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Abstract. In recent years, the AOR iterative method has been proposed for solving absolute value equa-
tions. This method has two parameters γ and ω. In this paper, we intend to find the optimal parameters
of this method to improve convergence rate by suitable optimization techniques. Meanwhile, the con-
vergence of the optimized AOR iterative method is discussed. It is both theoretically and experimentally
demonstrated efficiency of the optimized AOR iterative method in contrast with the AOR and SOR methods.

1. Introduction

We consider the following system of the absolute value equations (AVEs):

Ax − B|x| = b. (1)

where A ∈ Rn×n, b ∈ Rn are given, and | . | denotes the absolute value. In the special case B = I, where I
denotes the identity matrix, (1) reduces to the form

Ax − |x| = b. (2)

The AVE (1) requires that B is a nonzero matrix. Based on this reality, (1) is nonlinear and nondif-
ferentiable. This equation was first introduced in [24] and has been studied by Mangasarian [14–16],
Mangasarian and Meyer [17], Prokopyev [22], and Rohn [25, 27]. In all these papers, the authors were
interested in finding some solutions of (1). In [17] a bilinear program was prescribed for the special case
when the singular values of A are not less than one. As was shown in [17], the general NP-hard linear
complementarity problem (LCP) [5–7], which subsumes many mathematical programming problems, can
be formulated as AVE (2). This implies that (2) is NP-hard. The significance of the AVE (2) arises from the
fact that linear programs, quadratic programs, bimatrix games and other problems can all be reduced to
an LCP [6, 7], which in turn is equivalent to the AVE (2). Recently in [18], it has also been shown that the
general AVE (1) is equivalent to a horizontal linear complementarity problem (HLCP). If B is a zero matrix,
then the absolute value equation (1) reduces to a system of linear equations Ax = b, which has several
applications in scientific computations, see [20].
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Lately, to solve (1) effectively, some numerical methods have been expanded, such as the Newton-type
method [4, 10, 12, 16, 35], the sign accord (SA) method [25] and the AOR method [13]. For other numerical
methods, one can look at the works of Noor et al. [20, 21]. In fact, little heed has been paid to iterative
methods for solving (1). In recent years, a lot of effort has been made in expanding iterative methods for
solving (1). For example, Rohn et al. [28] presented a general preconditioned Richardson iteration to solve
(1). Based on Hermitian and skew-Hermitian splitting (HSS in Bai et al. [2]) of the coefficient matrix A in (1),
the Picard-HSS iterative method for AVE (2) has been established by Salkuyeh [30]. Clearly, the Picard-HSS
method belongs to the category of stationary matrix splitting iterative methods. Whereas, based on our
knowledge, the classical matrix-splitting iterative methods (such as Gauss-Seidel (GS), Jacobi, Successive
Over Relaxation (SOR) and Accelerated Over Relaxation (AOR) methods) for solving (1) are granted little
attention.

In the current article, we first briefly review the AOR iterative method and its properties for solving (1).
Thereafter, we apply Interior point, SQP, Random search and PSO techniques which are popular approaches
in the literature, to find the optimal parameters of the AOR iteration. Then we present a modified method
called the optimal AOR (OAOR) method, which is more stable and effective than the AOR method for
solving the absolute value equations. We will show that if the AOR method is convergent for solving AVE
(1), the OAOR method can be converged faster. In this regard, the article is organized as follows:
In section 2, we recall some beneficial definitions and theorems which are used in the next sections. In
section 3, the AOR method and its properties are reviewed for solving (1). Afterwards in section 4 we
calculate the optimal parameters of AOR iteration and call the modified method OAOR iterative method.
We claim that the OAOR method works far better than the AOR method. In order to verify the validity
of our claim, some numerical results are presented in section 5. Finally, the paper is terminated with a
summary and conclusion in section 6.

2. Preliminaries

For an arbitrary matrix A ∈ Rn×m, we say that A ≥ 0 (A > 0) when all entries of A are nonnegative
(positive). For two matrices A and B inRn×m, A ≥ B (A > B) that is A−B ≥ 0 (A−B > 0). For a square matrix
A, we denote the spectral radius of A by ρ(A).
For an arbitrary matrix A ∈ Rn×n, the decomposition A = M − N is named a splitting if M,N ∈ Rn×n and
M is nonsingular. In the following, we remind some definitions and results which are utilized throughout
this paper.

Definition 2.1. [3] A ∈ Rn×n is named a Z−matrix if ai j ≤ 0 for i, j = 1, 2, 3, ...,n (i , j). A Z−matrix with positive
diagonal elements is called an L-matrix.

Definition 2.2. [3] Assume that A is a Z−matrix with positive diagonal elements. Then the matrix A is called an
M−matrix if A is nonsingular and A−1

≥ 0.

Lemma 2.3. Suppose that A is a Z−matrix. Then, A is an M−matrix if and only if there is a positive vector x such
that Ax > 0.

Proof. See [33].

Definition 2.4. A splitting A = M −N is called an M−splitting of A if M is an M−matrix and N ≥ 0.

Definition 2.5. [31] A matrix A is told to be reducible if there exists a permutation matrix P such that PAPT is a
block upper triangular matrix; otherwise, it is irreducible.

Theorem 2.6. [29] Let A ∈ Rn×n. Then for every natural norm ‖ . ‖ we have ρ(A) ≤‖ A ‖ .

Theorem 2.7. [29] Suppose A and B are two square matrices such that 0 ≤ A ≤ B. Then ρ(A) ≤ ρ(B).
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3. AOR method and its convergence analysis

For solving (1), Li [13] proposed the following splitting with two parameters for the coefficient matrix
A as A = 1

ω (Mγ,ω −Nγ,ω) with

Mγ,ω = AD − γAL and Nγ,ω = (1 − ω)AD + (ω − γ)AL + ωAU, (3)

where γ,ω , 0 are parameters, AD is the diagonal part of A, and −AL and −AU are strictly lower and strictly
upper triangular parts of A, respectively. The iterative format of AOR method for solving the absolute
value equation (1) is

1
ω

(AD − γAL)x(i+1) =
1
ω

[(1 − ω)AD + (ω − γ)AL + ωAU]x(i)

+ B|x(i)
| + b, i = 0, 1, 2, ..., (4)

which is equivalent to

x(i+1) =(AD − γAL)−1[(1 − ω)AD + (ω − γ)AL + ωAU]x(i)

+ ω(AD − γAL)−1B|x(i)
| + ω(AD − γAL)−1b, i = 0, 1, 2, ... . (5)

This method is non-stationary and there is no iteration matrix. If ω = γ, then AOR method reduce to the
SOR method.

Lemma 3.1. [13] Suppose that A = M − N with det(M) , 0 and x(0)
∈ Rn be an arbitrary initial guess. Then for

ρ(|M−1N| + |M−1B|) < 1, the iterative sequence x(i) given by

x(i+1) = M−1Nx(i) + M−1B|x(i)
| + M−1b, i = 1, 2, 3, ..., (6)

converges to the unique solution x∗ of (1).

Proof. Suppose that x∗ is a solution of (1). Then

x∗ = M−1Nx∗ + M−1B|x∗| + M−1b. (7)

After subtracting (7) from (6), we have

x(i+1)
− x∗ = M−1N(x(i)

− x∗) + M−1B(|x(i)
| − |x∗|). (8)

From (8) we obtain

|x(i+1)
− x∗| = |M−1N(x(i)

− x∗) + M−1B(|x(i)
| − |x∗|)|

≤ |M−1N(x(i)
− x∗)| + |M−1B(|x(i)

| − |x∗|)|

≤ |M−1N| · |(x(i)
− x∗)| + |M−1B| · |(|x(i)

| − |x∗|)|

≤ |M−1N| · |x(i)
− x∗| + |M−1B| · |x(i)

− x∗|

= (|M−1N| + |M−1B|)|x(i)
− x∗|.

By Theorem 4.1 from [29], this shows that limi→∞ x(i) = x∗ when ρ(|M−1N| + |M−1B|) < 1.
Now, we prove that if ρ(|M−1N| + |M−1B|) < 1 then, the iterative form (6) converges to the unique solution x∗ of the
AVE (1) . Let (1) has another solution x̂; then

x̂ = M−1Nx̂ + M−1B|̂x| + M−1b. (9)

Subtracting (9) from (7), we obtain

|x∗ − x̂| ≤ (|M−1N| + |M−1B|)|x∗ − x̂|.

Since ρ((|M−1N| + |M−1B|)) < 1, then x∗ = x̂.
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Corollary 3.2. Let A = M −N with det(M) , 0 and x(0)
∈ Rn be an arbitrary initial guess.

If ‖ |M−1N| ‖ + ‖ |M−1B| ‖< 1, where ‖ . ‖ is an consistent matrix norm, then the given iterative sequence x(i) in (6)
converges to the unique solution x∗ of (1).

Proof. Using triangle inequality, we have:

‖ |M−1N| + |M−1B| ‖≤‖ |M−1N| ‖ + ‖ |M−1B| ‖< 1 (10)

From (10) and Theorem 2.6, we have

ρ(|M−1N| + |M−1B|) ≤‖ |M−1N| + |M−1B| ‖< 1 (11)

Now by (11) and Lemma 3.1, the result is obtained.

Corollary 3.3. Suppose that A = M − N be an M−splitting and x(0)
∈ Rn be an arbitrary initial guess. Then for

ρ(M−1N + M−1
|B|) < 1, the iterative sequence x(i) given by (6), converges to the unique solution of (1).

Proof. Since A is an M−splitting, M−1
≥ 0 and N ≥ 0. Hence M−1N ≥ 0 and M−1N + M−1

|B| ≥ 0. Besides

0 ≤ |M−1N| + |M−1B| ≤M−1N + M−1
|B|. (12)

From (12) and Theorem 2.7, we have

ρ(|M−1N| + |M−1B|) ≤ ρ(M−1N + M−1
|B|) < 1. (13)

Therefore using (13) and Lemma 3.1, the result is obtained.

Suppose that

TAOR = (AD − γAL)−1[(1 − ω)AD + (ω − γ)AL + ωAU] + ω(AD − γAL)−1
|B|; (14)

then we have the following Theorem. Note that for SOR and OAOR iterative methods, TAOR changes to
TSOR and TOAOR in the following respectively.

TSOR = (AD − ωAL)−1[(1 − ω)AD + ωAU] + ω(AD − ωAL)−1
|B|;

TOAOR = (AD − γ
∗AL)−1[(1 − ω∗)AD + (ω∗ − γ∗)AL + ω∗AU] + ω∗(AD − γ

∗AL)−1
|B|;

where γ∗ and ω∗ are the optimal parameters obtained using one of the Interior point, SQP, Random search
or PSO optimization methods.

Theorem 3.4. Let A = (ai j) ∈ Rn×n be an L−matrix. If ρ(TAOR) < 1, then the iterative sequence {xi} given by AOR
method (5) converges to the unique solution of (1) for an arbitrary initial guess x0 ∈ Rn.

Proof. See [13]

4. The OAOR method

Selecting the parameters for applying (5) could be randomly; but to have more suitable results, it is better
to choose them optimally. In this regard, and also to have a better approximation in (5) and also fast rate of
convergence to reach the best solution of (1) and also least possible time-consuming, specially for large scale
problems, we prefer fo find the parameters optimally. The convergence analysis of an iterative method
is based on the spectral radius of the iteration matrix. For large number of iterations, the corresponding
error remarkably decreases using the spectral radius factor of the iteration matrix; that is, when the spectral
radius is smaller, the convergence is faster. In fact, the AOR iterative method for solving AVEs is an
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non-stationary method, therefore the actual iteration matrix can change at every iteration, depending on
the sign of x and can not consider a iteration matrix for it. Therefore we can not calculate the optimal
parameters using minimizing the spectral radius of iteration matrix. In such a case, it is reasonable that we
calculate the optimal parameters of the method by minimizing an upper boundary of the spectral radius
of the iteration matrix. Besides TAOR is not exactly the iteration matrix, but it is a bound that is used in
convergence theorem. Therefore, it is logical to optimize the parameters by minimizing of ρ(TAOR). In the
following, we present several optimization techniques to find the optimal parameters of the AOR method,
which just need to minimize ρ(TAOR) (under the assumption that the matrix A is a irreducible L-matrix),
or need to minimize 2-norm of the residual vector (provided that A is a general nonsymmetric matrix or a
symmetric positive definite matrix).

A family of optimization methods that have been studied are the family of interior point methods which
are remarkably efficient in solving optimization methods [19]. Interior-point (or barrier) methods have
proved to be as successful for nonlinear optimization as for linear programming and they are currently
considered as the most powerful algorithms for large-scale nonlinear programming. But if one uses some
interior point standard forms (like fmincon from MATLAB) by regarding necessary preparations, the CPU
times may be not suitably small. Therefore, we advised to use some other classical optimization based
methods or some suitable meta-heuristic techniques, specially when the dimension is high. In this cases,
we preferred to use the sequential quadratic programming (SQP) algorithm, the PSO or Random search
techniques.
The SQP approach is appropriate for small or large problems. SQP methods show their strength when
solving problems with significant nonlinearities in the constraints [19]. For optimization through Interior
point and SQP techniques, we use the fmincon in MATLAB with Interior point and SQP options, respectively.
The convergence of these methods has been proved in [19]. The PSO technique solves a problem by having
a population of candidate solutions, and moving these particles around in the search space according
to simple mathematical formulae over the particle’s position and velocity. Each particle’s movement is
influenced by its local best known position, but is also guided toward the best known positions in the
search space, which are updated as better positions are found by other particles. This is expected to move
the swarm toward the best solutions. PSO is a metaheuristic as it makes few or no assumptions about
the problem being optimized and can search very large spaces of candidate solutions. Also, PSO does not
use the gradient of the problem being optimized, which means PSO does not require that the optimization
problem be differentiable as is required by classic optimization methods. Moreover, the convergence of
this method has been investigated in [23]. Random search is a family of numerical optimization methods
that do not require the gradient of the problem to be optimized, and it can hence be used on functions
that are not continuous or differentiable. Such optimization methods are also known as direct-search or
derivative-free. Random Search works by iteratively moving to better positions in the search space, which
are sampled from a hypersphere surrounding the current position. Plus, the convergence of this method has
been shown in [34]. Also the experience of authors in [8, 9] shows that PSO (as a meta-heuristic algorithm)
and Random search (as a classical algorithm) are the two most appropriate once in applications.

4.1. Proposed Algorithms
Let rk denote the residual vector of the AOR method at the kth iterative step; that is:

rk = b − Axk + B|xk|.

Suppose that the matrix A is an irreducible L−matrix. In this case, first by minimizing ρ(TAOR) on

F1 = {(γ,ω)| ‖ (AD − γAL)−1[(1 − ω)AD + (ω − γ)AL + ωAU] + ω(AD − γAL)−1
|B| ‖< 1}

the optimal parameters γ∗ and ω∗ are obtained. Then, substituting them in (6) gives

xk+1 =(AD − γ
∗AL)−1[(1 − ω∗)AD + (ω∗ − γ∗)AL + ω∗AU]xk (15)

+ ω∗(AD − γ
∗AL)−1B|xk| + ω

∗(AD − γ
∗AL)−1b.
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In fact, the optimal parameters of the AOR method, in case that A is an irreducible L−matrix, can be obtained
by solving a constrained optimization problem; more precisely

(γ∗, ω∗) =argmin
F1

ρ(TAOR.)

According to this, we can present the following algorithm for solving (1) in this case.

Algoritm 4.1.1
Step0. Given an initial vector x0 ∈ Rn, a precision ε1 and Set k = 0.
Step1. Solve min

F1
ρ(TAOR) by an appropriate optimization method to obtain γ∗ and ω∗.

Step2. Compute xk+1 from (15).
Step3. If the stopping condition is satisfied, stop and xk+1 is the solution. If not, set k← k+1 and go to Step2.

Regarding the definition of F1 and Theorem 2.6, Theorem 3.4 indicates that the obtained sequence by
(15) is converged to the unique solution of (1).
Now assume that A is a symmetric positive definite matrix; in this case, we minimize the residual vector on

F2 = {(γ,ω)| det(AD−γAL) , 0 and ‖ |(AD−γAL)−1((1−ω)AD +(ω−γ)AL +ωAU)| ‖ + ‖ |ω(AD−γAL)−1B| ‖< 1}

and determine the optimal parameters γ∗ and ω∗, i.e.

(γ∗, ω∗) =argmin
F2

‖rk+1
‖2.

Then, one can construct the related sequence (15). Regarding the definition F2, the Corollary 3.2 shows that
this sequence converges to a unique solution of (1). So, we have the following algorithm for the case that
A in (1) is a symmetric positive definite matrix.

Algoritm 4.1.2
Step0. Given an initial vector x0 ∈ Rn and a precision ε2 and set k = 0.
Step1. Solve the problem min

F2
‖rk+1
‖2 by an appropriate method and obtain γ∗ and ω∗.

Step2. Compute xk+1 from (15).
Step3. If the stopping criteria is holded, stop and xk+1 is the solution. If not, set k← k + 1 and go to Step2.

In the third case, suppose A is a general nonsymmetric matrix; here, we compute the optimal parame-
ters and their related sequence as the previous case and use Algorithm 4.1.2 to solve (1).

We remind that the stopping condition can be a fixed number of iterations, a residual threshold and etc.
We consider ε1, ε2 > 0 as a residual threshold in the above algorithms.
Note. In each iteration of our proposed method, the parameters are fixed, since they are firstly determined
optimally, and then the obtained optimal values are used in each iteration.

Remark 4.1. We know that in the AOR method, parameters γ and ω are randomly selected. However, in the above
algorithms, parameters γ and ω are optimally calculated and then we will have AOR iteration with γ∗ and ω∗ optimal
parameters. In other words, OAOR method is AOR iterative method by applying optimal parameters of γ∗ and
ω∗. Since the convergence of the AOR method with the randomly selected parameters is proved in Theorem 3.4, we
conclude that the optimized AOR iterative method, in which we apply the AOR method with the optimal parameters,
under the assumptions of Theorem 3.4 is convergent and its convergence rate is much faster than AOR method.

5. Numerical results

To demonstrate the performance of the proposed method for solving the AVE (1), here, we report some
numerical experiments. In our numerical computations, the initial guess is taken to be

x(0) = (1, 0, 1, 0, ..., 1, 0, ...)T
∈ Rn
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and all the iterations are terminated as soon as

‖ Ax(k)
− B | x(k)

| −b ‖2
‖ b ‖2

≤ 10−6,

where x(k) denotes the kth approximate solution [13]. the All numerical procedures have been done by
MATLAB R2014a.

As pointed out in [17], if 1 is not an eigenvalue of M, then the linear complementarity problem (LCP)

Mz + q ≥ 0, z ≥ 0 and zT(Mz + q) = 0,

with M ∈ Rn×n and q ∈ Rn, can reduced to the AVE

(M − I)−1(M + I)x − |x| = (M − I)−1q,

where

x =
1
2

((M − I)z + q).

Also recently the equivalence between HLCPs and (1) has been noted in [18]. More precisely, it is shown
that if x is a solution of the general AVE (1), then the vectors z = max(0, x) and w = max(0,−x) solve the
HLCP

(A − B)z − (A + B)w = b; z ≥ 0; w ≥ 0; zTw = 0.

Conversely, if (z,w) solve the HLCP

Cz −Dw = b; z ≥ 0; w ≥ 0; zTw = 0,

with C,D ∈ Rn×n and z,w, b ∈ Rn, then x = z − w solves the general AVE (1) with

A =
1
2

(C + D) B =
1
2

(D − C).

It is necessary to mention we randomly selected the parameters of the not optimized AOR and SOR methods
from the interval [0,1]. In this way, each of AOR and SOR methods has been run ten times with random
parameters, and then provided a mean of computational times, number of iterations, etc.
We remind that Rohn showed in [26] that if σmax(|B|) < σmin(A), where σmax and σmin denote the maximal
and minimal singular values respectively, then for each right-hand side b ∈ Rn, the absolute value equation
Ax + B|x| = b has a unique solution. Accordingly, the absolute value equations given in the following
examples have a unique solution.

Example 5.1. [11] Consider the AVE (1) with B = I,

A = tridia1(−1, 4,−1) ∈ Rn×n and b = Az − |z|,

where z = (−1, 1,−1, 1, ...,−1, 1)T
∈ Rn.

Obviously, A is an irreducible L−matrix. In Tables 1-4, the optimal parameters of the AOR iterative method
have been calculated using Interior point, SQP, Random search and PSO techniques. Also, the required
time (denoted as CPU) to calculate the optimal parameters has been reported. In Tables 5-6, we have also
compared ρ(TOAOR) with ρ(TAOR) and ρ(TSOR). Moreover the OAOR, AOR and SOR methods are compared
respect to the number of iterations and CPU times. The numerical results demonstrate that the optimized
AOR method has a faster asymptotic rate of convergence compared with the AOR and SOR methods.
Moreover, as the tables show, the number of iterations of the OAOR method is remarkably less than that of
AOR and SOR.
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Table 1: Calculating the optimal parameters of AOR method and the required time to calculate them for Example 5.1 by Interior point
technique.

n γ∗ ω∗ CPU
25 1 1 1.9361
100 1 1 2.7075
400 0.7897 0.9586 15.4577
900 0.4052 0.8746 110.0264
1600 0.6777 0.7644 363.5897

Table 2: Calculating the optimal parameters of AOR method and the required time to calculate them for Example 5.1 by SQP technique.

n γ∗ ω∗ CPU
25 1 1 1.6665
100 1 1 2.2016
400 1 1 5.9072
900 1 1 21.9294
1600 0.3063 1 732.4196

Table 3: Calculating the optimal parameters of AOR method and the required time to calculate them for Example 5.1 by Random
search technique.

n γ∗ ω∗ CPU
25 0.9749 0.9945 0.0650
100 0.9732 0.9854 0.8842
400 0.9476 0.9991 6.5027
900 0.9419 0.9786 43.4342
1600 0.9774 0.9828 153.6666

Table 4: Calculating the optimal parameters of AOR method and the required time to calculate them for Example 5.1 by PSO technique.

n γ∗ ω∗ CPU
25 1 1 0.1472
100 1 1 0.9130
400 1 1 2.5802
900 1 1 6.4703
1600 0.9943 0.9992 23.5622
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Table 5: Comparison results between the number of iterations (CPU-time in seconds) for Example 5.1.

n Algorithm SOR AOR OAOR
25 Interior point 112 (0.0164) 65 (0.0128) 14 (0.0033)

SQP 14 (0.0032)
Random search 14 (0.0033)
PSO 14 (0.0032)

100 Interior point 117 (0.0196) 287 (0.0499) 14 (0.0035)
SQP 14 (0.0034)
Random search 14 (0.0034)
PSO 14 (0.0033)

400 Interior point 98 (0.0258) 661 (0.1557) 16 (0.0051)
SQP 14 (0.0043)
Random search 14 (0.0047)
PSO 14 (0.0044)

900 Interior point 295 (0.1186) 76 (0.0301) 21 (0.0092)
SQP 14 (0.0059)
Random search 15 (0.0069)
PSO 14 (0.0059)

1600 Interior point 45 (0.0242) 66 (0.0430) 22 (0.0136)
SQP 19 (0.0131)
Random search 14 (0.0104)
PSO 14 (0.0093)

Example 5.2. [1] Assume that m be a prescribed positive integer and n = m2. Consider the LCP(q,M), in which
M ∈ Rn×n is given by M = M̂ + 2I and q ∈ Rn is given by q = −Mz∗, where

M̂ =



S −I 0 . . . 0 0
−I S −I . . . 0 0
0 −I S . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . S −I
0 0 0 . . . −I S


∈ Rn×n,

with

S =



4 −1 0 . . . 0 0
−1 4 −1 . . . 0 0
0 −1 4 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 4 −1
0 0 0 . . . −1 4


∈ Rm×m,

and

z∗ = (1, 2, 1, 2, ..., 1, 2, ...)T
∈ Rn.

It is clear that, A is a symmetric positive definite matrix. In Tables 7-10, the optimal parameters of the AOR iterative
method have been calculated by Interior point, SQP, Random search and PSO techniques. Furthermore, the required
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Table 6: Comparison results between spectral radius of TSOR, TAOR and TOAOR for Example 5.1.

n Algorithm SOR AOR OAOR
25 Interior point 0.8527 0.8392 0.6503

SQP 0.6503
Random search 0.6560
PSO 0.6503

100 Interior point 0.8724 0.9193 0.6542
SQP 0.6542
Random search 0.6633
PSO 0.6542

400 Interior point 0.8867 0.9157 0.6960
SQP 0.6548
Random search 0.6628
PSO 0.6548

900 Interior point 0.8911 0.8632 0.7559
SQP 0.6558
Random search 0.6710
PSO 0.6558

1600 Interior point 0.8472 0.8836 0.7672
SQP 0.7288
Random search 0.6663
PSO 0.6571

CPU-time (in second) to calculate the optimal parameters are presented. Comparison results between OAOR, AOR
and SOR iterative methods from point of view the 2-norm of the residual vector, the number of iterations and CPU
time have been presented for Example 5.2 in Tables 11-12.

Table 7: Calculating the optimal parameters of AOR method and the required time to calculate them for Example 5.2 by interior point
technique.

n γ∗ ω∗ CPU
25 1.0121e-6 0.5555 2.0475
100 6.0634e-7 0.5030 2.4564
400 2.36587e-7 0.4830 9.9263
900 1.3112e-7 0.47679 73.6330
1600 8.8824e-8 0.4740 402.6275
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Table 8: Calculating the optimal parameters of AOR method and the required time to calculate them for Example 5.2 by SQP technique.

n γ∗ ω∗ CPU
25 0 0.5555 2.0701
100 0 0.5030 2.0874
400 0 0.4830 8.3794
900 0 0.4768 82.7319
1600 0 0.4740 372.6798

Table 9: Calculating the optimal parameters of AOR method and the required time to calculate them for Example 5.2 by Random
search technique.

n γ∗ ω∗ CPU
25 0.6869 0.7341 0.4839
100 0.7772 0.7779 4.6180
400 0.1207 0.5211 128.9289
900 0.5892 0.8080 591.9871
1600 0.4865 0.5692 1988.6268

Table 10: Calculating the optimal parameters of AOR method and the required time to calculate them for Example 5.2 by PSO
technique.

n γ∗ ω∗ CPU
25 0.001 0.5615 0.3063
100 0.0047 0.5358 2.2256
400 0.0043 0.5000 25.1021
900 0.0095 0.5284 149.0745
1600 0.0098 0.5802 672.3024
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Table 11: Comparison results between the number of iterations (CPU-time in seconds) for Example 5.2.

n Algorithm SOR AOR OAOR
25 Interior point 77 (0.0026) 55 (0.0024) 9 (0.0003)

SQP 9 (0.0004)
Random search 11 (0.0004)
PSO 9 (0.0003)

100 Interior point 41 (0.0112) 53 (0.0153) 9 (0.0027)
SQP 9 (0.0026)
Random search 15 (0.0044)
PSO 11 (0.0033)

400 Interior point 26 (0.1196) 35 (0.1699) 10 (0.0513)
SQP 10 (0.0514)
Random search 10 (0.0493)
PSO 10 (0.0480)

900 Interior point 56 (1.1813) 78 (1.6272) 10 (0.2767)
SQP 10 (0.2754)
Random search 31 (0.7821)
PSO 14 (0.3302)

1600 Interior point 41 (3.0222) 36 (2.2962) 10 (0.6766)
SQP 10 (0.6715)
Random search 8 (0.5372)
PSO 21 (1.3737)

Example 5.3. [1] Assume that m be a prescribed positive integer and n = m2. Consider the LCP(q,M), in which
M ∈ Rn×n is given by M = M̂ + 2I and q ∈ Rn is given by q = −Mz∗, where

M̂ =



S −0.5I 0 . . . 0 0
−1.5I S −0.5I . . . 0 0

0 −1.5I S . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . S −0.5I
0 0 0 . . . −1.5I S


∈ Rn×n,

with

S =



4 −0.5 0 . . . 0 0
−1.5 4 −0.5 . . . 0 0

0 −1.5 4 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 4 −0.5
0 0 0 . . . −1.5 4


∈ Rm×m,

and

z∗ = (1, 2, 1, 2, ..., 1, 2, ...)T
∈ Rn.
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Table 12: Comparison results between 2-norm of the residual vector for Example 5.2.

n Algorithm SOR AOR OAOR
25 Interior point 9.407e-05 8.250e-05 3.185e-06

SQP 3.185e-06
Random search 6.297e-06
PSO 2.514e-06

100 Interior point 2.104e-04 2.067e-04 2.352e-05
SQP 2.352e-05
Random search 1.401e-05
PSO 2.337e-05

400 Interior point 3.927e-04 4.547e-04 3.505e-05
SQP 3.505e-05
Random search 2.039e-05
PSO 5.206e-05

900 Interior point 6.491e-04 7.408e-04 7.599e-05
SQP 7.595e-05
Random search 5.927e-05
PSO 4.619e-05

1600 Interior point 9.006e-04 8.849e-04 1.188e-04
SQP 1.188e-04
Random search 1.023e-04
PSO 8.378e-05

Evidently, A is a nonsymmetric matrix. The optimal parameters of the AOR iterative method and the
required time to calculate them have been reported in Tables 13-16. In Tables 17-18, some iterative results
are presented in order to illustrate the convergence behavior of the SOR, AOR and OAOR methods for
Example 5.3. As the numerical results show, the OAOR method requires less iteration steps than SOR and
AOR methods. According to the numerical results in Tables 1-18, the OAOR method is more powerful and
efficient than the SOR and AOR methods.

Table 13: Calculating the optimal parameters of AOR method and the required time to calculate them for Example 5.3 by interior
point technique.

n γ∗ ω∗ CPU
25 1.6435e-7 0.5671 1.6444
100 5.1024e-6 0.4988 1.6665
400 8.5831e-8 0.4740 9.3217
900 1.4216e-5 0.4666 62.8804
1600 3.9918e-9 0.4633 333.3669
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Table 14: Calculating the optimal parameters of AOR method and the required time to calculate them for Example 5.3 by SQP
technique.

n γ∗ ω∗ CPU
25 0 0.5671 1.7301
100 0 0.4988 1.9328
400 0 0.4740 6.3138
900 0 0.4665 46.2533
1600 0 0.4633 305.4300

Table 15: Calculating the optimal parameters of AOR method and the required time to calculate them for Example 5.3 by Random
search technique.

n γ∗ ω∗ CPU
25 0.00340 0.4340 0.4523
100 0.0029 0.4759 3.1995
400 0.0038 0.5283 72.5528
900 0.0046 0.5028 299.8855
1600 0.0027 0.4892 455.0418

Table 16: Calculating the optimal parameters of AOR method and the required time to calculate them for Example 5.3 by PSO
technique.

n γ∗ ω∗ CPU
25 8.59e-6 0.5834 0.3997
100 2e-6 0.5231 2.6300
400 0 0.5029 10.3744
900 6.53e-6 0.5317 57.8127
1600 6.79e-6 0.5540 401.9900
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Table 17: Comparison results between the number of iterations (CPU-time in seconds) for Example 5.3.

n Algorithm SOR AOR OAOR
25 Interior point 44 (0.0015) 35 (0.0012) 9 (0.0004)

SQP 9 (0.0003)
Random search 13 (0.0005)
PSO 9 (0.0003)

100 Interior point 1559 (0.3771) 29 (0.0068) 9 (0.0020)
SQP 9 (0.0020)
Random search 10 (0.0022)
PSO 9 (0.0020)

400 Interior point 65 (0.3680) 27 (0.1417) 10 (0.0487)
SQP 10 (0.0486)
Random search 11 (0.0547)
PSO 9 (0.0432)

900 Interior point 41 (0.9875) 42 (1.0550) 10 (0.2684)
SQP 10 (0.2462)
Random search 11 (0.2565)
PSO 14 (0.3717)

1600 Interior point 34 (2.1661) 105 (7.7605) 11 (0.8246)
SQP 11 (0.8343)
Random search 11 (0.8235)
PSO 18 (1.4669)
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Table 18: Comparison results between 2-norm of the residual vector for Example 5.3.

n Algorithm SOR AOR OAOR
25 Interior point 8.847e-05 9.488e-05 3.289e-06

SQP 3.289e-06
Random search 1.192e-05
PSO 8.015e-06

100 Interior point 1.570e-04 1.961e-04 2.182e-05
SQP 2.182e-05
Random search 1.874e-05
PSO 1.645e-05

400 Interior point 4.016e-04 3.693e-04 3.592e-05
SQP 3.592e-05
Random search 4.376e-05
PSO 5.298e-05

900 Interior point 5.984e-04 5.671e-04 7.805e-05
SQP 7.850e-05
Random search 4.148e-05
PSO 5.092e-05

1600 Interior point 8.457e-05 8.853e-05 2.999e-05
SQP 2.997e-05
Random search 3.846e-05
PSO 7.086e-05
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6. Conclusion

In this paper, we presented the way of finding the optimal parameters of AOR method to improve
convergence rate by suitable optimization techniques and the optimized method called OAOR method.
We shown that how this new iterative method works and moreover, its convergence is also guaranteed.
Besides, the effectiveness of OAOR method have been demonstrated through different cases of numerical
experiments come out from literatures. As it is seen from the obtained results, the proposed method has
been succeeded in improving the convergence rate compared with the classical SOR and AOR methods.
Also, the number of iterations and the spectral radius (or 2-norm residual vector) of the optimized AOR
method for different size (dimension) are remarkably better. Moreover, one can conclude that among the
mentioned optimization algorithms, generally, the SQP and PSO algorithms have better performance for
calculating the optimal parameters.
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