ(M)(J , τ) = {u ∈ U : sCl(O) ∩M < J for every O ∈ SO(U,u)}

and is called the weak semi-local function of M with respect to J and τ.

Sometimes we use the notations ξ(M) or ξ(M)(J) instead of ξ(M)(J , τ).
In [24], differences between local, local closure and weak semi-local functions are shown in examples

defined on finite sets. Let us give the following examples with some well-known topologies and ideals
defined on the infinite set.

Example 2.9. Let (R, τ) be {∅}-space with usual topology τ. For subset M = (a, b) where a, b ∈ R, ξ(M) = (a, b)
and Γ(M) = M∗ = [a, b].
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Example 2.10. Let (R, τL) be J f in-space where real numbers set R with left-ray topology τL i.e. τL =
{(−∞, r) : r ∈ R} ∪ {∅,R}, and let J f in be the ideal of all finite subsets of R. For subset M = [a, b] where
a, b ∈ R, M∗ = [a,∞) and ξ(M) = Γ(M) = R.

Proposition 2.11. ([24]) Let M and K be two subsets in a topological space (U, τ). Also, let J and I be two ideals
on U. The operator ξ satisfies the following properties:

a) If M ⊆ K, then ξ(M) ⊆ ξ(K).
b) If J ⊆ I, then ξ(M)(I) ⊆ ξ(M)(J).
c) ξ(M) = sCl(ξ(M)) ⊆ Clθ(M). That is, ξ(M) is semi-closed set. 2
d) If M ∈ J , then ξ(M) = ∅.
e) ξ(M ∪ K) = ξ(M) ∪ ξ(K).

Let (U, τ) be a topological space and M ⊆ U. The semi-θ-closure of M is defined [3] by sClθ(M) = {u ∈
U : sCl(O) ∩M , ∅ for every O ∈ SO(U,u)}. If (U, τ) is a {∅}-space, obviously ξ(M) = sClθ(M). Moreover, in
any J-space (U, τ), from Proposition 2.11 b), ξ(M)(J) ⊆ sClθ(M).

Lemma 2.12. ([24]) In any J-space (U, τ), the local closure function of a subset M includes its weak semi-local
function i.e. ξ(M)(J , τ) ⊆ Γ(M)(J , τ).

Lemma 2.13. ([24]) Let (U, τ) be J-space and M,K ⊆ U. If K ∈ J , then ξ(M \ K) = ξ(M).

3. Some Comparisons

In different ideal topological spaces, it was shown to be M∗ $ ξ(M) or ξ(M) $M∗ (Example 2.9, Example
2.10 and also Example 2.3, Example 2.4 in [24]). Moreover, even for two different subsets M,K in the same
ideal topological space, it is possible that M∗ $ ξ(M) and ξ(K) $ K∗. We give an example for this case:

Example 3.1. Let τ = {U, ∅, {p}, {s}, {p, s}, {p, t}, {p, s, t}, {p, r, s}} be a topology on U = {p, r, s, t} and J = {∅, {r}}.
For subsets M = {t} and K = {r, s}, M∗ = {t} $ ξ(M) = {r, t}, ξ(K) = {s} $ K∗ = {r, s}.

In anyJ-space , local function and weak semi-local function may not be compared for each subset. Let
us give an example for this:

Example 3.2. Let τ = {U, ∅, {x}, {t}, {x, y}, {x, z}, {p, s}, {x, t}, {x, y, z}, {p, s, t}, {x, p, s}, {x, z, t}, {x, y, t}, {p, r, s, t},
{x, p, s, t}, {x, y, p, s}, {x, z, p, s}, {x, y, z, t}, {x, y, z, p, s}, {x, p, r, s, t}, {x, y, p, s, t}, {x, z, p, s, t}, {x, z, p, r, s, t},
{x, y, p, r, s, t}, {x, y, z, p, s, t}} be a topology on U = {x, y, z, p, r, s, t} and J = {∅, {x}, {p}, {x, p}}. For subset
M = {x, y, p, t}, M∗ = {y, r, t} and ξ(M) = {x, y, z, t}.

In this section, we answer the questions such as ”when is M∗ ⊆ ξ(M) ?”, ”when is ξ(M) ⊆ M∗ ?” and
”when is Γ(M) = ξ(M) ?”. Obviously, in any J-space , if M ∈ J , then M∗ = ξ(M) = Γ(M) = ∅. If J = P(U),
again M∗ = ξ(M) = Γ(M) = ∅.

A topological space is extremally disconnected [23] if the closure of every open set is open.

Theorem 3.3. ([16], [19]) The following conditions are equivalent:

a) (U, τ) is extremally disconnected.
b) For every O ∈ SO(U), sCl(O) = Cl(O).
c) For every O ∈ SO(U), Cl(O) is open set.

Theorem 3.4. Let (U, τ) be a J-space and M ⊆ U. If (U, τ) is extremally disconnected space, then

M∗ ⊆ ξ(M) = Γ(M).
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Proof. We will show that Γ(M) ⊆ ξ(M). Because, we have ξ(M) ⊆ Γ(M) from Lemma 2.12. Suppose that
x < ξ(M). So, there exists O ∈ SO(U,u) such that sCl(O) ∩ M ∈ J . From Theorem 3.3 c), Cl(O) ∈ τu.
Moreover, x < Γ(M), since Cl(Cl(O)) ∩M = Cl(O) ∩M = sCl(O) ∩M ∈ J from Theorem 3.3 b). This implies
that Γ(M) ⊆ ξ(M). Furthermore, M∗ ⊆ Γ(M) from Lemma 2.4. Consequently, M∗ ⊆ ξ(M) = Γ(M).

We give an example in which we show that the relation M∗ ⊆ ξ(M) = Γ(M) strictly holds.

Example 3.5. Let τ = {U, ∅, {r}, {s}, {p, r}, {r, s}} be a topology on U = {p, r, s} and J = {∅, {r}}. Then, (U, τ) is
extremally disconnected space and for a subset M = {p, r}, M∗ = {p} $ ξ(M) = Γ(M) = {p, r}.

A topological space is hyperconnected [20] if every nonempty open set is dense.

Theorem 3.6. Let (U, τ) be a J-space and M ⊆ U. If (U, τ) is hyperconnected space and M < J , then

M∗ ⊆ ξ(M) = Γ(M) = U.

Proof. Since every hyperconnected space is extremally disconnected space, M∗ ⊆ ξ(M) = Γ(M) from Theo-
rem 3.4. Let u ∈ U \ Γ(M) and M < J . Since u < Γ(M) and (U, τ) is hyperconnected, there exists O ∈ τu such
that Cl(O) ∩M = U ∩M = M ∈ J . This is a contradiction. Consequently, M∗ ⊆ ξ(M) = Γ(M) = U.

In the following examples, we show that the relation M∗ ⊆ ξ(M) = Γ(M) = U strictly hold.

Example 3.7. Let τ = {U, ∅, {p}} be a topology on U = {p, r, s} andJ = {∅, {p}}. Then, (U, τ) is hyperconnected
space and for a set M = U, M∗ = {r, s} $ ξ(M) = Γ(M) = U.

Example 3.8. In Example 2.10, the topology (R, τL) is hyperconnected space and M∗ $ ξ(M) = Γ(M) for
subset M = [a, b].

Lemma 3.9. Let (U, τ) be a J-space and u ∈ M∗ for a subset M ⊆ U. If u ∈ Int(O) for every O ∈ SO(U,u), then
u ∈ ξ(M).

Proof. Suppose that u < ξ(M). Then, there exists O ∈ SO(U,u) such that sCl(O) ∩M ∈ J . According to
hypothesis, Int(O) ∈ τu. From Int(O) ∩M ⊆ sCl(O) ∩M and the definition of ideal, Int(O) ∩M ∈ J . This
implies that u <M∗. This is a contradiction. Consequently, u ∈ ξ(M).

Theorem 3.10. Let (U, τ) be a J-space and M ⊆ U. Then M∗ ⊆ ξ(M) if the following condition holds for every
u ∈M∗: u ∈ Int(O) for every O ∈ SO(U,u).

Proof. It is obvious, from Lemma 3.9.

In the following example, we show that the converse of Theorem 3.10 is not true.

Example 3.11. Consider the J-space in Example 3.1. If M = {r, s, t} ⊆ U, then M∗ = {r, s, t} ⊆ ξ(M) = U.
Although O = {p, r} ∈ SO(U, r) and r ∈M∗, r < Int(O).

Now let us give an example which satisfies hypothesis of Theorem 3.10 and M∗ $ ξ(M).

Example 3.12. Consider the J-space in Example 3.1. If we choose M = {t} ⊆ U, then t ∈ M∗ = {t} and
t ∈ int(O) for every O ∈ SO(U, t). Furthermore, M∗ = {t} $ ξ(M) = {p, t}.

Theorem 3.13. Let (U, τ) be a J-space and M ⊆ U. Each of conditions in Theorem 2.5 implies that

ξ(M) ⊆M∗ = Γ(M).

Proof. From Theorem 2.5, we have M∗ = Γ(M) and from Lemma 2.12, we have ξ(M) ⊆ Γ(M). Consequently,
ξ(M) ⊆M∗ = Γ(M).
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Even if any condition in Theorem 2.5 is satisfied, it is not necessary that ξ(M) = M∗ = Γ(M) for a subset
M of any J-space. We illustrate this case in the following examples.

Example 3.14. Let (Q, τQ) be JK-space where the topology τQ on the set Q rational numbers is induced by
the usual topology on setR real numbers andJK is the ideal of relatively compact subsets ofQ. For the subset
M = Q∩ [0, 1], Γ(M)(JK) = M∗(JK) = Q∩ [0, 1]. Since M∩ sCl(O) = {0} ∈ JK for O = Q∩ (−1, 0] ∈ SO(Q, 0),
0 < ξ(M)(JK). Furthermore, this topology on rational numbers has clopen base.

Consequently, this example showed that even if an ideal topological space satisfies conditions a) and d)
of Theorem 2.5, it can be ξ(M) $M∗ = Γ(M) for a subset M in this space.

Example 3.15. Let us consider a subset M = [1, 2] of R with usual topology. Γ(M)(Jcd) = Γ(M)(Jm1) =
Γ(M)(Jnw) = M∗(Jcd) = M∗(Jm1) = M∗(Jnw) = [1, 2] and ξ(M)(Jcd) = ξ(M)(Jm1) = ξ(M)(Jnw) = (1, 2). Also,
this topology is T3-space.

Consequently, this example showed that even if an ideal topological space satisfies the conditions b), c),
e), f) of Theorem 2.5, it can be ξ(M) $M∗ = Γ(M) for a subset M in this space.

4. A New Operator via Ideal

Definition 4.1. Let (U, τ) be a J-space. For any subset M of U, an operator Ψξ : P(U)→ SO(U) is defined
as follows:

Ψξ(M) = {u ∈ U : there exists O ∈ SO(U,u) such that sCl(O) \M ∈ J}.

It is also obvious that Ψξ(M) = U \ ξ(U \M).

Now, we give basic properties of this operator.

Theorem 4.2. Let (U, τ) be a J-space. The operator Ψξ satisfies the following properties:

a) For every subset M ⊆ U, Ψξ(M) is semi open set.
b) If M ⊆ K, then Ψξ(M) ⊆ Ψξ(K).
c) If M,K ⊆ U, then Ψξ(M ∩ K) = Ψξ(M) ∩Ψξ(K).
d) For every subset M ⊆ U, Ψξ(Ψξ(M)) = U \ ξ(ξ(U \M)).
e) For every subset M ⊆ U, Ψξ(M) = Ψξ(Ψξ(M))⇔ ξ(U \M) = ξ(ξ(U \M)).
f) If M ∈ J , then Ψξ(M) = U \ ξ(U).
g) If M ⊆ U and K ∈ J , then Ψξ(M \ K) = Ψξ(M).
h) If M ⊆ U and K ∈ J , then Ψξ(M ∪ K) = Ψξ(M).
i) If (M \ K) ∪ (K \M) ∈ J , then Ψξ(M) = Ψξ(K).

Proof. a) From Proposition 2.11 c), Ψξ(M) = U \ ξ(U \M) is semi open.
b) It is obvious from Proposition 2.11 a).
c) Using Proposition 2.11 e),

Ψξ(M ∩ K) = U \ ξ(U \ (M ∩ K))
= U \ [ξ(U \M) ∪ ξ(U \ K)]
= [U \ ξ(U \M)] ∩ [U \ ξ(U \ K)]
= Ψξ(M) ∩Ψξ(K).

d) From definition of the operator Ψξ,

Ψξ(Ψξ(M)) = Ψξ(U \ ξ(U \M))
= U \ ξ(U \ (U \ ξ(U \M))
= U \ ξ(ξ(U \M))
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e) The previous feature 4),

Ψξ(Ψξ(M)) = Ψξ(M)⇔ U \ ξ(ξ(U \M)) = U \ ξ(U \M)
⇔ ξ(ξ(U \M)) = ξ(U \M)

f) Since M ∈ J , U \ ξ(U \M) = U \ ξ(U) from Lemma 2.13. So, Ψξ(M) = U \ ξ(U).
g) Using Proposition 2.11 e) and d),

Ψξ(M \ K) = U \ ξ(U \ (M \ K))
= U \ ξ((U \M) ∪ K)
= U \ [ξ(U \M) ∪ ξ(K)]
= U \ ξ(U \M)
= Ψξ(M).

h) Using Lemma 2.13,

Ψξ(M ∪ K) = U \ ξ(U \ (M ∪ K))
= U \ ξ((U \M) ∩ (U \ K))
= U \ ξ((U \M) \ K)
= U \ ξ(U \M)
= Ψξ(M)

i) Suppose that (M \ K)∪ (K \M) ∈ J . From the definition of ideal, (M \ K) ∈ J and (K \M) ∈ J . Using
g) and h),

Ψξ(M) = Ψξ(M \ (M \ K))
= Ψξ((M \ (M \ K)) ∪ (K \M))
= Ψξ((M ∩ K) ∪ (K \M))
= Ψξ(K).

Theorem 4.3. Let (U, τ) be a J-space. Then, the family σξ = {M ⊆ U : M ⊆ Ψξ(M)} is a topology on U.

Proof. It is obvious that ∅,U ∈ σξ. Let M,K ∈ σξ. Since M ⊆ Ψξ(M) and K ⊆ Ψξ(K), M∩K ⊆ Ψξ(M) ∩Ψξ(K) =
Ψξ(M ∩ K) from Theorem 4.2 c). Therefore, M ∩ K ∈ σξ. Let {Mα}α∈I be a family of subsets of σξ for any
index set I. Since Mα ⊆ Ψξ(Mα) for every α ∈ I, Mα ⊆ Ψξ(Mα) ⊆ Ψξ(∪α∈IMα). Then, ∪α∈IMα ⊆ Ψξ(∪α∈IMα).
Hence ∪α∈IMα ∈ σξ. Consequently, σξ is a topology on U.

The elements of topology σξ are called σξ-open sets.

Lemma 4.4. ([17]) Let (U, τ) be a topological space and let M, K be subsets of U. If either M ∈ SO(U) or K ∈ SO(U),
then

Int(Cl(M ∩ K)) = Int(Cl(M)) ∩ Int(Cl(K)).

Theorem 4.5. Let (U, τ) be a J-space. Then, the family σξ0 = {M ⊆ U : M ⊆ Int(Cl(Ψξ(M)))} is a topology on U.

Proof. It is obvious that ∅,U ∈ σξ0 . Let M,K ∈ σξ0 . So, M ⊆ Int(Cl(Ψξ(M))) and K ⊆ Int(Cl(Ψξ(K))). From
Theorem 4.2 a), c) and Lemma 4.4, we have

M ∩ K ⊆ Int(Cl(Ψξ(M))) ∩ Int(Cl(Ψξ(K)))
= Int(Cl(Ψξ(M) ∩Ψξ(K)))
= Int(Cl(Ψξ(M ∩ K))).
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Therefore, M∩K ∈ σξ0 . Let {Mα}α∈I be a family of subsets ofσξ0 for any index set I. Since Mα ⊆ Int(Cl(Ψξ(Mα)))
for every α ∈ I, Mα ⊆ Int(Cl(Ψξ(Mα))) ⊆ Int(Cl(Ψξ(∪α∈IMα))). Then ∪α∈IMα ⊆ Int(Cl(Ψξ(∪α∈IMα))). There-
fore, ∪α∈IMα ∈ σξ. Consequently, σξ0 is a topology on U.

The elements of topology σξ0 are called σξ0 -open sets.

Lemma 4.6. Let (U, τ) be a J-space. Then, ΨΓ(M) ⊆ Ψξ(M) for every subset M ⊆ U.

Proof. From Lemma 2.12, we have ξ(U \M) ⊆ Γ(U \M) . Hence, Ψξ(M) = U \ ξ(U \M) ⊇ U \ Γ(U \M) =
ΨΓ(M).

Theorem 4.7. Let (U, τ) be aJ-space. Every σ-open set is σξ-open set. In other words, the topology σξ is finer than
the topology σ.

Proof. Let M be σ-open set. Therefore, M ⊆ ΨΓ(M) ⊆ Ψξ(M) from Lemma 4.6.

We give an example in which a set is σξ-open set but not σ-open set.

Example 4.8. Let U = {p, r, s, t}, τ = {U, ∅, {t}, {p, s}, {p, s, t}} and J = {∅, {s}, {t}, {s, t}}. For a subset M = {r, t},
ΨΓ(M) = {t} and Ψξ(M) = {r, t} . Although M is σξ-open set, M is not σ-open set.

Theorem 4.9. Let (U, τ) be a J-space. Every σ0-open set is σξ0 -open set. In other words, the topology σξ0 is finer
than the topology σ0.

Proof. Let M be σ-open set. Therefore, M ⊆ Int(Cl(ΨΓ(M))) ⊆ Int(Cl(Ψξ(M))) from Lemma 4.6.

Example 4.10. Consider theJ-space in Example 4.8. For a subset M = {p, t} of U, since Int(Cl(ΨΓ(M))) = ∅,
M is not σ0-open set. On the other hand, we have Int(Cl(Ψξ(M))) = U. This shows that M is σξ0 -open set.

Corollary 4.11. The following corollaries are obtained from Example 4.12 and Example 4.13.

a) The concepts of σξ0 -open set and σξ-open set are independent from each other.
b) The concepts of σ0-open set and σξ-open set are independent from each other.

Example 4.12. Let U = ω + 1 = ω ∪ {ω} and the topology on it be the order topology. This topology can be
expressed [18] as:

τ = P(ω) ∪ {{ω} ∪ (ω \ K) : K ⊆ ω and K is finite}.

Let (U, τ) be a J f in-space and M = {ω}. Except for the point ω, every point in this space has a semi-open
neighborhood such that its semi-closure is finite. Therefore,

Ψξ(M) = U \ ξ(U \M) = U \ ξ(ω) = U \ {ω} = ω.

So, M * Ψξ(M) = ω and M ⊆ Int(Cl(Ψξ(M))) = U. As a result, M is not σξ-open set despite being σξ0 -open
set. Moreover, M is σ0-open set that is shown in [18].

Example 4.13. Consider theJ-space in Example 4.8. It has been shown that subset M = {r, t} is σξ-open set
in this space. Since M * Int(Cl(ΨΓ(M))) = Int(Cl(Ψξ(M))) = {t}, M is neither σ0-open set nor σξ0 -open set.

Corollary 4.14. The following corollaries are obtained from Example 4.15 and Example 4.16.

a) The concepts of σξ-open set and open set are independent from each other.
b) The concepts of σξ0 -open set and open set are independent from each other.

Example 4.15. Consider the J-space in Example 3.1. M = {p, r, s} is open set but neither σξ-open set nor
σξ0 -open set because M * Ψξ(M) = {r, s} and M * Int(Cl(Ψξ(M))) = {s}.
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Example 4.16. Consider the J-space in Example 4.8. M = {p} is not open set but it is both σξ-open set and
σξ0 -open set because M ⊆ Ψξ(M) = {p, s, t} and M ⊆ Int(Cl(Ψξ(M))) = U.

From Theorem 4.7, Example 4.8, Theorem 4.9, Example 4.10, Corollary 4.11 (Example 4.12 and 4.13),
Corollary 4.14 (Example 4.15 and 4.16) and Diagram I, the following diagram is obtained.

θ-open → open
↓

σ-open → σ0-open
↓ ↓

σξ-open σξ0 -open

Diagram II
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