Multipliers and Closures of Besov-Type Spaces in the Bloch Space

Dongxia Lia, Liu Yangb

aDepartment of Basic Science, City University of Zhengzhou, Zhengzhou 452370, Henan, P. R. China.
bSchool of mathematics and statistics, Shanxi Xueqian Normal University, 710100, China.

Abstract. Let $p > 1$ and let ρ be a non-negative function defined in \mathbb{R}^+. A function $f \in H(D)$ belongs to the space $B_p(\rho)$ (see [4]) if

$$
\|f\|_{B_p(\rho)}^p = |f(0)|^p + \int_D \left| (1 - |z|^2) f(z) \right|^p \frac{\rho(1 - |z|^2)}{(1 - |z|^2)^2} dA(z) < \infty.
$$

In this paper, motivated by the works of Békoellé and Bao and Gögüs, under some conditions on the weight function ρ, we investigate the closures $C_B(B \cap B_p(\rho))$ of the spaces $B \cap B_p(\rho)$ in the Bloch space. Moreover, we prove that interpolating Blaschke products in $C_B(B \cap B_p(\rho))$ are multipliers of $B_p(\rho) \cap BMOA$.

1. Introduction

We denote the unit disk $\{z \in \mathbb{C} : |z| < 1\}$ by D and its boundary $\{z \in \mathbb{C} : |z| = 1\}$ by ∂D. Let $H(D)$ be the space of all analytic functions in D.

Let H^p (see [11]) denote the space of those analytic functions $f \in H(D)$ such that

$$
\|f\|_{H^p}^p = \sup_{0 < r < 1} M^p_r(f) = \sup_{0 < r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta < \infty.
$$

Let $BMOA$ denote the space of those analytic functions f in the Hardy space H^p whose boundary functions have bounded mean oscillation on ∂D. $BMOA$ ([17, 19]) is a Banach space under the following norm:

$$
\|f\|_{BMOA} = |f(0)|^p + \sup_{a \in D} \|f \circ \varphi_a - f(a)\|_{H^p}^p,
$$

where $\varphi_a(z) = \frac{z - a}{1 - \bar{a}z}$, $a, z \in D$ and $p \geq 1$.

Recall that the Bloch space ([2, 34]) is the class of functions $f \in H(D)$ satisfying

$$
\|f\|_B = |f(0)| + \sup_{z \in D} (1 - |z|^2)|f'(z)| < \infty.
$$

2010 Mathematics Subject Classification. Primary 30D50; Secondary 30D45

\textbf{Keywords.} keywords, $B_p(\rho)$ spaces; closures; interpolating sequence, Blaschke products.

Received: 14 November 2019; Revised: 18 October 2020; Accepted: 08 April 2021

Communicated by Miodrag Mateljević
Corresponding author: Dongxia Li
This work was supported by Education Department of Shaanxi Provincial Government (No.19JK0213).

\textit{Email addresses:} lidongxia1980@163.com (Dongxia Li), 3819005679@qq.com (Liu Yang)
Let $p > 1$ and let ρ be a non-negative function defined in \mathbb{R}^+. A function $f \in H(\mathbb{D})$ belongs to the space $B_p(\rho)$ if
\[\|f\|_{B_p(\rho)}^p = |f(0)|^p + \int_{\mathbb{D}} \left(1 - |z|^2\right)^{\rho} dA(z) < \infty,\]
where $dA(z)$ is the usual normalized Lebesgue measure on \mathbb{D}. This space is introduced by Arcozzi, Rochberg and Sawyer in [4]. They considered Carleson measures for $B_p(\rho)$ spaces under the condition that the weight function ρ is ρ-admissible, or admissible, that is, ρ satisfies the following conditions:

(i) $\rho(z)$ is regular, i.e., there exist $\epsilon > 0$, $C > 0$ such that $\rho(z) \leq C\rho(w)$ when z and w are within hyperbolic distance ϵ. Equivalently, there are $\delta < 1$, $C' > 0$ so that $\rho(z) \leq C'\rho(w)$ whenever
\[\left|\frac{z - w}{1 - \overline{z}w}\right| \leq \delta < 1.\]

(ii) The weight $\rho_p(z) = (1 - |z|^2)^{\gamma-2}\rho(z)$ satisfies the Békollé-Bonami B_p condition([7, 8]): There is a $C(\rho, p)$ so that for all $a \in \mathbb{D}$ we have
\[
\left(\int_{S(a)} \rho_p(z)dA(z)\right)^{1/(\gamma-1)} \leq C(\rho, p)\left(\int_{S(a)} dA(z)\right)^{\gamma}.
\]
Where $1/p + 1/q = 1$, and
\[S(a) = \{z \in \mathbb{D} : 1 - |z| \leq 1 - |a|, \arg(az) \leq \frac{1 - |a|}{2}\}, \quad a \in \mathbb{D}.
\]

In the case $\rho(t) = t^s$, $0 \leq s < \infty$, the space $B_p(\rho)$ gives the usual Besov type space $B_p(s)$. In particular, if $s = 0$, this gives the classical Besov space B_p. We refer to [5], [9], [10] and [12] for $B_p(s)$ spaces and [30], [31] and [32] for $B_2(s) = D_s$ spaces. The space $B_p(\rho)$ has been extensively studied. For example, under some conditions on ρ, N. Arcozzi, R. Kerman and E. Sawyer [4] give many results on $B_p(\rho)$ spaces using Carleson measures. When $p = 2$, $B_2(\rho) = D_\rho$, weighted Dirichlet spaces. Using maximal operators, R. Kerman and E. Sawyer [21] characterized the Carleson measures and multipliers of D_ρ spaces. For more informations on D_ρ spaces, we refer to [1] and the paper referinthere.

Let us recall that a weight ρ is of upper (resp. lower) type γ ($0 \leq \gamma < \infty$) ([20]), if
\[\rho(s) \leq Cs^\gamma \rho(t), \quad s \geq 1 \quad (\text{resp. } s \leq 1) \quad \text{and} \quad 0 < t < \infty.
\]
We say that ρ is of upper type less than γ if it is of upper type δ for some $\delta < \gamma$ and similarly for lower type greater than δ. From [20], we see that an increasing function ρ is of finite upper type if and only if $\rho(2t) \leq C\rho(t)$ for some positive constant C and all t. It is not hard to verify that ρ satisfies (i) and (ii), if ρ is of upper type less than 1 and lower type greater than 0.

In [2], Anderson, Clunie and Pommerenke raised the question of determining the closure of H^ρ in the Bloch norm. Until now, the problem is still unsolved. Jones [3, Theorem 9] gave an unpublished characterization of the closure of BMOA in Bloch space. Zhao [33] studied the closures of some Möbius invariant spaces in the Bloch space. Lou and Chen [22] generalize [33] later. For $1 < p < \infty$, Monreal Galán and Nicolau in [24] characterized the closure in the Bloch norm of the space $H^p \cap B$. Galanopoulos, Monreal Galán and Pau [16] generalize [24] to $0 < p < \infty$ later. Recently, Bao and Göğüs [6] and Galanopoulos and Girela [15] have investigated the closures in B of $B \cap D_\rho$ for certain spaces of Dirichlet Type D_ρ^p. For more results on closures of analytic function spaces in the Bloch space, we refer to [28] and [29]. In this paper, we study the closures of the $B_\rho(\rho)$ spaces, generalizing the main results in [6] and [15]. Meanwhile, interpolating Blaschke products in $C_\rho(B \cap B_\rho(\rho))$ as multipliers of $B_\rho(\rho) \cap BMOA$ are also investigated.

Throughout this paper, let $\rho : [0, \infty) \rightarrow [0, \infty)$ be a right continuous and nondecreasing function with $\rho(0) = 0$ and $\rho(t) > 0$ if $t > 0$. The symbol $A \approx B$ means that $A \leq B \leq A$. We say that $A \leq B$ if there exist a constant C such that $A \leq CB$.
Remark 1. Using [20, Lemma 4], the fact that \(\rho \) is increasing, and the above mentioned fact that \(\rho \) is of finite upper if and only if \(\rho(2t) \leq C \rho(t) \) (\(t \geq 0 \)), we deduce the following:

If \(\rho \) is of finite upper type, then \(\rho \) is of upper type less than \(p \) if and only if

\[
\frac{\rho(t)}{t^p} \approx \int_t^\infty \rho(s) \frac{ds}{s^{1+p}}.
\]

Remark 2. Let \(0 \leq a < 1 \) and \(p > 1 \). If \(\rho \) is of finite upper type \(a \), we can deduce that \(B_p(\rho) \subseteq H^p \). Indeed, take \(b \) with \(a < b < 1 \), using Remark 1, we deduce that

\[
\int_D |f'(z)|^p (1 - |z|^2)^{p-2} \rho(1 - |z|^2) \, dA(z)
\]

\[
= \int_D |f'(z)|^p (1 - |z|^2)^{p-2} \frac{\rho(1 - |z|^2)}{(1 - |z|^2)^p} (1 - |z|^2) \, dA(z)
\]

\[
\approx \int_D |f'(z)|^p (1 - |z|^2)^{p-2} \left(\int_{1-|z|^2}^\infty \rho(s) \frac{ds}{s^{1+p}} \right) (1 - |z|^2) \, dA(z)
\]

\[
\leq \int_D |f'(z)|^p (1 - |z|^2)^{p-2} \left(\int_{1-|z|^2}^\infty \rho(s) \frac{ds}{s^{1+p}} \right) (1 - |z|^2) \, dA(z)
\]

\[
\approx \rho(1) \int_D |f'(z)|^p (1 - |z|^2)^{p-2} (1 - |z|^2) \, dA(z).
\]

Thus, \(B_p(\rho) \subseteq B_p(b) \). Then the inclusion \(B_p(\rho) \subseteq H^p \) follows from the well known fact that \(B_p(b) \subseteq H^p \) because \(0 < b < 1 \).

2. Equivalent Characterizations of closures of \(B_p(\rho) \) spaces in Bloch space

Theorem 1. Let \(\rho \) be of finite lower type greater than 0 and upper type less than 1. Suppose that \(1 < p < \infty \). Then the following conditions are equivalent.

(1) \(f \in C_0(B_p(\rho) \cap D) \).

(2) For any \(\epsilon > 0 \),

\[
\int_{\Omega_\epsilon(f)} \rho(1 - |z|^2) \frac{dA(z)}{(1 - |z|^2)^2} < \infty,
\]

where

\[
\Omega_\epsilon(f) = \{ z \in D : (1 - |z|^2)|f'(z)| \geq \epsilon \}.
\]

(3) For \(\epsilon > 0 \) and \(s > 1 \),

\[
\int_{\Gamma_{\epsilon s}(f)} \rho(1 - |z|^2) \frac{dA(z)}{(1 - |z|^2)^2} < \infty,
\]

where

\[
\Gamma_{\epsilon s}(f) = \left\{ z \in D : \int_D |f'(w)|^p (1 - |w|^2)^{p-2} (1 - |\rho_z(w)|^2)^2 dA(w) \geq \epsilon \right\}.
\]

Proof. (2) \(\Rightarrow \) (1). Following [33], without loss of generality, we may assume that \(f(0) = 0 \). By Proposition 4.27 in [34], we have that

\[
f(z) = \frac{1}{(a + 1)} \int_D \frac{f'(w)(1 - |w|^2)^{1+a}}{w(1 - zw)^{2+a}} dA(w), \ z \in D,
\]
where \(\alpha > 0 \). Set \(f(z) = f_1(z) + f_2(z) \), where
\[
f_1(z) = \frac{1}{(\alpha + 1)} \int_{\Omega,1'} f'(w)(1 - |w|^2)^{1+\alpha} \frac{dA(w)}{|w(1 - zw)^{2+\alpha}}
\]
and
\[
f_2(z) = \frac{1}{(\alpha + 1)} \int_{D,1'} f'(w)(1 - |w|^2)^{1+\alpha} \frac{dA(w)}{|w(1 - zw)^{2+\alpha}}.
\]
Clearly,
\[
|f_1'(z)| \leq \int_{\Omega,1'} \frac{|f'(w)(1 - |w|^2)^{1+\alpha}}{|w(1 - zw)^{3+\alpha}} dA(w)
\]
and
\[
|f_2'(z)| \leq \int_{D,1'} \frac{|f'(w)(1 - |w|^2)^{1+\alpha}}{|w(1 - zw)^{3+\alpha}} dA(w).
\]
Let \(F = f_1 - f_1(0) \). Then \(F(0) = 0 \) and
\[
\|f - F\|_B = \sup_{z \in D} (1 - |z|^2)|f_1'(z)|
\]
\[
\leq \sup_{z \in D} (1 - |z|^2) \int_{D,1'} \frac{|f'(w)(1 - |w|^2)^{1+\alpha}}{|w(1 - zw)^{3+\alpha}} dA(w)
\]
\[
\leq \epsilon \sup_{z \in D} (1 - |z|^2) \int_{D} (1 - |w|^2)^{\alpha} \frac{dA(w)}{1 - z\alpha^{3+\alpha}}.
\]
Using \cite[Lemma 3.10]{34} with \(t = \alpha \) and \(c = 1 \), we see that \(\|f - F\|_B \leq \epsilon \). It remains to prove that \(F \in B_p(\rho) \).

Using Fubini’s theorem, we have
\[
\int_{D} |f'(z)|^p (1 - |z|^2)^{\alpha - 2} \rho(1 - |z|^2) dA(z)
\]
\[
= \int_{D} |f'(z)|^p (1 - |z|^2)^{\alpha - 2} \rho(1 - |z|^2) dA(z)
\]
\[
\leq \|f_1\|_B^{p-1} \int_{D} |f_1'(z)| (1 - |z|^2)^{-1} \rho(1 - |z|^2) dA(z)
\]
\[
\leq \int_{D} (1 - |z|^2)^{-1} \rho(1 - |z|^2) \left[\int_{\Omega,1'} \frac{|f'(w)(1 - |w|^2)^{1+\alpha}}{|w(1 - zw)^{3+\alpha}} dA(w) \right] dA(z)
\]
\[
\leq \int_{\Omega,1'} |f'(w)| (1 - |w|^2)^{1+\alpha} \left[\int_{D} \frac{\rho(1 - |z|^2)}{|w(1 - zw)^{\alpha+3}(1 - |z|^2)} dA(z) \right] dA(w)
\]
\[
\leq \|f\|_B \int_{\Omega,1'} (1 - |w|^2)^{\alpha} \left[\int_{D} \frac{\rho(1 - |z|^2)}{1 - z\alpha^{\alpha+3}(1 - |z|^2)} dA(z) \right] dA(w).
\]
Since \(\rho \) is of finite lower type greater than 0 and upper type less than 1, there exist \(\gamma \) and \(\delta \) with \(0 < \gamma < \delta < 1 \), such that
\[
\rho(st) \leq \delta^s \rho(t), \quad s \leq 1
\]
and
\[
\rho(st) \leq \delta^s \rho(t), \quad s \geq 1,
\]
where \(0 < t < \infty\). Using this and [34, Lemma 3.10], we obtain
\[
\int_{D} \frac{\rho(1-|z|^{2})}{|1-\bar{z}w|^{s+3}(1-|z|^{2})} dA(z) \\
= \rho(1-|w|^{2}) \int_{D} \frac{\rho(1-|z|^{2})}{|1-\bar{z}w|^{s+3}(1-|z|^{2})} dA(z) \\
\leq \rho(1-|w|^{2}) \int_{D} \left(\frac{1}{|1-\bar{z}w|^{s+3}} \right)^{\gamma} (1-|z|^{2})^{\delta} dA(z) \\
\leq \frac{\rho(1-|w|^{2})}{(1-|w|^{2})^{s+2}}.
\]
Combining this with (2), we have
\[
\int_{D} |f'(z)|^{p}(1-|z|^{2})^{p-2} \rho(1-|z|^{2}) dA(z) \leq \int_{D} \rho(1-|z|^{2}) (1-|z|^{2})^{p} dA(z) < \infty.
\]
Hence, \(F \in B_{p}(\rho)\). This finishes the proof.

(1) \(\Rightarrow\) (3). It is well known that \(\|f\|_{B_{p}}\) is equivalent to
\[
\|f\|_{B_{p}} = \|f(0)\| + \left(\sup_{z \in D} \int_{D} |f'(w)|^{p}(1-|w|^{2})^{p-2} (1-|\varphi_{\omega}(w)|^{2})^{\gamma} dA(w) \right)^{1/p},
\]
where \(p > 1\) and \(s > 1\). Let \(f \in C_{B}(B_{p}(\rho) \cap \mathcal{B})\). Then for any \(\epsilon > 0\), there exists \(g \in B_{p}(\rho) \cap \mathcal{B}\) such that \(\|f-g\|_{B_{p}} \leq \frac{\epsilon}{C_{3}}\). For any \(z \in D\), we have
\[
\int_{D} |f'(w)|^{p}(1-|w|^{2})^{p-2} (1-|\varphi_{\omega}(w)|^{2})^{\gamma} dA(w) \\
\leq C \int_{D} |f'(w) - g'(w)|^{p}(1-|w|^{2})^{p-2} (1-|\varphi_{\omega}(w)|^{2})^{\gamma} dA(w) + C \int_{D} |g'(w)|^{p}(1-|w|^{2})^{p-2} (1-|\varphi_{\omega}(w)|^{2})^{\gamma} dA(w).
\]
Thus, \(\Gamma_{P_{r},f}(g) \leq \Gamma_{P_{r},\varphi_{\omega}}(g)\). Note that
\[
1-|\varphi_{\omega}(w)|^{2} = \frac{(1-|z|^{2})(1-|w|^{2})}{|1-\bar{z}w|^{2}}.
\]
Using Fubini’s theorem, we have
\[
\int_{\Gamma_{P_{r},f}} \frac{\rho(1-|z|^{2})}{(1-|z|^{2})^{2}} dA(z) \\
\leq 2^{p} C \int_{P_{r},f} \left(1-|z|^{2} \right)^{-2} \rho(1-|z|^{2}) \left[\int_{D} |g'(w)|^{p}(1-|w|^{2})^{p-2} \frac{(1-|w|^{2})^{\gamma}}{|1-\bar{z}w|^{2}} dA(w) \right] dA(z) \\
\leq \int_{D} |g'(w)|^{p}(1-|w|^{2})^{p-2} \left[\int_{D} \left(1-|z|^{2} \right)^{-2} \rho(1-|z|^{2}) \frac{(1-|w|^{2})}{|1-\bar{z}w|^{2}} dA(z) \right] dA(w).
\]
Combining (A) with (B), we deduce that
\[
\int_{D} (1-|z|^{2})^{s-2} \rho(1-|z|^{2}) \frac{(1-|w|^{2})}{|1-\bar{z}w|^{2s}} dA(z) \leq \frac{\rho(1-|w|^{2})}{(1-|w|^{2})^{s}}, \quad s > 1.
\]
Thus,
\[
\int_{\Gamma_{P_{r},f}} \frac{\rho(1-|z|^{2})}{(1-|z|^{2})^{2}} dA(z) \leq \int_{D} |g'(w)|^{p}(1-|w|^{2})^{p-2} \rho(1-|w|^{2}) dA(w) < \infty.
\]
(3) ⇒ (2). Let \(E(z, 1/2) = \{ w \in \mathbb{D} : |\varphi_z(w)| < 1/2 \} \) be a pseudo-hyperbolic disk of center \(z \in \mathbb{D} \) and radius 1/2. Recall that
\[
1 - |w| \approx |1 - \overline{z}w| \approx 1 - |z|, \quad w \in E(z, 1/2)
\]
and \(|E(z, 1/2)| \approx (1 - |z|^2) \) (see [34, Page 69]). Using the subharmonicity of \(|f'|^p\), we obtain
\[
\int_D |f'(w)|^p (1 - |w|^2)^{p-2} (1 - |\varphi_z(w)|^2) \, dA(w)
\geq \int_{E(z, 1/2)} |f'(w)|^p (1 - |w|^2)^{p-2} (1 - |\varphi_z(w)|^2) \, dA(w)
\geq (1 - |z|^2)|f'(z)|^p.
\]
Therefore, \(\Omega_\epsilon(f) \subseteq \Gamma_{p, \eta}(f) \). The proof is complete.

\(\square\)

3. Interpolating Blaschke product in \(C_\beta(B_p(\rho) \cap \mathcal{B}) \) as multipliers

An analytic function in the unit disc \(\mathbb{D} \) is called an inner function if it is bounded and has radial limits of absolute value 1 at almost every point of the boundary \(\partial \mathbb{D} \). It is well known that every inner function has a factorization \(e^{i\gamma} B(z) S(z) \), where \(\gamma \in \mathbb{R} \), \(B(z) \) is a Blaschke product and \(S(z) \) is a singular inner function. A Blaschke product \(B \) with sequence of zeros \(\{ a_k \}_{k=1}^\infty \) is called interpolating if there exists a positive constant \(\delta \) such that
\[
\prod_{j=0}^{\infty} |\varphi_{a_j}(a_0)| \geq \delta, \quad k = 1, 2, \cdots.
\]
We also say that \(\{ a_k \}_{k=1}^\infty \) is an interpolating sequence or an uniformly separated sequence. The following notions was introduced by Dyakonov [14]:

Suppose \(X \) and \(Y \) are two classes of analytic functions on \(\mathbb{D} \), and \(X \subseteq Y \). Let \(\theta \) be an inner function, \(\theta \) is said to be \((X, Y)\)-improving, if every function \(f \in X \) satisfying \(f \theta \in Y \) must actually satisfy \(f \theta \in X \). For more information related to improving multipliers, we refer to [27]. Motivated by the works of Dyakonov and Peláez, we have the following result.

Theorem 2. Let \(\rho \) be of finite lower type greater than 0 and upper type less than 1. Suppose that \(1 < p < \infty \) and \(B(z) \) is an interpolating Blaschke product with zeros \(\{ a_k \}_{k=1}^\infty \). Then following are equivalent:

1. \(B \in C_\beta(B_p(\rho) \cap \mathcal{B}) \).
2. \(\sum_{k=1}^{\infty} \rho(1 - |a_k|^2) < \infty \).
3. \(B \) is \((B_p(\rho) \cap \text{BMOA}), \text{BMOA}\)-improving.
4. \(B \) is \((B_p(\rho) \cap \text{BMOA}), \mathcal{B}\)-improving.

Before we get into the proof, we need some lemmas.

Lemma 1. ([25, Lemma 2.5]) Let \(s > -1, r, t > 0, \) and \(t < s + 2 < r \). Then
\[
\int_D \frac{(1 - |w|^2)^r}{|1 - \overline{z}w|^t |1 - \overline{w}z|^t} \, dA(w) \leq \frac{(1 - |z|^2)^{2r-s-t}}{|1 - \overline{w}z|^t}, \quad z, \xi \in \mathbb{D}.
\]

Lemma 2. Let \(\rho \) be of finite lower type greater than 0 and upper type less than 1. Suppose that \(f \in H(\mathbb{D}) \) and \(a \in \mathbb{D} \), then
\[
\int_D |f(z) - f(0)|^p \rho \left[\frac{1 - |\varphi_a(z)|^2}{1 - |z|^2} \right] \, dA(z)
\leq \int_D |f'(z)|^p (1 - |z|^2)^{p-1} \rho \left[1 - |\varphi_a(z)|^2 \right] \, dA(z).
\]
Proof. Let \(\epsilon > 0 \) be sufficiently small. From the proof of Lemma 2.1 of [9], we see that
\[
|f(z) - f(0)|^p \leq \left(\int_{\mathbb{D}} |f'(w)|^p \frac{(1 - |w|^2)^{(2 + \rho - 1)}}{|1 - \overline{w}z|^{2 + \rho}} dA(w) \right) (1 - |z|^2)^{-(p - 1)},
\]
where \(\sigma - \epsilon < -1 \). Using Fubini's theorem, we have
\[
\int_{\mathbb{D}} |f(z) - f(0)|^p \frac{1 - |\varphi_z(z)|^2}{1 - |z|^2} dA(z)
\]
\[
\leq \int_{\mathbb{D}} \left(\int_{\mathbb{D}} |f'(w)|^p \frac{(1 - |w|^2)^{(2 + \rho - 1)}}{|1 - \overline{w}z|^{2 + \rho}} dA(w) \right) \frac{1 - |\varphi_z(z)|^2}{1 - |z|^2} dA(z)
\]
\[
= \int_{\mathbb{D}} |f'(w)|^p (1 - |w|^2)^{p - 1} \left(\int_{\mathbb{D}} \frac{1 - |\varphi_z(z)|^2}{(1 - |z|^2)^{1 + \rho - 1}|1 - \overline{w}z|^{2 + \rho}} dA(z) \right) dA(w).
\]
Using conditions (A) and (B), combining (C) with Lemma 1, we deduce
\[
\int_{\mathbb{D}} \frac{1 - |\varphi_z(z)|^2}{(1 - |z|^2)^{1 + \rho - 1}|1 - \overline{w}z|^{2 + \rho}} dA(z)
\]
\[
= \rho \left(1 - |\varphi_z(w)|^2 \right) \int_{\mathbb{D}} \frac{1 - |\varphi_z(z)|^2}{(1 - |w|^2)^{1 + \rho - 1}|1 - \overline{w}z|^{2 + \rho}} dA(z)
\]
\[
\leq \rho \left(1 - |\varphi_z(w)|^2 \right) \int_{\mathbb{D}} \left(\frac{1 - |\varphi_z(z)|^2}{(1 - |z|^2)^{1 + \rho - 1}|1 - \overline{w}z|^{2 + \rho}} \right)^{\gamma} + \left(\frac{1 - |\varphi_z(z)|^2}{(1 - |z|^2)^{1 + \rho - 1}|1 - \overline{w}z|^{2 + \rho}} \right)^{\delta} dA(z)
\]
\[
\leq \rho \left(1 - |\varphi_z(w)|^2 \right) (1 - |w|^2)^{-1 + \rho - 1},
\]
where \(\gamma + \epsilon(p - 1) < \delta + \epsilon(p - 1) < 1 \). Thus,
\[
\int_{\mathbb{D}} |f(z) - f(0)|^p \frac{1 - |\varphi_z(z)|^2}{1 - |z|^2} dA(z)
\]
\[
\leq \int_{\mathbb{D}} |f'(w)|^p (1 - |w|^2)^{p - 1} \rho (1 - |\varphi_z(w)|^2) dA(w).
\]
The proof is complete. \(\square \)

Lemma 3. ([23]) Let \(\{a_k\}_{k=1}^\infty \) be a sequence in \(\mathbb{D} \). Then the measure \(d\mu_n = \sum_{k=1}^\infty (1 - |a_k|^2) \delta_{a_k} \) is a Carleson measure, i.e.
\[
\sup_{w \in \mathbb{D}} \sum_{k=1}^\infty (1 - |\varphi(w)(a_k)|^2) < \infty,
\]
if and only if \(\{a_k\}_{k=1}^\infty \) is a finite union of interpolating sequences.

Lemma 4. Let \(\rho \) be of finite lower type greater than 0 and upper type less than 1. Suppose that \(1 < p < \infty \), \(B(z) \) is an interpolating Blaschke product with zeros \(\{a_k\}_{k=1}^\infty \) and \(f \in B_p(\rho) \). If \(\sum_{k=1}^\infty |f(a_k)|^p \rho (1 - |a_k|^2) < \infty \), then \(fB \in B_p(\rho) \).
Proof. Suppose that \(f \in B_p(\rho) \) and \(B(z) \) is an interpolating Blaschke product with zeros \(\{a_k\}_{k=1}^{\infty} \). Since

\[
\int_{\mathcal{D}} |(fB)'(z)|^p (1-|z|^2)^{p-2} \rho(1-|z|^2) dA(z)
\leq \int_{\mathcal{D}} |f'(z)|^p |B(z)|^p (1-|z|^2)^{p-2} \rho(1-|z|^2) dA(z) + \int_{\mathcal{D}} |f(z)|^p |B'(z)|^p (1-|z|^2)^{p-2} \rho(1-|z|^2) dA(z)
\leq \int_{\mathcal{D}} |f'(z)|^p (1-|z|^2)^{p-2} \rho(1-|z|^2) dA(z) + \int_{\mathcal{D}} |f(z)|^p |B'(z)|^p (1-|z|^2)^{p-2} \rho(1-|z|^2) dA(z)
\]

It is enough to prove

\[
\int_{\mathcal{D}} |f(z)|^p |B'(z)|^p (1-|z|^2)^{p-2} \rho(1-|z|^2) dA(z) < \infty.
\]

Notice the fact that

\[(1-|z|^2) |B'(z)| \leq 1\]

and

\[|B'(z)| \leq \sum_{k=1}^{\infty} \frac{1-|a_k|^2}{1-\overline{a_k}z^2},\]

we have

\[
\int_{\mathcal{D}} |f(z)|^p |B'(z)|^p (1-|z|^2)^{p-2} \rho(1-|z|^2) dA(z)
\leq \int_{\mathcal{D}} |f(z)|^p |B'(z)|(1-|z|^2)^{-1} \rho(1-|z|^2) dA(z)
\leq \sum_{k=1}^{\infty} (1-|a_k|^2) \int_{\mathcal{D}} \frac{|f(a_k)|^p}{|1-\overline{a_k}z|^2} (1-|z|^2)^{-1} \rho(1-|z|^2) dA(z)
\leq \sum_{k=1}^{\infty} (1-|a_k|^2) \int_{\mathcal{D}} \frac{|f(x) - f(a_k)|^p}{|1-\overline{a_k}z|^2} (1-|z|^2)^{-1} \rho(1-|z|^2) dA(z)
= M + N.
\]

Since

\[
\int_{\mathcal{D}} \frac{\rho(1-|z|^2)}{|1-\overline{a_k}z|^2(1-|z|^2)} dA(z) \leq \frac{\rho(1-|a_k|^2)}{(1-|a_k|^2)},
\]

we deduce that

\[
M := \sum_{k=1}^{\infty} (1-|a_k|^2) \int_{\mathcal{D}} \frac{|f(a_k)|^p}{|1-\overline{a_k}z|^2(1-|z|^2)} \rho(1-|z|^2) dA(z)
\leq \sum_{k=1}^{\infty} |f(a_k)|^p \rho(1-|a_k|^2) < \infty.
\]

Making the change of variables \(z = \varphi_n(w) \), we obtain

\[
N := \sum_{k=1}^{\infty} (1-|a_k|^2) \int_{\mathcal{D}} \frac{|f(z) - f(a_k)|^p}{|1-\overline{a_k}z|^2(1-|z|^2)} \rho(1-|z|^2) dA(z)
= \sum_{k=1}^{\infty} \int_{\mathcal{D}} |f \circ \varphi_n(w) - f \circ \varphi_n(0)|^p \frac{\rho(1-|\varphi_n(w)|^2)}{(1-|w|^2)} dA(w).
\]
Since we obtain \[\delta > \}\quad (18, \text{Page 681}), \] we know that there exist a

Proof.

Proof of Theorem 2.

Using Fubini’s theorem and Lemma 2, we have

\[
N = \sum_{k=1}^{\infty} \int_{E} |f \circ \varphi_{a_k}(w) - f \circ \varphi_{a_k}(0)| \rho(1 - |\varphi_{a_k}(w)|^2) \frac{dA(w)}{(1 - |w|^2)}
\]

\[
\leq \sum_{k=1}^{\infty} \int_{E} |(f \circ \varphi_{a_k})'(w)| \rho(1 - |\varphi_{a_k}(w)|^2)(1 - |w|^2)^{p-1} dA(w)
\]

\[
= \sum_{k=1}^{\infty} \int_{E} |f'(w)|((1 - |w|^2)^{p-2} \rho(1 - |w|^2)(1 - |\varphi_{a_k}(w)|^2) dA(w).
\]

Since \(\{a_k\}_{k=1}^{\infty} \) is an interpolating sequences, using Lemma 3, we have \(N \leq \|f\|_{A_p}^p \), that is,

\[
\int_{E} \int_{E} |f(z)||B(z)|((1 - |z|^2)^{2-p} \rho(1 - |z|^2)dA(z)
\]

\[
\leq \sum_{k=1}^{\infty} \|f(a_k)|^p \rho(1 - |a_k|^2) + \|f\|_{A_p}^p.
\]

The proof is complete. \(\square \)

We also need the following lemma.

Lemma 5. ([13, Theorem 1]) If \(f \in BMOA \) and \(\theta \) is an inner function, then the following conditions are equivalent:

1. \(\theta \in \text{BMOA} \);
2. \(\sup_{z \in E} |f(z)|((1 - |\theta(z)|^2) < \infty; \)
3. \(\sup_{z \in \mathbb{D}(\theta, \epsilon)} |f(z)| < \infty, \text{for every } \epsilon, 0 < \epsilon < 1; \)
4. \(\sup_{z \in \mathbb{D}(\theta, \epsilon)} |f(z)| < \infty, \text{for some } \epsilon, 0 < \epsilon < 1. \)

Proof of Theorem 2.

Proof. \((1) \Rightarrow (2). \) Let \(B \) be an interpolating Blaschke product with zeros \(\{a_k\}_{k=1}^{\infty} \) and \(\theta \in C_{\mathbb{D}}(\mathbb{B} \cap \mathbb{B}_{\rho}(\rho)) \). From [18, Page 681], we know that there exist a \(\delta > 0 \), such that

\[
(1 - |z|^2)|B(z)| \geq \frac{\delta(1 - \delta)}{8}, \quad z \in E(a_k, \frac{\delta}{4}).
\]

Thus,

\[
\bigcup_{k=1}^{\infty} E(a_k, \frac{\delta}{4}) \subseteq \left\{ z \in \mathbb{D} : (1 - |z|^2)|B(z)| \geq \frac{\delta(1 - \delta)}{8} \right\}.
\]

Since \(\bigcup_{k=1}^{\infty} E(a_k, \frac{\delta}{4}) \) are pairwise disjoint, using the fact that

\[
|E(a_k, \frac{\delta}{4})| \approx (1 - |z|^2)^2, \quad z \in E(a_k, \frac{\delta}{4}),
\]

we obtain

\[
\sum_{k=1}^{\infty} \rho(1 - |a_k|^2) \leq \sum_{k=1}^{\infty} \int_{E(a_k, \frac{\delta}{4})} \rho(1 - |z|^2) \frac{dA(z)}{(1 - |z|^2)^2}
\]

\[
\leq \int_{|z| \in \mathbb{D}(1 - |\theta(\epsilon)||B(\epsilon)||E(\frac{\delta}{4})|} \rho(1 - |z|^2) \frac{dA(z)}{(1 - |z|^2)^2} < \infty.
\]
(2) ⇒ (3). Suppose that \(f \in B_p(\rho) \cap BMOA \) and \(fB \in BMOA \). We only need to prove that \(fB \in B_p(\rho) \). Using Lemma 5, we obtain
\[
\sum_{k=1}^{\infty} |f(a_k)|^p \rho(1-|a_k|^2) \leq \sup_{a} |f(a_k)|^p \sum_{k=1}^{\infty} \rho(1-|a_k|^2) < \infty.
\]
By Lemma 4, we have \(fB \in B_p(\rho) \).

(3) ⇒ (4). Let \(f \in B_p(\rho) \cap BMOA \subseteq BMOA \) and \(fB \in B \). From [27, Corollary 1], we see that every interpolating Blaschke product \(B \) is \((BMOA, B)\)-improving. Hence, we have \(fB \in BMOA \). Notice that \(B \) is \((B_p(\rho) \cap BMOA, BMOA)\)-improving, we have \(fB \in B_p(\rho) \cap BMOA \). Thus, \(B \) is \((B_p(\rho) \cap BMOA, B)\)-improving.

(4) ⇒ (1). Suppose that \(B \) is \((B_p(\rho) \cap BMOA, B)\)-improving. Note that \(1 \in B_p(\rho) \cap BMOA \) and \(B \in H^\infty \subseteq B \). Thus, \(B \in B_p(\rho) \cap BMOA \subseteq B_p(\rho) \cap B \subseteq C_B(\rho) \cap B \). The proof is complete.

Acknowledgement. The authors thank the referee for his (or her) helpful comments and suggestions that led to the improvement of this paper.

References