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Abstract. In the present paper, we carried out a systematic investigation of pseudo-quasi-conformal
curvature tensor has been made on the four-dimensional spacetime of general relativity. The spacetime
fulfilling Einstein’s field equations with vanishing of pseudo-quasi-conformal curvature tensor is being
considered and existence of Killing and conformal Killing vectors on such spacetime have been established.
At last, we extend the similar case for the investigation of cosmological models with dust and perfect fluid
spacetime.

1. Introduction

The most modern approaches to mathematical general relativity begin with the concept of a manifold.
After Riemannian manifolds, the structure of Lorentzian manifold is the most significant subclass of pseudo-
Riemannian manifolds and these are important in applications of cosmology and general relativity. A
principle basis of general relativity is that spacetime can be modeled as a 4-dimensional Lorentzian manifold
(M4, 1) with Lorentzian metric g with signature (−,+,+,+). Because of the causality that the Lorentzian
manifold becomes a convenient choice for the investigation of general relativity.

General relativity takes the structure of field equations, describing the curvature of spacetime and the
distribution of matter throughout spacetime. The effects of matter and spacetime on one another are what
we see as gravity. The hypothesis of the spacetime continuum already existed, but under general relativity
Einstein was able to describe gravity as bending of spacetime geometry. Einstein defined a set of field
equations, which represented the way that gravity behaved in response to matter in spacetime. These field
equations could be utilized to represent the geometry of spacetime that was at the core of the hypothesis of
general relativity. Since spacetime curve, the objects moving through space would follow the “straightest”
path along the curve, which explains the motion of the planets. In general relativity the matter content
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of the spacetime is described by the energy-momentum tensor T which is to be determined from physical
considerations dealing with the distribution of matter and energy.

The physical motivation for studying different kind of spacetime models in cosmology is to acquire
the information of various phases in the development of the universe, which may be classified into three
phases, namely, the initial phase, the intermediate phase and the final phase. The initial phase is just after
the Big Bang when the effects of both viscosity and heat flux were quite pronounced. The intermediate
phase is that when the effect of viscosity was no longer significant but the heat flux was still not negligible.
The final phase, which extends to the present state of the universe when both the effects of viscosity and
heat flux have become negligible. As it is well known the matter content of the universe is assumed to
behave like a perfect fluid in the standard cosmological models.

As we know that the symmetric spaces play an important role in differential geometry, the geometrical
symmetries of the spacetime are expressible through vanishing of the Lie derivative of certain tensors with
respect to a vector. These symmetries are also known as collineations were first introduced by Katzin,
Levine and Devis ([10]). Further studies of collineations by Z. Ahsan ([24], [25]), M. Ali et al. ([15], [16]
), N. A. Pundeer et al. ([19]), among many others. The spacetime symmetries are used in the study of
exact solutions of Einstein’s field equations in general relativity. A Killing vector field is one of the most
important types of symmetries and is defined to be a smooth vector field that preserve the metric tensor.

We have all the tools needed to workout Einstein’s field equation, which explains how to metric responds
to energy and momentum. The Einstein’s equations [2] (p. 337), imply that the energy-momentum tensor
is of vanishing divergence. This requirement is satisfied if the energy-momentum tensor is covariant-
constant [18]. In [18] M. C. Chaki and Sarbari Ray showed that a general relativistic spacetime with
covariant constant energy-momentum tensor is Ricci symmetric, that is,∇S = 0, where S is the Ricci tensor
of the spacetime. Also authors studied spacetimes in different way such as spacetimes with semisymmetric
energy momentum tensor in [23], m-projectively semisymmetric at spacetimes by Zengin [7], m-projectively
semisymmetric at spacetimes by Prakasha et al. [4], pseudo Z-symmetric spacetimes by Mantica and Suh
[3], quasi-conformally, pseudo conhormonically symmetric spacetimes by F. O. Zengin and A. Y. Tasci [8]
and pseudo-projectively at spacetimes by Mallick et al. (see, [21]-[22]) and many others.

The authors in [14] introduced and studied the notion of pseudo-quasi-conformal curvature tensor Ṽ
on a Riemannian manifold of dimension (n ≥ 3) which includes the projective, quasi-conformal, Weyl
conformal and concircular curvature tensor as spacial cases. This tensor is defined as:

Ṽ(X,Y)Z = (p + d)R(X,Y)Z + (q −
d

n − 1
)[S(Y,Z)X − S(X,Z)Y]

+ q[1(Y,Z)QX − 1(X,Z)QY]

−
r

n(n − 1)
{p + 2(n − 1)q}[1(Y,Z)X − 1(X,Z)Y], (1)

where X,Y,Z ∈ χ(M), and p, q, d are real constants such that p2 + q2 + d2 > 0. In particular, if
i) p = q = 0, d = 1⇒ Projectively curvature,
ii) p , 0, q , 0, d = 0⇒ Quasi-conformal curvature,
iii) p = 1, q = − 1

n−2 , d = 0⇒ Conformal Curvature,
iv) p = 1, q = d = 0⇒ Concircular curvature.

In 2005, Shaikh and Jana [1] introduced and studied a tensor field, called pseudo-quasi-conformal
curvature tensor Ṽ on a Riemannian manifold of dimension greater than or equal to 3. Recently, pseudo-
quasi-conformal curvature tensor has been studied by many authors in various kind such as Kundu [20]
and Prakasha et al., [5] and many others.

Our work structure as follows: After introduction, in Section 2, we characterize a spacetime with
vanishing pseudo-quasi-conformal curvature tensor. The relativistic signification of this tensor has been
explored in this paper and it is seen that a pseudo-quasi-conformally flat spacetime is an Einstein space and
consequently a space of constant curvature. In this section, we prove one of the main results for the energy
momentum tensor satisfying Einstein’s field equations with cosmological constant is
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Theorem 2.1. The energy momentum tensor of the pseudo-quasi-conformally flat spacetime (M4, 1) satis-
fying Einstein’s field equation with a cosmological constant is covariantly constant.

Katzin et al., [10] were the pioneers in carrying out a detailed study of curvature collineation (CC), in the
context of the related particle and field conservation laws that may be admitted in the standard form of
general relativity. If a spacetime admitting the Killing vector field is curvature collineation, then we obtain
the following result.

Theorem 2.2. A spacetime M admitting the pseudo-quasi-conformal curvature tensor with ξ as a Killng
vector field is curvature collineation (CC), then the Lie derivative of the pseudo-quasi-conformal curvature
tensor vanishes along the vector filed ξ.

Next, we prove the necessary and sufficient condition for a Killing and conformal Killing vector field,
when a spacetime obeying Einstein’s field equations has vanishing pseudo-quasi-conformally flat with the
cosmological constant in the following result.

Theorem 2.3. A spacetime obeying Einstein’s field equation has vanishing pseudo-quasi-conformally flat
satisfying with cosmological constant admits:
(i) a conformal Killing vector field if and only if the energy momentum tensor has the symmetriy inheritance
property.
(ii) a Killing vector field ξ if and only if Lie derivative of the energy momentum tensor with respect to ξ
vanishes.

Section 3 deals with the study of perfect fluid cosmological models with vanishing pseudo-quasi-
conformal curvature tensor. First we prove the main theorems for case of perfect fluid and secondly, for the
case of dust cosmological models are written as:

Theorem 3.1. If a pseudo-quasi-conformally flat perfect fluid spacetime obeys Einstein’s field equations
without cosmological constant, then the norm of Ricci operator is ||QX||2 =

k2(σ−3p)2

4 .

Theorem 3.2. If a pseudo-quasi-conformally flat with dust cosmological model satisfying Einstein’s field
equations without cosmological constant, then the norm of Ricci operator is ||QX||2 = k2σ2

4 .

2. Spacetime with vanishing pseudo-quasi-conformal curvature tensor

Let V4 be the spacetime of general relativity, then from (1), we have

Ṽ(X,Y,Z,W) = (p + d)R(X,Y,Z,W) +
(
q −

d
3

)
[S(Y,Z)1(X,W) − S(X,Z)1(Y,W)]

+ q[1(Y,Z)S(X,W) − 1(X,Z)S(Y,W)]

−
r

12
{p + 6q}[1(Y,Z)1(X,W) − 1(X,Z)1(Y,W)], (2)

where Ṽ(X,Y,Z,W) = 1(Ṽ(X,Y)Z,W) and R(X,Y,Z,W) = 1(R(X,Y)Z,W). If Ṽ(X,Y,Z,W) = 0, then equation
(2) leads to

(p + d)R(X,Y,Z,W) + (q −
d
3

)[S(Y,Z)1(X,W) − S(X,Z)1(Y,W]

+ q[1(Y,Z)S(X,W) − 1(X,Z)S(Y,W)]

−
r

12
{p + 6q}[1(Y,Z)1(X,W) − 1(X,Z)1(Y,W)] = 0. (3)

Taking a frame field over X and W, we have from equation (3)

(p + 2q)S(Y,Z) = (p + 2q)
r
4
1(Y,Z), (4)

where S and r are denotes the Ricci tensor and the scalar curvature of the manifold, respectively. Thus we
can state the following.
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Proposition 2.1. A pseudo-quasi-conformally flat spacetime is an Einstein spacetime, provided p + 2q , 0

Again, from equation (3) and (4), we obtain

R(X,Y,Z,W) =
r

12
[1(Y,Z)1(X,W) − 1(X,Z)1(Y,W)]. (5)

Thus, we can state the following.

Proposition 2.2. A pseudo-quasi-conformally flat spacetime is a spacetime of constant curvature, provided p+2q , 0.

In the subsequent, we shall determine some physical properties of pseudo-quasi-conformally flat space-
time satisfying Einstein’s field equation with cosmological constant, that is, in this spacetime, pseudo-quasi-
conformal curvature tensor vanishes, then we have from (5)

R(X,Y)Z =
r

12
[1(Y,Z)X − 1(X,Z)Y]. (6)

According to Karcher ([11]), a Lorentzian manifold is called infinitesimally spatially isotropic relative to a
unit timelike vector field U if its Riemann curvature tensor R satisfies the relation

R(X,Y)Z = δ{1(Y,Z)X − 1(X,Z)Y},

for X, Y, Z ∈ U⊥ and R(X,U)U = γX for X ∈ U⊥ where δ and γ are real-valued functions on the manifold.
Hence, we arrive at the following.

Proposition 2.3. Every pseudo-quasi-conformally flat spacetime satisfying Einstein’s field equation with the velocity
vector field U is infinitesimally spatially isotropic relative to a unit timelike vector field U.

Proof of Theorem 2.1. The Ricci tensor control the geometry of spacetime whereas energy momentum
tensor T signifies the physical aspects of spacetime and in general relativity they are related by Einstein’s
field equations with cosmological constant [2]

S(X,Y) −
r
2
1(X,Y) + λ1(X,Y) = kT(X,Y), (7)

for all vector fields X, Y, where S is the Ricci tensor of type (0, 2), r is the scalar curvature, λ is cosmological
constant, k is the gravitational constant and T is the energy momentum tensor of type (0, 2).
Now, comparing (4) with (7), we find

T(X,Y) =
1
k

[
λ −

r
4

]
1(X,Y). (8)

Taking covariant derivative of (8), we obtain

(∇ZT)(X,Y) = −
1
k

dr(Z)1(X,Y). (9)

Since pseudo-quasi-conformally flat spacetime is Einstein, therefore the scalar curvature r is constant.
Hence

dr(Z) = 0, (10)

for all X. Finally, using (10) in (9), we get

(∇ZT)(X,Y) = 0. (11)

The above equation shows that the energy momentum tensor is covariantly constant.

Proof of Theorem 2.2. The geometrical symmetries of a spacetime are expressed through the equation

£ξA − 2ΩA = 0, (12)
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where A represents a geometrical/physical quantity, £ξ denotes the Lie derivative with respect to the vector
field and Ω is a scalar.

One of the most simple and widely used example is the metric inheritance symmetry for which A = 1i j in
(12), that is,

(£ξ1)(X,Y) = 2Ω1(X,Y). (13)

In this case, ξ is the Killing vector field if Ω is zero and is the conformal Killing vector field if Ω is a scalar.
A spacetime M4 is said to admit a symmetry called a curvature collineation (CC) provided there exists a
vector field ξ such that (see, [12]-[13])

(£ξR)(X,Y)Z = 0, (14)

where R is the Riemannian curvature tensor.

Now we shall investigate the role of such symmetry inheritance for the spacetime admitting pseudo-
quasi-conformal curvature tensor.

Let us consider a spacetime admitting pseudo-quasi-conformal curvature tensor with a Killing vector field
is a CC. Then we have

(£ξ1)(X,Y) = 0. (15)

Again, since M admitting a CC, we have from (14)

(£ξS)(X,Y) = 0, (16)

where S is the Ricci tensor of the manifold.

By taking Lie derivative of (1) and using (14), (15) and (16), we obtain

(£ξṼ)(X,Y)Z = 0. (17)

Hence, completes the proof.

Proof of Theorem 2.3. The existence of Killing and conformal Killing vector fields has been established. By
Einstein’s field equations (4) and (7), we have(

λ −
r
4

)
1(X,Y) = kT(X,Y). (18)

Taking Lie derivative of both sides of (18) and remembering that the scalar curvature r is constant, we get(
λ −

r
4

)
(£ξ1)(X,Y) = k(£ξT)(X,Y). (19)

Now, if ξ is comformal Killing vector field, from (13) and (19), we get

2(λ −
r
4

)Ω1(X,Y) = k(£ξT)(X,Y), (20)

where Ω is a scalar function. In a pseudo-quasi-conformally flat spacetime satisfying’s field equation with
cosmological constant, from (18) and (20), as k , 0, we get

(£ξT)(X,Y) = 2ΩT(X,Y), (21)

It follows from (12) that the energy momentum tensor has symmetric inheritance property.
Conversely, if (21) holds, then it follows that (13) holds for some scalar function Ω, that is ξ is a conformal

Killing vector field. If we take Ω = 0, then from (20) and (21), a necessary and sufficient condition for ξ to
be a Killing vector field is that Lie derivative of the energy momentum tensor with respect to ξ be zero.

Thus completes the proof.
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3. Cosmological models with vanishing pseudo-quasi-conformal curvature tensor

In this section we consider a perfect fluid spacetime with vanishing pseudo-quasi-conformal curvature
tensor satisfying Einstein’s field equation without cosmological constant.
Proof of Theorem 3.1 In a perfect-fluid spacetime, the energy momentum tensor is of the form [2]

T(X,Y) = p1(X,Y) + (σ + p)A(X)A(Y), (22)

where σ, p are the energy density and the isotropic pressure, respectively, and V is the unit timelike flow
vector field of the fluid such that

1(V,V) = −1, A(X) = 1(X,V),

for all X. In addition σ + p , 0.

Einstein’s field equation without cosmological constant is given by

S(X,Y) −
r
2
1(X,Y) = kT(X,Y). (23)

In virtue of equation (22) and (23), we get

S(X,Y) −
r
2
1(X,Y) = k[p1(X,Y) + (σ + p)A(X)A(Y)]. (24)

Taking X = Y = ei in (24) and taking summation over i, 1 ≤ i ≤ 4, we obtain

r = k(σ − 3p). (25)

In virtue of (4) and (25) the Ricci tensor of a pseudo-quasi-conformally flat spacetime can be written as

S(X,Y) =
k(σ − 3p)

4
1(X,Y). (26)

Let Q be the Ricci operator is given by

1(QX,Y) = S(X,Y) and S(QX,Y) = S2(X,Y). (27)

Then we obtain

A(QX) = 1(QX,V) = S(X,V).

Hence, we obtain from (25) that

S(QX,Y) =
k2(σ − 3p)2

16
1(X,Y). (28)

Taking a frame field after contraction over X and Y, we obtain from (28) that

||QX||2 =
k2(σ − 3p)2

4
. (29)

This establishes the proof.

Proof of Theorem 3.2. The energy-momentum tensor in case of dust model is given by

T(X,Y) = σA(X)A(Y), (30)

where σ is the energy density and V is the time-like unit flow vector field of the fluid such that

1(V,V) = −1 A(X) = 1(X,V), f or all X.
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Now, making use of equation (23) and equation (30), we get

S(X,Y) −
r
2
1(X,Y) = kσA(X)A(Y). (31)

Putting X = Y = ei in equation (31), where ei is the orthonormal basis of the tangent space at each point of
the manifold and taking summation over 1 ≤ i ≤ 4,

r = kσ. (32)

In view of equations (4) and (32), the Ricci tensor of a pseudo-quasi-conformally flat spacetime may be
written as

S(X,Y) =
kσ
4
1(X,Y). (33)

By virtue of equations (27) and (33) leads to

S(QX,Y) =
k2σ2

16
1(X,Y). (34)

Again, putting X = Y = ei in equation (34), where ei is the orthonormal basis of the tangent space at each
point of the manifold and taking summation over 1 ≤ i ≤ 4, we get

||QX||2 =
k2σ2

4
. (35)

Thus completes the proof.

Also, with help of (4) and (24), the Einstein’s field equations are found as in the following[ r
4

+ kp
]
1(X,Y) = −k(σ + p)A(X)A(Y). (36)

If we set X = Y = V in (36) and using (25), we get

σ + p = 0, (37)

which means that either σ = 0, p = 0 (empty spacetime) or the perfect fluid spacetime satisfies the vacuum-
like equation of state [6].

Thus we have the following result.

Theorem 3.3. If a perfect fluid spacetime wih vanishing pseudo-quasi-conformally flat satisfying Einstein’s
field equation without cosmological constant, then the matter content of M4 obey the vacuum-like equation
of state.

Now, from equations (4), (23) takes the form

r
4
1(X,Y) = −kT(X,Y). (38)

On comparing (37) with (22), we find that

T(X,Y) = p1(X,Y). (39)

Using (38) and (39), we have[ r
4

+ kp
]
1(X,Y) = 0. (40)
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Taking X = Y = ei in (40) and summing over, i, 1 ≤ i ≤ 4, we get that

r = −4kp. (41)

In this case, we can say that both the energy density and the isotropic pressure of this space are constants.
Since the scalar curvature r of a pseudo-quasi-conformally flat space is constant. Also, M Ali and N. A.
Pundeer ([17]) studied the semiconformal curvature tensor in detail and proved that the scalar curvature r
of semiconformally flat spacetime is constant. From (41) it follows that isotropic pressure p is a constant and
hence from (37), we obtain energy density is a constant which means the fluid behaves as a cosmological
constant.

Thus we may state the following.

Theorem 3.4. If a perfect fluid spacetime with vanishing pseudo-quasi-conformally flat satisfying Einstein’s
field equation without cosmological constant, then the spacetime has constant energy density and isotropic
pressure and the spacetime represents inflation and also the fluid behaves as cosmological constant.

Now, making use of equations (4) and (31), we get

r
4
1(X,Y) = −kσA(X)A(Y). (42)

Putting X = Y = ei in equation (42), where ei is the orthonormal basis of the tangent space at each point of
the manifold and taking summation over 1 ≤ i ≤ 4, we get

r = kσ. (43)

Multiplying by A(Z) in equation (42) and then contracting over X and Z, we get

r = 4kσ. (44)

From (43) and (44), we have

σ = 0. (45)

Thus, we may establishes the following result.

Theorem 3.5. A spacetime satisfying Einstein’s field equation without cosmological constant and having
vanishing pseudo-quasi-conformal curvature tensor represents a dust cosmological model, if the energy
density does not vanish.

Furthermore, for a spacetime with radiating perfect fluid the resulting universe be isotropic and homoge-
neous [9].

Now, making use equations (4) and (7), we get(
λ −

r
4

)
1(Y,Z) = kT(Y,Z) (46)

In view of equation (22), equation (46) leads to(
λ −

r
4
− kp
)
1(Y,Z) = k(σ + p)A(Y)A(Z). (47)

Thus, using the condition of a spacetime with radiative perfect fluid, i.e., σ = 3p in equation (47), we have(
λ −

r
4
−

kσ
3

)
1(Y,Z) =

4σk
3

A(Y)A(Z). (48)
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Putting X = Y = ei in equation (48), where ei is the orthonormal basis of the tangent space at each point of
the manifold and taking summation over 1 ≤ i ≤ 4, we get

r = 4λ. (49)

Mulltiplying by A(X) on both side in equation (48) and then contracting over X & Y, We get

r = 4(λ + kσ) (50)

In view of equations (49) and (50), we have

σ = 0.

which is not possible by our assumption.

Thus, we may state the following

Theorem 3.6. A spacetime with vanishing pseudo-quasi-conformal curvature tensor and satisfying Ein-
stein’s field equation with cosmological constant is an isotropic and homogeneous spacetime if energy
density of the fluid does not vanish.
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