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Abstract. Considering various factors are stochastic rather than deterministic in the evolution of popu-
lations growth, in this paper, we propose a single predator multiple prey stochastic model with seasonal
variation. By using the method of solving an explicit solution, the existence of global positive solution
of this model are obtained. The method is more convenient than Lyapunov analysis method for some
population models. Moreover, the stochastically ultimate boundedness are considered by using the com-
parison theorem of stochastic differential equation. Further, some sufficient conditions for the extinction
and strong persistence in the mean of populations are discussed, respectively. In addition, by constructing
some suitable Lyapunov functions, we show that this model admits at least one periodic solution. Fi-
nally, numerical simulations clearly illustrate the main theoretical results and the effects of white noise and
seasonal variation for the persistence and extinction of populations.

1. Introduction

Relationship between predator and prey is one of the most important relationships between biology in
nature due to its universal existence. Qualitative description of this biology phenomenon has the signifi-
cant practical meaning. Among them, mathematicians made a notable contribution in this neighborhood
primarily through used mathematical modelling. Since the initial and simplest predator-prey mathematical
model was proposed by Lotka and Volterra [1, 2], many scholars established various mathematical mod-
els to analyze the relationship and evolution of populations (see [3–5] and the references therein). More
research results also can be found in the monographs of Chen [6] and Murray [7].

Consider that the complexity of predator-prey relationships between species in the real world, several
researchers have showed clearly that two-species predator-prey models can’t describe the real world ac-
curately, the relationship between predators and preys can only be shown by models with three or more
species. Therefore, there are some scholars have discussed the dynamics of multi-species of predator-prey
model (for example, see [8, 9] and the references therein). Particularly, Walid et al. [10] introduced a three
species predator-prey model with modified Leslie-Gower and Beddington-DeAngelis functional response,
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and established the sufficient conditions of global stability of the positive steady states. Blé et al. [11]
proposed a tritrophic food chain model with Holling III and Holling II functional response for the predator
and the top-predator, respectively, and proved that this model has stable periodic orbit for adequate values
of its parameters. Wang [12] introduced a n-species competitive predator-prey model with Holling-type
II functional response, and established some easily verifiable criteria on the global existence of multiple
positive periodic solutions by using the Gaines and Mawhin’s coincidence degree theory.

Throughout the previous literatures, it is not hard to find that most of the multi-species models are
mainly focussed on the food chain relationship, while less work has been undertaken looking at a single
predator multiple prey model. In fact, this phenomenon exists widely in the nature, for example, most of
the predators (senior carnivore, such as, tiger, lion) feed on variety preys in different types of consumption
ways. With this in mind, Freedman [13] introduced a single predator two preys model which takes the
form of

dx1(t)
dt

= x1(t)[b1 − a11x1(t) − a12x2(t) − a13y(t)],

dx2(t)
dt

= x2(t)[b2 − a21x1(t) − a22x2(t) − a23y(t)],

dy(t)
dt

= y(t)[b3 + a31x1(t) + a32x2(t) − a33y(t)],

(1)

where x1(t), x2(t) and y(t) are the populations sizes of prey-1, prey-2 and predator at time t, respectively;
b1 > 0 and b2 > 0 denote the intrinsic growth rate of prey-1 and prey-2, respectively; b3 > 0 is the intrinsic
growth rate of predator; a11 > 0, a22 > 0 and a33 > 0 are the interspecific competition coefficients of prey-1,
prey-2 and predator, respectively; a13 > 0 and a23 > 0 are capture rates, a31 > 0 and a32 > 0 measure the
efficiencies of food conversion, a12 and a21 are the competition coefficients between the prey-1 and prey-2.

In the recent, biologists noted that biological populations are always subject to white noises. Therefore,
deterministic models cannot be described well with random fluctuations factors of natural phenomena,
and it is important to study how the white noises affect the rule of evolution of populations. For all this,
stochastic population models have been studied by some scholars recently (see[14–18] and the references
therein). For instance, Rudnicki et al. [19] introduced a stochastic prey-predator model, and pointed out the
differences between the deterministic and stochastic models. Costa et al. [20] put forward an individual-
based model of the community that taken into account both prey and predator phenotypes, and proved the
existence of a unique globally asymptotically stable equilibrium under specific conditions on the interaction
among prey individuals. Zhao et al. [21] proposed a stochastic Leslie-Gower predator-prey model with
randomized intrinsic growth rate, and obtained some sufficient conditions for the permanence in mean and
almost sure extinction of this model.

In addition, consider the effect of seasonal variation on populations, Zu et al. [22] introduced a stochastic
Lotka-Volterra prey-predator model with seasonal variation, and studied the extinction, persistence and
existence of positive periodic solution. Zuo et. al. [23] investigated a stochastic periodic Holling-Tanner
predator-prey model with impulsive effects, and given the sufficient condition for the existence of positive
T-periodic solution by choosing a suitable Lyapunov function. Meng et al. [24] studied a non-autonomous
Lotka-Volterra almost periodic predator-prey dispersal model, and proved the uniformly persistent of
population by using the comparison theorem and fundamental theory of delay differential equation. More
related stochastic non-autonomous or periodic population models can be found in [25, 26] and the references
therein.

For all the reasons that have previously been discussed, in this paper, we propose a stochastic predator-
prey model with one predator and two preys. The main motivation is to discussed how white noise and
the seasonal variation influence on the extinction and persistence of populations. The organization of this
paper is as follows. In the next section, we present some lemmas and definitions, which are necessary for
the future discussion. The global, nonnegative and stochastic boundedness of solution of this model are
considered in Section 3, and the sufficient conditions for the extinction and strong persistence in the mean
of populations are obtained in Section 4, respectively. In Section 5, we focus our attention on the existence
of positive periodic solution. The numerical simulations are carried out in Section 6 to verify and extend



H.W. Hui, L.F. Nie / Filomat 35:2 (2021), 535–549 537

our theoretical result, and a brief summary of the main results are provided in the last section.

2. Model formulation and preliminaries

As an extension of model (1) and to better depict the actual phenomenon, we assume that all the
parameters of model (1) and σi(t) are positive θ-periodic continuous functions, where, σi(t) > 0 (i = 1, 2, 3)
represents the intensities of the white noise, θ is a positive constant. In addition, we also suppose that the
growth rates of populations is stochastically perturbed, that is

bi(t)→ bi(t) + σi(t)dBi(t), i = 1, 2, 3,

where Bi(t) are independent standard Brownian motions with Bi(0) = 0. Hence the stochastic version
corresponding to model (1) takes the following form

dx1(t) = x1(t)[b1(t) − a11(t)x1(t) − a12(t)x2(t) − a13(t)y(t)]dt + σ1(t)x1(t)dB1(t),
dx2(t) = x2(t)[b2(t) − a21(t)x1(t) − a22(t)x2(t) − a23(t)y(t)]dt + σ2(t)x2(t)dB2(t),
dy(t) = y(t)[b3(t) + a31(t)x1(t) + a32(t)x2(t) − a33(t)y(t)]dt + σ3(t)y(t)dB3(t).

(2)

Throughout this paper, let (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0
satisfying the usual conditions (i.e. it is right continuous and F0 contains all P-null sets). Set Rn

+ :=
{(x1, x2, · · · , xn) : xi ≥ 0, i = 1, 2, · · · ,n}.

For convenience sake, we introduce, firstly, the following definitions and lemmas.

Definition 2.1 ([27]). The population x1(t) is said to be extinct if limt→∞ x1(s) = 0 a.s.; the population x1(t) is said
to be strongly persistent in the mean if lim inft→∞ t−1

∫ t

0 x1(s) ds > 0 a.s.

Definition 2.2 ([28]). A stochastic process ξ(t) = ξ(t, θ) (−∞ < t < +∞) is said to be periodic with period θ if for
every finite sequence of numbers t1, t2, · · · , tn, the joint distribution of random variables ξ(t1 + kθ), · · · , ξ(tn + kθ) is
independent of k (k = 1, 2, · · · ).

Remark 2.3. In Ref. [28], it is verified that a Markov process X1(t) isθ-periodic if and only if its transition probability
function isθ-periodic and the function P0(t,A) = P{X1(t) ∈ A} satisfies the equation P0(s,A) =

∫
Rd P0(s,dx)P(s, x, s+

θ,A) ≡ P0(s + θ,A), where A ∈ B and B is σ-algebra.

Nextly, consider the following equation

X1(t) = X(t0) +

∫ t

t0

b(s,X(s)) ds +

k∑
i=1

∫ t

t0

σi(s,X(s))dBi(s) X ∈ Rd, (3)

where vectors b(s, z), σ1(s, z) and σk(s, z) (s ∈ (t0,T), z ∈ Rd) are continuous functions of (s, z). We need the
following lemma on the existence of θ-periodic, which was proposed in Ref. [28].

Lemma 2.4 ([28]). Suppose that the coefficients of equation (3) are θ-periodic in t and satisfy conditions

|b(s, x) − b(s, y)| +
k∑

i=1

|σi(s, x) − σi(s, y)| ≤ B|x − y|,

|b(s, x)| +
k∑

i=1

|σi(s, x)| ≤ B(1 + |x|),

(4)

in every cylinder I × U, where B is a constant; and suppose further that there exists a C2-function V(t, x) which is
θ-periodic in t and satisfies the following conditions

inf
|x|>ρ

V(t, x)→∞ as ρ→∞ (5)
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and

LV(t, x) ≤ −1, outside of some compact set, (6)

where the operator L is given by

L =
∂
∂t

+

l∑
i=1

bi(t, x)
∂
∂xi

+
1
2

l∑
i, j=1

ai j(t, x)
∂2

∂xi∂x j
, ai j =

l∑
r=1

σi
r(t, x)σi

r(t, x).

Then there exists a solution of equation (3) which is a θ-periodic Markov process.

Suppose that f (t) is an integrable function on [0,∞), and define 〈 f 〉t = t−1
∫ t

0 f (s) ds. If f (t) is a bounded
function on [0,∞), define f u = supt∈[0,∞) f (t) and f l = inft∈[0,∞) f (t). Since all the parameters of model (2) are
positive θ-periodic continuous functions, the following results holds

0 < al
i j ≤ au

ij < ∞, 0 < bl
i ≤ bu

i < ∞ and 0 < σl
i ≤ σ

u
i < ∞, i, j = 1, 2, 3.

Lemma 2.5 (Lemma in Liu et al. [29]). Suppose that x(t) ∈ C(Ω × [0,∞),R+),

(i) if there exist three constants T > 0, λ0 > 0 and λ ≥ 0 such that for all t ≥ T

ln x(t) ≤ λt − λ0

∫ t

0
x(s) ds +

n∑
i=1

βiBi(t),

where βi are constants (1 ≤ i ≤ n), then lim supt→∞〈x(s)〉t ≤ λ/λ0 a.s.;

(ii) if there exist three constants T > 0, λ ≥ 0 and λ0 > 0 such that for all t ≥ T

ln x(t) ≥ λt − λ0

∫ t

0
x(s) ds +

n∑
i=1

βiBi(t),

where βi are constants (1 ≤ i ≤ n), then lim inft→∞〈x(s)〉t ≥ λ/λ0 a.s.

3. Global positive solutions and stochastic boundedness

Let X(t) = (x1(t), x2(t), y(t)), hi(t) = bi(t) − σ2
i (t)/2 and 1i(t) =

∫ t

0 σi(s) dBi(s) (i = 1, 2, 3). On the global,
nonnegative and stochastic ultimately bounded of model (2), we have the following result.

Theorem 3.1. For any given initial value X(0) ∈ R3
+, there is a unique positive solution X(t) of model (2) for all

t ≥ 0 and the solution will remain in R3
+ with probability one.

Proof. Since coefficients of model (2) are locally Lipschitz continuous, then for any given the initial value
X(0) ∈ R3

+, there is a unique local solution X(t) on t ∈ [0, τe), where τe is t the explosion time (see [28]). To
show this solution is global and positive, we only need to show that τe = ∞. For t ∈ [0, τe), we can directly
calculate the explicit solution of model (2) with the initial value X(0) as follows

x1(t) =
exp

{∫ t

0 h1(s) ds −
∫ t

0 a12(s)x2(s) ds −
∫ t

0 a13(s)y(s) ds + 11(t)
}

1
x(0) +

∫ t

0 a11(s) exp
{∫ s

0 h1(τ) dτ −
∫ s

0 a12(τ)x2(τ) dτ −
∫ s

0 a13(τ)y(τ) dτ + 11(s)
}

ds
,

x2(t) =
exp

{∫ t

0 h2(s) ds −
∫ t

0 a21(s)x1(s) ds −
∫ t

0 a23(s)y(s) ds + 12(t)
}

1
y(0) +

∫ t

0 a22(s) exp
{∫ s

0 h2(τ) dτ −
∫ s

0 a21(τ)x1(τ) dτ −
∫ s

0 a23(τ)y(τ) dτ + 12(s)
}

ds
,

y(t) =
exp

{∫ t

0 h3(s) ds +
∫ t

0 a31(s)x1(s) ds +
∫ t

0 a23(s)x2(s)ds + 13(t)
}

1
z(0) +

∫ t

0 a22(s) exp
{∫ s

0 h3(τ) dτ +
∫ s

0 a31(τ)x1(τ) dτ +
∫ s

0 a32(τ)x2(τ) dτ + 13(s)
}

ds
.
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Note that x1(t) > 0, x2(t) > 0 and y(t) > 0 for t ∈ [0, τe), therefore, we only need to show that τe = ∞. For all
this, consider the following comparison equation

dx1(t) = x1(t)[b1(t) − a11(t)x1(t)]dt + σ1(t)x1(t)dB1(t),
dx2(t) = x2(t)[b2(t) − a22(t)x2(t)]dt + σ2(t)x2(t)dB2(t),
dy(t) = y(t)[b3(t) + a31(t)x1(t) + a32(t)x2(t) − a33y(t)]dt + σ3(t)y(t)dB3(t),

(7)

with the initial value (x1(0), x2(0), y(0)) = X(0). Obviously, the explicit solution of model (7) can be given

x1(t) =
exp

{∫ t

0 h1(s) ds + 11(t)
}

1
x(0) +

∫ t

0 a11(s) exp{
∫ s

0 h1(τ) dτ + 11(s)}ds
,

x2(t) =
exp

{∫ t

0 h2(s) ds + 12(t)
}

1
y(0) +

∫ t

0 a22(s) exp
{∫ s

0 h1(τ) dτ + 12(s)
}

ds
,

y(t) =
exp

{∫ t

0 h3(s) ds +
∫ t

0 a31(s)x1(s) ds +
∫ t

0 a23(s)x2(t) ds + 13(t)
}

1
y(0) +

∫ t

0 a22(s) exp
{∫ s

0 h3(τ) dτ +
∫ τ

0 a31(τ)x1(τ) dτ +
∫ s

0 a23(τ)x2(τ) dτ + 13(s)
}

ds
.

By the comparison theorem of stochastic differential equation, we have x1(t) ≤ x1(t), x2(t) ≤ x2(t) and
y(t) ≤ y(t). Since bi(t), ai j(t), and σi(t) (i, j = 1, 2, 3) are positive bounded θ-periodic functions. Therefore,
x1(t), x2(t) and y(t) will not explode in finite time, then τe = ∞. This completes the proof.

The following Theorem 3.2 is on the stochastically ultimate boundedness of solution of model (2).

Theorem 3.2. For any X(0) ∈ R3
+, then solution X(t) of model (2) with the initial value X(0), is stochastic ultimately

bounded. That is, for any ε ∈ (0, 1), there is a positive constant M = M(ε) such that solution X(t) of model (2) has
the property

lim sup
t→∞

P{|X(t)| > M} < ε.

Proof. Firstly, we prove that the follows inequalities are true.

E[xp
1(t)] ≤ K1(p), E[xp

2(t)] ≤ K2(p), E[yp(t)] ≤ K3(p), t ∈ [0,+∞),

where p > 1. Applying Itô,s formula, one can derive

dxp
1 =pxp

1

[
b1(t) − a11(t)x1 − a12(t)x2 − a13y +

1
2

(p − 1)σ2
1(t)

]
dt + pxp

1σ1(t)dB1(t)

≤pxp
1

[
bu

1 − al
11x1 +

1
2

p(σu
1)2

]
dt + pxp

1σ1(t)dB1(t),

dxp
2 =pxp

2

[
b2(t) − a21(t)x1 − a22(t)x2 − a23y +

1
2

(p − 1)σ2
2(t)

]
dt + pxp

1σ2(t)dB2(t)

≤pxp
2

[
bu

2 − al
22x2 +

1
2

p(σu
2)2

]
dt + pxp

1σ2(t)dB2(t)

(8)

and

dyp =pyp
[
b3(t) + a31(t)x1 + a32(t)x2 − a33y +

1
2

(p − 1)σ2
3(t)

]
dt + pypσ3(t)dB3(t)

≤pyp
[
bu

3 + au
31x1 + au

32x2 − al
33y +

1
2

p(σu
2)2

]
dt + pxp

1σ3(t)dB3(t).
(9)

Taking the exception of both sides on the first inequality of (8) yields that

dE[xp
1(t)]

dt
≤ pE[xp

1(t)]
{[

bu
1 +

1
2

p(σu
1)2

]
− al

11(E[xp
1(t)])

1
p

}
.
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Consider the following comparison equation

dW1(t)
dt

= pW1(t)
{[

bu
1 +

1
2

p(σu
1)2

]
− al

11W1(t)
1
p

}
.

It is easy to see that the above equation is a Bernoulli equation, then one can get

[W1(t)]−
1
p =

(∫ t

0
al

11 exp
{[

bu
1 +

1
2

p(σu
1)2

]
s
}

ds + W1(0)
)

exp
{[
−bu

1 −
1
2

p(σu
1)2

]
t
}
.

In view of L,Hospital,s rule leads to

lim
t→∞

W1(t) =

bu
1 + 1

2 p(σu
1)2

al
11

p

.

Therefore, by the comparison theorem, we have

lim sup
t→∞

E[xp
1(t)] ≤ lim

t→∞
W1(t) =

bu
1 + 1

2 p(σu
1)2

al
11

p

:= K1(p).

Further, for any given ε > 0, there exists a constant T > 0 such that for all t > T,

E[xp
1(t)] ≤ K1(p) + ε.

Together with the continuity of E[x1(t)p], there exists K̂1(p) > 0 such that E[xp
1(t)] < K̂2(p) for t ≤ T. Let

K1(p) = max
{
K1(p), K̂1(p)

}
,

then, for all t ∈ R+, E[x1(t)p] ≤ K1(p). Similarly, we have E[yp(t)] ≤ K2(p) for all t ∈ R+.
Next, we claim that E[yp(t)] ≤ K3(p) for all t ∈ R+. Taking exception on (9), we get

dE[yp(t)]
dt

≤pE[yp(t)]
{[

bu
3 + au

31(E[xp(t)])
1
p + au

32(E[yp(t)])
1
p +

1
2

p(σu
3)2

]
− al

33(E[yp(t)])
1
p

}
≤pE[yp(t)]

{[
bu

3 + au
31[K1(p)]

1
p + au

32[K2(p)]
1
p +

1
2

p(σu
3)2

]
− al

33(E[yp(t)])
1
p

}
.

By the same method as above, we can show that E[yp(t)] ≤ K3(p) for all t ∈ R+.
According to above discussion and analysis, one can see that E[|X(t)|p] ≤ K(p), where K(p) = 3p/2[K1(p) +

K2(p) + K3(p)]. Further, for arbitrary ε > 0, set M = (K(p)/ε)1/p, then by virtue of Chebyshev,s inequality, one
can see that

P{|X(t)| > M} < E[|X(t)|p]M−p
≤ K(p)

(
K(p)
ε

)−1

= ε.

The proof is complete.

4. Persistence and extinction

In this section, we focus on the extinction and persistence of model (2).

Theorem 4.1. For any X(0) ∈ R3
+, then the solution X1(t) of model (2) with the initial value X(0) obeys

lim sup
t→∞

ln x1(t)
t

≤ 0, lim sup
t→∞

ln x2(t)
t

≤ 0, lim sup
t→∞

ln y(t)
t
≤ 0, a.s.

Proof. Consider the following comparison theorem{
dx1(t) = x1(t)[b1(t) − a11(t)x1(t)]dt + σ1(t)x1(t)dB1(t),
dx2(t) = x2(t)[b2(t) − a22(t)x2(t)]dt + σ2(t)x2(t)dB2(t).
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In view of the comparison theorem, we can easy to get

x1(t) ≤ x1(t), x2(t) ≤ x2(t), a.s., t ∈ [0,∞).

By the same method as Lemma 3.4 in Ref. [30], it follows that

lim sup
t→∞

ln x1(t)
ln t

≤ 1, lim sup
t→∞

ln x2(t)
ln t

≤ 1.

Moreover,

lim sup
t→∞

ln x1(t)
ln t

≤ lim sup
t→∞

ln x1(t)
ln t

≤ 1, lim sup
t→∞

ln x2(t)
ln t

≤ lim sup
t→∞

ln x2(t)
ln t

≤ 1.

In addition,

lim sup
t→∞

ln x1(t)(t)
t

= lim sup
t→∞

ln x1(t)
ln t

ln t
t
≤ lim sup

t→∞

ln t
t

= 0

and

lim sup
t→∞

ln x2(t)
t

= lim sup
t→∞

ln x2(t)
ln t

ln t
t
≤ lim sup

t→∞

ln t
t

= 0.

Now, we claim that lim supt→∞ ln y(t)/t ≤ 0. In fact, the proof is a slight modification of that for Lemma 3.4
in Li and Mao [30] by replacing the function V(x) =

∑n
i=1 xi in the proof of this Lemma with V(x) = x1 +x2 +ηy

in this paper, where, η is a positive constant satisfied

ηmax
{
au

31, a
u
32

}
≤ min

{
al

13, a
l
23

}
. (10)

This completes the proof.

Now, we turn our attention to the persistence of model (2).

Theorem 4.2. Let (x1(t), x2(t), y(t)) be solution of model (2) with the initial value (x(0), y(0), y(0)) ∈ R3
+, if λ1 > 0,

λ2 > 0 and 〈hi(t)〉θ > 0 (i = 1, 2, 3), then the solution of model (2) are obeys

λ1

au
11
≤ lim inf

t→∞
〈x1(s)〉t ≤ lim sup

t→∞
〈x1(s)〉t ≤

〈h1(t)〉θ
al

11

,

λ2

au
22
≤ lim inf

t→∞
〈x2(s)〉t ≤ lim sup

t→∞
〈x2(s)〉t ≤

〈h2(t)〉θ
al

22

and
〈h3(t)〉θ

au
33

≤ lim inf
t→∞

〈y(s)〉t ≤ lim sup
t→∞

〈y(s)〉t ≤
β

al
33

,

where

λ1 = 〈h1(t)〉θ−
au

12〈h2(t)〉θ
al

22

−
au

13β

al
33

, λ2 = 〈h2(t)〉θ−
au

21〈h1(t)〉θ
al

11

−
au

23β

al
33

, β = 〈h3(t)〉θ +
au

31〈h1(t)〉θ
al

11

+
au

32〈h2(t)〉θ
al

22

.

Proof. By Itô,s formula, we drive from model (2) that from

ln
x1(t)
x1(0)

= t〈h1(s)〉t − t〈a11(s)x1(s)〉t − t〈a12(s)x2(s)〉t − t〈a13(s)y(s)〉t +

∫ t

0
σ1(s) dB1(s),

ln
x2(t)
x2(0)

= t〈h2(s)〉t − t〈a21(s)x1(s)〉t − t〈a22(s)x2(s)〉t − t〈a23(s)y(s)〉t +

∫ t

0
σ2(s) dB2(s),

ln
y(t)
y(0)

= t〈h3(s)〉t + t〈a31(s)x1(s)〉t + t〈a32(s)x2(s)〉t − t〈a33(s)y(s)〉t +

∫ t

0
σ3(s) dB3(s).

(11)
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Moreover, we can get

ln x1(t) ≤ ln x1(0) + t〈h1(s)〉t − al
11t〈x1(s)〉t +

∫ t

0
σ1(s) dB1(s),

ln x2(t) ≤ ln x2(0) + t〈h2(s)〉t − al
22t〈x2(s)〉t +

∫ t

0
σ2(s) dB2(s),

ln y(t) ≥ ln y(0) + t〈h3(s)〉t − au
33t〈y(s)〉t +

∫ t

0
σ3(s) dB3(s).

From the strong law of large number for local martingales (see, Ref. [27]), one have

lim
t→∞

1
t

∫ t

0
σi(s) dBi(s) ≤ lim

t→∞

σu
i Bi

t
= 0, a.s. i = 1, 2, 3.

Further, by the periodicity of bi(t) and σi(t), it can be easily proved that limt→∞〈hi(s)〉t = 〈hi(t)〉θ, (i = 1, 2, 3).
Note that 〈hi(t)〉θ > 0, then Lemma 2.5 yields

lim sup
t→∞

〈x1(s)〉t ≤
〈h1(t)〉θ

al
11

, lim sup
t→∞

〈x2(s)〉t ≤
〈h2(t)〉θ

al
22

, lim inf
t→∞

〈y(s)〉t ≥
〈h3(t)〉θ

au
33

. (12)

On the other hand, it follows from (11) that

ln x1(t) ≥ ln x1(0) + t〈h1(s)〉t − au
11t〈x1(s)〉t − au

12t〈x2(s)〉t − au
13t〈y(s)〉t +

∫ t

0
σ1(s) dB1(s),

ln x2(t) ≥ ln x2(0) + t〈h2(s)〉t − au
21t〈x1(s)〉t − au

22t〈x2(s)〉t − au
23t〈y(s)〉t +

∫ t

0
σ2(s) dB2(s),

ln y(t) ≤ ln y(0) + t〈h3(s)〉t + au
31t〈x1(s)〉t + au

32t〈x2(s)〉t − al
33t〈y(s)〉t +

∫ t

0
σ3(s) dB3(s).

In view of limt→∞〈h3(s)〉t = 〈h3(t)〉θ and (12), then for arbitrary ε > 0, there is a positive constant T = T(ε)
such that for all t > T

〈x1(s)〉t ≤
〈h1(t)〉θ

al
11

+
ε

3au
31
, 〈x2(s)〉t ≤

〈h2(t)〉θ
al

22

+
ε

3au
32
, 〈h3(s)〉t ≤ 〈h3(t)〉θ +

ε
3
.

Then we can see that for all t > T

ln
y(t)
y(0)

≤ t

〈h3(t)〉θ +
au

31〈h1(t)〉θ
al

11

+
au

32〈h2(t)〉θ
al

22

+ ε

 − tal
33〈y(s)〉t +

∫ t

0
σ3(s) dB3(s).

By Lemma 2.5 and according to the arbitrariness of ε, we get

lim sup
t→∞

〈y(s)〉t ≤
〈h3(t)〉θ +

au
31〈h1(t)〉θ

al
11

+
au

32〈h2(t)〉θ
al

22

al
33

=
β

al
33

. (13)

On the other hand, from lim supt→∞〈x2(s)〉t ≤ 〈h2(t)〉θ/al
22, limt→∞〈h1(s)〉t = 〈h1(t)〉θ and (13), for arbitrary

δ > 0, there is a positive constant T̃ = T̃(δ) such that for all t > T̃

〈h1(s)〉t ≤ 〈h1(t)〉θ + δ, 〈x2(s)〉t ≤
〈h2(t)〉θ

al
22

+
δ

2au
12
, 〈y(s)〉t ≤

β

al
33

+
δ

2au
13
.

Then, for sufficiently large t, we can get

ln
x1(t)
x1(0)

≥ t

〈h1(t)〉θ −
au

12〈h2(t)〉θ
al

22

−
au

13β

al
33

 − au
11t〈x1(s)〉t +

∫ t

0
σ1(s) dB1(s).
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By the Lemma 2.5 again, it yields that

lim inf
t→∞

〈x1(s)〉t ≥
〈h1(t)〉θ −

au
12〈h2(t)〉θ

al
22
−

au
13β

al
33

au
11

=
λ1

au
11
.

By the same method as above, it can be easily shown that

lim inf
t→∞

〈x2(s)〉t ≥
〈h2(t)〉θ −

au
21〈h1(t)〉θ

al
11
−

au
23β

al
33

au
22

=
λ2

au
22
.

The proof is complete.

On the persistence and extinction of a single species of model (2), direct application Theorem 4.2, we
have the following corollary.

Corollary 4.3. (i) If 〈h1(t)〉θ < 0 (or 〈h2(t)〉θ < 0), then the population x1(t) (or x2(t)) will go to extinction, a.s.;

(ii) if λ1 > 0 (or λ2 > 0), then the population x1(t) (or x2(t)) will be strongly persistent in the mean, a.s.;

(iii) if β < 0, then the population y(t) will go to extinction, a.s.;

(iv) if 〈h3(t)〉θ > 0, then the population y(t) will be strongly persistent in the mean, a.s.

5. Existence of periodic solution

On the existence of a positive θ-periodic solution of model (2), we have the following Theorem 5.1.

Theorem 5.1. If bl
1 > (σu

1)2/2, bl
2 > (σu

2)2/2 and bl
3 > (σu

3)2, then model (2) exists at least one positive θ-periodic
solution.

Proof. Since all coefficients of model (2) are continuous bounded positive periodic functions, it is clear that
the condition (4) of Lemma 2.4 holds. Now, we show the conditions (5) and (6) hold. Define function
V(t, x1, x2, y) is given as follows

V(t, x1, y) = V1(x1, x2, y) + ĉV2(x1, x2) + V3(y) + V4(t),

here

V1(x1, x2, y) = x1 + x2 + ηy, V2(x1) = −(ln x1 + ln x2), V3(y) =
1
y
, and V4(t) = $(t),

η is a positive constant and satisfies condition (10), ĉ is a positive constant to be chosen later, and

d$(t)
dt

=
1
θ

∫ θ

0
b1(s) ds − b1(t) = 〈b1(t)〉θ − b1(t).

First, we can claim that $(t) is a θ-periodic function on [0,∞). In fact integrating above equality frow t
to t + θ, one get

$(t + θ) − $(t) =

∫ t+θ

t
$(s) ds =

∫ θ

0
b1(s) ds −

∫ t+θ

t
b1(s) ds = 0.

By the periodicity of $(t), V(t, x1, x2, y) is a θ-periodic function on t and satisfies condition (5), where we
use the fact that the coefficients of quadratic in V(t, x1, x2, y) are all positive.

Next, we verify the condition (6) of Lemma 2.4. By using Itô,s formula, it follows that

LV1 =b1(t)x1 − a11(t)x2
1 − a12(t)x1x2 − a13x1 + b2(t)x2 − a21(t)x1y − a22(t)x2

2 − a23(t)x2y

+ ηb3(t)y + ηa31(t)x1y + ηa32(t)x2y − ηa33(t)y2
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≤ − al
11x2

1 − al
22x2

2 − ηal
33y2 + bu

1x1 + bu
2x2 + ηbu

3 y,

LV2 = − [(b1(t) − a11(t)x1 − a12(t)x2 − a13(t)y] +
1
2
σ2

1(t)

− [(b2(t) − a21(t)x1 − a22(t)y − a23(t)y] +
1
2
σ2

2(t)

≤au
11x1 + au

12x2 + au
13y − bl

1 +
1
2

(σu
1)2 + au

21x1 + au
22x2 + au

23y − bl
2 +

1
2

(σu
2)2,

LV3 = −
1
y

[b3(t) + a31(t)x1 + a32(t)x2 − a33(t)y] +
σ2

3(t)
y
≤ −

bl
3 − (σu

3)2

y
+ au

33

and LV4 = 〈b1(t)〉θ − b1(t) ≤ 〈b1(t)〉θ − bl
1. So, it is easy to calculate that

LV ≤ f (x1) + 1(x2) + h(y),

where

f (x1) = − al
11x2

1 + [bu
1 + ĉ(au

11 + au
21)]x1 − ĉ

(
bl

1 −
1
2

(σu
1)2

)
,

1(x2) = − al
22x2

2 + [bu
2 + ĉ(au

12 + au
22)]x2 − ĉ

(
bl

2 −
1
2

(σu
2)2

)
,

h(y) = − ηal
33y2 + [ηbu

3 + ĉ(au
13 + au

23)]y −
bl

3 − (σu
3)2

y
+ au

33 + 〈b1(t)〉θ − bl
1.

In view of bl
3 > (σu

2)2, we get

f (x1) + 1u + hu
→ −∞, as x1 → +∞,

f u + 1(x2) + hu
→ −∞, as x2 → +∞,

f u + 1u + h(y)→ −∞, as y→ +∞ or y→ 0,

and

f (x1) + 1u + hu
→ 1u + hu

− ĉ
(
bl

1 −
1
2

(σu
1)2

)
, as x1 → 0,

f u + 1(x2) + hu
→ f u + hu

− ĉ
(
bl

2 −
1
2

(σu
2)2

)
, as y→ 0.

By conditions bl
1 > (σu

2)2/2 and bl
2 > (σu

2)2/2, there exists a constant ĉ such that

1u + hu
− ĉ

(
bl

1 −
1
2

(σu
1)2

)
≤ −2, f u + hu

− ĉ
(
bl

2 −
1
2

(σu
2)2

)
≤ −2. (14)

Take κ sufficiently large and

U =
{
(x1, x2, y) : and insert space

1
κ
≤ x1 ≤ κ,

1
κ
≤ x2 ≤ κ,

1
κ
≤ y ≤ κ

}
.

Obviously,

LV ≤ −1, (x1, x2, y) ∈ R3
+/U.

Thus, condition (6) is satisfied. This completes the proof.

6. Numerical simulations

To verify the mathematical results obtained above, in this section, we perform numerical simulations
with the help of software from MATLAB soft. By using Milsten method mentioned in Higham [31], the
corresponding discretization equation of model (2) takes the form

x1k+1 =x1k + x1k

[
b1(k∆t) − a11(k∆t)x1k − a12(k∆t)x2k − a13(k∆t)yk

]
∆t
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+ σ1(k∆t)x1kγ1k

√
∆t + σ2

1(k∆t)x1k (γ
2
1k − 1)∆t/2,

x2k+1 =x2k + x2k

[
b2(k∆t) − a21(k∆t)x1k − a22(k∆t)x2k − a23(k∆t)yk

]
∆t

+ σ2(k∆t)x2kγ2k

√
∆t + σ2

2(k∆t)x2k (γ
2
2k − 1)∆t/2,

yk+1 =yk + yk
[
b3(k∆t) − a31(k∆t)x1k − a32(k∆t)x2k − a33(k∆t)yk

]
∆t

+ σ3(k∆t)ykγ1k

√
∆t + σ2

3(k∆t)yk(γ2
1k − 1)∆t/2,

where γ1k, γ2k and γ3k (k = 1, 2, · · ·,n) are the independent Gaussian random variables N(0, 1). Given that
the effect of seasonal variation on populations, we let the basic model parameters as

a11(t) = 1 + ρ sin(πt/15), a12(t) = 0.3 + ρ sin(πt/15), a13(t) = 0.2 + ρ sin(πt/15),
a21(t) = 0.3 + ρ sin(πt/15), a22(t) = 1 + ρ sin(πt/15), a23(t) = 0.2 + ρ sin(πt/15),
a31(t) = 0.1 + ρ sin(πt/15), a32(t) = 0.1 + ρ sin(πt/15), a33(t) = 1 + ρ sin(πt/15).

(15)

We assume that all of parameters of model (2) are 30-periodic functions which are for the convenience of
numerical simulations, and ρ is a positive constant to be chosen later. In fact, we can appropriately adjust
periodic length, making it more meaningful, such as a quarter, or a year.

The plots in Figure 1(a) show that deterministic model (1) without or with seasonal variation have a
stable positive equilibrium and a stable positive periodic solution, respectively. However, under the effect of
white noise, stochastic model (2) without or with seasonal variation show more complex dynamic behaviors,
which are shown in blue and green lines in Figure 1(a). Further, if we choose other model parameters, there
is a significantly different between the stochastic model and the corresponding deterministic model, white
noise can make the population to become extinct, as showed in Figure 1(b). These suggest that the effects
of white noise and seasonal variation have significant influence on the development trend of populations.
Therefore, we do such consideration that white noises and seasonal variation for a predator-prey model
with single predator and two preys is completely necessary.
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Figure 1: Comparison diagrams: (a) the dynamics of four models, where white notices and seasonal variation are introduced; (b) the
comparison between stochastic model and the corresponding deterministic model under the effect of seasonal variation.

Next we will be more qualitative analysis of these problems in detail.

Example 6.1. Extinction and persistence of populations.

Draw on the selection of parameters in References [22, 24–26], for model (2), we choose the parameters as

b1(t) = 0.9 + ρ sin(πt/15), b2(t) = 0.9 + ρ sin(πt/15), b3(t) = 0.3 + ρ sin(πt/15),

σ2
1(t)
2

= 0.1 + ρ sin(πt/15),
σ2

2(t)
2

= 0.1 + ρ sin(πt/15),
σ2

3(t)
2

= 0.1 + ρ sin(πt/15)
(16)

and the other parameters are taken as (15), here, we always assume that the intensity of reflect seasonal
variation is ρ = 0.1 except for the other specification. It is easy to calculate 〈h1(t)〉θ = 〈h2(t)〉θ = 0.8 > 0,
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〈h3(t)〉θ = 0.2 > 0, β = 0.556 > 0 and λ1 = 〈h1(t)〉θ − au
12〈h1(t)〉θ/al

22 − au
13β/a

l
33 = λ2 = 0.259 > 0. In view of

Theorem 4.2 and Corollary 4.3, populations x1(t), x2(t) and y(t) are strongly persistent in the mean. This
can be seen more obviously from in Figure 2(a). However, when we adjust the parameters and makes
〈h1(t)〉θ < 0, for example, b1(t) = 0.4 + ρ sin(πt/15), σ2

1(t)/2 = 0.5 + ρ sin(πt/15), other parameters are taken
as (15) and (16). By virtue of Corollary 4.3, the prey-1 population x1(t) is extinct and populations x2(t) and
y(t) are strongly persistent in the mean, which is shown in Figure 2(b). Further, let b2(t) = 0.4 +ρ sin(πt/15),
σ2

2(t)/2 = 0.5 + ρ sin(πt/15) and the other values of model parameters are invariant. It is not hard to
compute 〈h1(t)〉θ = 〈h2(t)〉θ = −0.1 < 0 and 〈h3(t)〉θ = 0.2 > 0. Then, prey populations x1(t) and x2(t) are
extinct and predator population is strongly persistent in the mean by Corollary 4.3. Which be verified by
Figure 2(c). In fact, numerical simulations and theoretical results indicate that the predator population is
extinct or persistent not directly related to the extinction of prey populations. In addition, if we choose
bi(t) = 0.4 + ρ sin(πt/15), σ2

i (t)/2 = 0.5 + ρ sin(πt/15) (i = 1, 2, 3) and the other parameters are taken as (15)
and (16), it can be easily shown that 〈h1(t)〉θ = 〈h2(t)〉θ = −0.1 < 0 and β = −0.2 < 0. In view of Corollary
4.3, all populations of model (2) are extinct, as can be clearly seen from Figure 2(d).
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Figure 2: The extinction and persistence: (a) all populations are persistent; (b) population x1(t) is extinct and the other populations
are persistent; (c) population y(t) is persistent and all prey populations are extinct; (d) all populations are extinct.

Example 6.2. Existence of periodic solution.

In order to better reflect the effect of seasonal variation on populations, we increase value of ρ to 0.18 and
the other parameters are the same as (15) and (16). In this case, we can verify that bl

i = 0.72 > 0.0392 = (σu
i )2/2

(i = 1, 2) and bl
3 = 0.12 > 0.0784 = (σu

3)2. That is, all the conditions of Theorem 5.1 are hold. Hence, model
(2) admits at least one positive periodic solution. The theoretical result can be seen more obviously from
in Figure 3(a) and Figure 3(b). Further, the plots in Figure 3(c) show that the positive periodic solutions of
model (2) is global attractive. Therefore, we present an interesting opening question: model (2) admits a
global attractive positive periodic solution under some conditions.
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Figure 3: The existence of periodic solution of stochastic model (2).

Example 6.3. The effect of white noises on the dynamics of population.

In this example, we choose the different intensities of white noise σ2
3(t)/2 = 0.5 + ρ sin(πt/15), σ2

3(t)/2 =

0.3 + ρ sin(πt/15), and σ2
3(t)/2 = 0.1 + ρ sin(πt/15), respectively, and the other parameters are fixed as (15)

and (16) (Specially, we still let ρ = 0.18). Numerical simulations show that the deterministic model with
seasonal variation has a stable periodic solution, which describes by the black line in Figure 4. However,
when white noises are introduced, the densities of populations are oscillating and the amplitude are directly
proportional to the intensities of white noises, and if the intensity value exceeds a certain threshold, the
population loses its persistence and becomes extinct, as depicted by blue lines and green lines in Figure 4.
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Figure 4: The effects of white noises on the dynamics of model (2).
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7. Conclusions

Multi-species predator-prey models should be considered due to the diversity of species and the com-
plexity of predator-prey relationships in nature. In addition, for the population, always inevitably subjected
to the influence of white noise and seasonal variation. For that reason, in this paper, the dynamic com-
plexity of a single predator multiple prey stochastic model with seasonal variation is studied. Firstly, we
show that model is a worldwide positive solution and stochastically ultimate boundedness by solving its
explicit expression method. In fact, this method is applicable to the general Lotka-Volterra models, which
is a simple and easy way to determine the global positive of solutions for stochastic model. Further, we
obtain some sufficient conditions on the persistence and extinction of populations and partial populations.
From the expressions of the threshold condition of Theorem 4.2 and Corollary 4.3, it is clearly show that
white noises directly affect the persistence and extinction of populations. Moreover, by using the theory of
Khasminskii [28], the existence of positive periodic solution is considered. Finally, numerical simulations
are carried to verify and extend the validity and feasibility of the all theoretical results. Numerical simu-
lations show that the stochastic non-autonomous population model has more complex dynamic behavior
than the corresponding deterministic periodic model and the autonomous stochastic model. Specifically,
the seasonal variation leads to an oscillation periodic behavior of the model solution, and the white noises
have an obvious adverse effects on the persistence and extinction of population. How can effectively re-
duce the negative impacts of white noises and maximally adapt to seasonal variation for populations make
population achieve sustainable development will be an important project.
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