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Abstract. In this paper, we present the necessary and sufficient conditions for a poset to be a poset of the
union of join and meet irreducible elements of the slim lattice. Slim lattices are special finite lattices that
are intensively investigated recently. The problem that we solved in this paper is a generalization of the
problem proposed very recently by Czédli.

1. Introduction

The study of slim lattices began in 2007 with the work of Grätzer and Knapp [14], who first defined
them. Shortly afterwards, Czédli and Schmidt [8] proposed a slightly different definition of these lattices.
According to Czédli and Schmidt [8], a finite lattice L is slim if JL, the set of join-irreducible elements of L,
contains no three-element antichain. Equivalently, a finite lattice L is slim if and only if JL is the union of two
disjoint chains. Since then the theory of slim lattices, especially the theory of slim semimodular lattices, has
been intensively developed by the works of Czédli [1–4], Grätzer and Knapp [15, 16], Schmidt [17], Czédli
and Schmidt [9–11], Czédli, Osvárt, Udvari [6], Czédli and Grätzer [7], Czédli, Dékány, Oszvárt, Szakács,
Udvari [5] and others.

Recently, Czédli [3] posed a problem of representation of slim lattices by posets (partially ordered sets)
of their meet- irreducible elements. The problem of representability is solved for slim semimodular lattices
[3]. Slim semimodular lattices are mutually determined by quasiplanar diagrams of their meet irreducibles.
The solution proposed by Czedli [3] is not suitable for slim lattices in general, because slim lattices are
not uniquely determined by poset of their meet-irreducible elements. In other words, there are more slim
lattices with a same poset of meet- irreducibles (see Example 1). Nevertheless, there are other suitable
posets of elements of the slim lattice with quasiplanar diagram, which we consider in this paper. Namely,
it is proved here that a slim lattice is uniquely determined by the poset JL ∪ML of the union of their join-
and meet-irreducible elements.

In this paper, we investigate the necessary and sufficient conditions under which a given poset is
isomorphic to a poset JL ∪ML of some slim lattice L.
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2. Preliminaries

A complete lattice L is a partially ordered set (poset (L,≤)) in which every subset has a least upper bound
and a greatest lower bound. A complete lattice has the top and the bottom element which are usually
denoted by 1 and 0 (or 1L and 0L to avoid confusion), respectively. A finite lattice L is slim if JL, the set of
join-irreducible elements of L, contains no three-element antichain.

With x ‖ y we denote that lattice (poset) elements x and y are not comparable.
Let (L,≤) be a lattice. Then C ⊆ L is a chain if any two elements of C are comparable. Subset A of the

lattice L is an antichain if any two elements of A are incomparable. The width of L, denoted by w(L), is the
size (number of elements in finite case) of the largest antichain in L.

Theorem 2.1. [12] [Dilworth’s theorem]
Let P be a poset of width k. Then P is a union of k disjoint chains.

The symbol ↓a = {x ∈ L | x ≤ a} denotes the principal ideal generated by an element a. The principal filter
is the dual notion denoted by ↑a.

An injection f : P→ Q is an order-embedding from the lattice (P,≤) into the lattice (Q,≤) if
x ≤ y if and only if f (x) ≤ f (y), for all x, y ∈ P.
A bijection which is order embedding is isomorphism of posets P and Q.
We say that an order-embedding which preserves all infima is a meet-embedding and dually, an order-

embedding which preserves all suprema is a join-embedding. We say that L1 ⊆ L is a complete meet-sublattice
of L if L and L1 are complete lattices and all infima in L and L1 coincide.

Meet-between lattices have also been introduced recently and applied in fuzzy set theory [13].
Let L be a lattice and a, b, c ∈ L. We say that b is meet-between (∧-between) a and c, and denote it by abc∧

if:

(a ∧ b) ∨ (b ∧ c) = b and b ≥ a ∧ c. (1)

A lattice L is a meet-between lattice (∧-between lattice) if for all a, b, c ∈ L, if they are two by two
incomparable elements, then they are in a relation ∧-between.

It is proved in [13] that if L is a meet-between lattice, then w(JL) ≤ 2. Thus, meet-between lattices are a
generalization of slim lattices.

A finitely spatial lattice is another notion recently introduced by Wehrung [18]. A lattice L is finitely
spatial if every element of L is a join of join-irreducible elements of L. Dually, a lattice L is dually finitely
spatial if every element of L is a meet of meet-irreducible elements of L. A lattice L is finitely bi-spatial if it is
both, finitely spatial and dually finitely spatial.

We need the following results:

Lemma 2.2. [13] A complete meet-sublattice L1 of a complete meet-between lattice L is a complete meet-between
lattice.

Proposition 2.3. [13] Let C1,C2 be complete chains. The lattice C1×C2 is a complete finitely bi-spatial meet-between
lattice.

Proposition 2.4. [13] A complete lattice L is a finitely spatial meet-between planar lattice if and only if it can be
meet-embedded into a direct product of two complete chains.
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3. Theorem of representation of slim lattices

Representability of a slim lattice L by the poset JL ∪ML, is based on the fact that slim lattices are meet-
embeddable into a product of finite chains C1×C2, which will be proven in the sequel, and that each element
of the lattice L is representable by the suprema of all join-irreducible elements of the lattice L below it, and
by the infima of all meet-irreducible elements of the lattice L above it, since L is a finite lattice.

Theorem 3.1. Let P be finite poset and let P1 and P2 be finite nonempty subposets of P such that P = P1 ∪ P2 and
w(P1) ≤ 2. Let C1 and C2 be the disjoint chains such that P1 = C1 ∪ C2 and let C′1 = C1 ∪ {0}, C′2 = C2 ∪ {0} and
P′ = P ∪ {0} such that 0 is the bottom element of C′1 and C′2, where 0 is the bottom element of P if P has the bottom
element. If P does not have the bottom element, then 0 < P is added as the bottom element in P′.

Let the following conditions be satisfied:
1) For all x ∈ P
if x is the bottom element of P or if there exist a, b ∈ P such that

(a ‖ b and x = a ∨ b), (2)

then x ∈ P2 \ P1;
2) For all x ∈ P,
if x is the top element of P or if

x =
∧
{a | a > x}, {a | a > x} , ∅, (3)

then x ∈ P1 \ P2;
3) For all x ∈ P, x = p ∨ q, where:

p =
∨
{y ∈ C′1 | y ≤ x}, q =

∨
{z ∈ C′2 | z ≤ x}; (4)

4) For all x3 ∈ P2 \P1, x1, x2 ∈ P, xi = pi ∨ qi, i = 1, 2, 3, where pi and qi are defined by (4). If x1 ‖ x2 and x3 < xi,
i = 1, 2 then at most one is valid from the following:

p1 = p3, q1 = q3, p2 = p3, q2 = q3.

Then there exists a slim lattice L, such that poset JL ∪ML is isomorphic with poset P. Moreover, poset JL is
isomorphic with subposet P1 and poset ML is isomorphic with subposet P2.

Remark 3.2. If x = p1 ∨ q1 and (x ∈ C′1 or x ∈ C′2), then x = x ∨ q1 or x = p1 ∨ x, respectively, where p1, q1 are
determined by equalities (4) in condition 3) of this theorem. If x ∈ P2 \ P1 and x = p1 ∨ q1, then x > p1, x > q1
and p1 ‖ q1. From conditions 1) and 2) it follows that the top element in P, if it exists, is not a supremum of two
incomparable elements and that the bottom element in P is not the infimum of incomparable elements.

Proof. Let P = P1 ∪ P2 be a finite poset which fulfills the conditions of the theorem and let D = C′1 × C′2.
Mapping f : P′ → D is defined in the following way:

f (x) = (p1, q1), (5)

for all x ∈ P′, x = p1∨q1, where p1, q1 are determined by equalities (4) in the condition 3) of this theorem. For
every element x ∈ P′ the elements defined with (4) exist and are determined uniquely, because C′i , i = 1, 2
are finite chains. According to the conditions the mapping has been well defined, and x ≤ y is valid if and
only if f (x) ≤ f (y), for each x, y ∈ P′. Hence the mapping is also injective.

Further on, let f (P′) = { f (x) | x ∈ P′} and

L = {∧DS | for all S ⊆ f (P′)}. (6)
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Let us prove that poset L, defined in this way, is a meet-sublattice of the lattice D having the same top
elements. Let us first notice that f (P′) ⊆ L, and for x = 0, p1 = q1 = 0. If P′ has the top element 1, then f (1)
is the top element of D. If P′ does not have the top element, then

∧
D ∅ = 1D ∈ L, according to the definition

of L. Thus, the bottom and the top elements of the poset L coincide, respectively, with the bottom and the
top elements of the lattice D.

According to the construction, L is closed under infima, and hence it is a complete lattice. Mapping f
preserves order on the poset f (P′) ⊆ L, and according to the construction, the infima of the elements of the
lattice L coincide with infima of the same elements in the lattice D. Thus, L is a complete meet-sublattice of
the lattice D, and according to Lemma 2.2 and Proposition 2.3, it can be concluded that L is a meet-between
lattice and w(JL) ≤ 2. Since L is a finite lattice, it follows that L is a slim lattice.

Before we prove that the mentioned isomorphisms are valid, we notice that since the lattice L is finite,
each element (a, b) ∈ L that is not join-irreducible can uniquely be represented as suprema of two particular
join-irreducible elements.

Namely, an arbitrary element (a, b) ∈ L is supremum of the following elements of the lattice L:

∧(a,y)∈L(a, y) = (a,∧(a,y)∈Ly), (7)

whose first coordinate is a and an element of the lattice L whose second coordinate is b:

∧(x,b)∈L(x, b) = (∧(x,b)∈Lx, b). (8)

In case one of these elements is equal to (a, b) this element is join-irreducible. In case both elements are
equal to (a, b), this element is the bottom element of the lattice L. Now, we suppose that (a, b) is different
from any of these elements.

We want to prove that f (a) = ∧(a,y)∈L(a, y), f (b) = ∧(x,b)∈L(x, b) and that these elements are join- irreducible.
Since (a, b) ∈ L ⊆ D, then a ∈ C′1, b ∈ C′2 and f (a), f (b) ∈ L. Further, we consider f (a), the proof is analogous

for f (b). Let f (a) = (a, z). We claim that z = ∧(a,y)∈Ly, meaning that in lattice L there is no element smaller
than (a, z), and whose first coordinate is a. It is clear that there is no a′ ∈ P′ where f (a′) = (a, t) < f (a) = (a, z).
Indeed, from this assumption it can be concluded that a′ <P′ a, but also that a′ = a ∨P′ t ≥ a, which is a
contradiction. Further on, we want to prove that for each S ⊆ f (P′), we have that ∧DS = (a, t) ≥ (a, z). Here
we prove that for each element (x, y) ∈ S we have that x ≥ a and y ≥ z. Since ∧DS = (a, t), it is clear that
x ≥ a for each element (x, y) ∈ S.

Since S ⊆ f (P′), there is a p ∈ P′ such that f (p) = (x, y) and p = x ∨ y. Hence it is possible to conclude
that p ≥ x ≥ a. Thus f (p) ≥ f (a), i.e. (x, y) ≥ (a, z). It follows that y ≥ z.

Thus, it is proved that there are no elements smaller than (a, z) = f (a) in the lattice L whose first coordinate
is a. Moreover, if there is an element (a, b) ∈ L, then there are also a ∈ C′1, b ∈ C′2 such that f (a)∨ f (b) = (a, b).

Now, we want to prove that f (a) is a join- irreducible element for all a ∈ P1. Let f (a) = (a, z). Suppose that
there are (u, q), (p, v) ∈ L such that (u, q)∨ (p, v) = (a, z) = f (a) and (u, q) ‖ (p, v). Thus u, p ∈ C′1, q, v ∈ C′2, (u > p
and q < v) or (u < p and q > v). According to previously proven, f (u) ∨ f (q) = (u, q) and f (p) ∨ f (v) = (p, v).
Thus f (a) = f (u) ∨ f (q) ∨ f (p) ∨ f (v). Without loss of generality, we suppose that u > p and q < v. It
follows that f (u) > f (p), f (q) < f (v) and f (a) = f (u) ∨ f (v). If u > v, then f (u) > f (v) and f (a) = f (u). Thus
f (a) = (u, q). Similarly, if u < v, then f (a) = (p, v). If u ‖ v, then a = u ∨ v. Indeed, from f (a) = f (u) ∨ f (v) it
follows that a ≥ u∨ v. Thus f (a) ≥ f (u∨ v) ≥ f (u)∨ f (v) = f (a). It follows that f (a) = f (u∨ v). Thus a = u∨ v
and a ∈ P2 \ P1, by condition 1) of the theorem, which leads into contradiction with the assumption a ∈ P1.

Thence it follows that all the elements f (P1) are join- irreducible in the lattice L. On basis the construction
of the lattice L and the above conclusions, it is clear that they are the only join- irreducible elements of the
lattice L. Thereby it is proved that f (P1) = JL.

Finally, we claim that the elements f (P2) are exactly meet-irreducible elements of the lattice L.
Suppose that an element (a, b) = f (t) with t ∈ P2 is not meet-irreducible, i.e., that (a, b) =

∧
({(x, y) ∈

L | (a, b) < (x, y)}). Since each element in L is either from f (P′) or a meet of some elements from f (P′),
we have that (a, b) =

∧
({(x, y) ∈ f (P′) | (a, b) < (x, y)}). By the properties of the mapping f , we have that

t =
∧

({y | t < y}). Thus t ∈ P1 \P2, by condition 2) of this theorem, which is a contradiction to the assumption
t ∈ P2. So, it is proved that each element f (t) for t ∈ P2 is meet-irreducible. To prove the converse, suppose
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that (a, b) is a meet-irreducible element of L. Since, each element from L is either a meet of elements from
f (P′) and hence not meet-irreducible, or it is an element of f (P′). If this element is from f (P′) then (a, b) = f (t)
and t can not be element from P1 \ P2 (by 2), condition (3)), so we have that t ∈ P2.

Theorem 3.3. Let L be a finite slim lattice with the bottom element 0 and the top element 1. Let C1 and C2 be disjoint
chains such that JL = C1 ∪C2 and let C′1 = C1 ∪ {0} and C′2 = C2 ∪ {0}. Let J′L = JL ∪ {0} and let P′ = J′L ∪ML. Then
the following properties are satisfied:

1) For all x ∈ P′, x = p1 ∨P′ q1, where:

p1 =
∨
{p ∈ C′1 | p ≤ x}, q1 =

∨
{q ∈ C′2 | q ≤ x}.

2) For all x ∈ P′, x , 0, x ∈ML \ JL, if and only if there exist a, b ∈ P′ such that

a ‖ b and x = a ∨P′ b.

3) For all x ∈ P′, x , 1, x ∈ JL \ML if and only if

x = ∧P′ {a | a > x}.

4) For all x3 ∈ML \ JL, x1, x2 ∈ P′, xi = pi ∨ qi, i = 1, 2, 3, if x1 ‖ x2 and x3 < xi, i = 1, 2 then at most one is valid
from the following:

p1 = p3, q1 = q3, p2 = p3, q2 = q3.

Proof. Let L be a slim lattice and P = JL ∪ML. According to the definition of the slim lattice, w(JL) ≤ 2. Let
JL = C1 ∪ C2, where C1 and C2 are disjoint chains. Further, let C′1 = C1 ∪ {0} and C′2 = C2 ∪ {0}, J′L = JL ∪ {0}
and P′ = J′L ∪ML.

Since every element in a finite lattice is a join of all join-irreducible elements below it, we have that for
all x ∈ L, x = (∨L(↓ x ∩ C′1)) ∨L (∨L(↓ x ∩ C′2)).

Let p1 = ∨(↓ x ∩ C′1) and q1 = ∨(↓ x ∩ C′2).
1) From x = p1 ∨L q1, x ∈ P′ it follows that x = p1 ∨P′ q1, since all three elements x, p1 and p2 belong to P′

and the order in P′ is inherited from L.
2) Let x , 0 and x = p1 ∨L q1. Then x , p1, x , q1, p1 ‖ q1 if and only if x ∈ ML \ JL, thence the proof of

property 2) follows straightforwardly.
3) Suppose that x ∈ JL \ML and x , 1. This means that x is not a meet-irreducible element in L. Hence,

x = ∧L{a ∈ML | a > x}. Since x is not the top element 1, set {a | a > x} is not empty.
Now, x = ∧L{a ∈ML | a > x} is equivalent to x = ∧P′ {a ∈ML | a > x} since x ∈ P′ and ML ⊆ P′.
Let us prove that the property 4) is valid. Let x3 ∈ ML \ JL, x1, x2 ∈ JL ∪ML ∪ {0L} be arbitrary different

elements such that xi = pi ∨ qi (as above), pi ∈ C′1, qi ∈ C′2 (i = 1, 2, 3), x1 ‖ x2 and x3 < xi, i = 1, 2. We are
going to prove that at most one of the following equalities is valid: p1 = p3, q1 = q3, p2 = p3, q2 = q3.

Without loss of generality, we assume that p2 = p3. Then q2 > q3, otherwise x2 and x3 would be the same.
Bearing in mind that qi ∈ C′2 (i = 1, 2, 3), if p1 = p3 then the elements x1, x2 would be comparable, which is
in contradiction with the assumption.

Thus, p1 > p3. In case q1 = q3, we would have that x1 ∧ x2 = x3, which would be contradiction with the
assumption that x3 is meet-irreducible.

Theorems 3.1 and 3.3 provide necessary and sufficient conditions for a poset P to be isomorphic with a
poset JL ∪ML of a slim lattice L. Moreover, as a direct consequence of these theorems and proposition 2.4,
we have the following theorem.

Theorem 3.4. Let L be a finite lattice. Then the following properties of the lattice L are equivalent.
1.) L is a meet- between lattice.
2.) L is a slim lattice.
3.) L can be meet-embedded into a direct product of two finite chains.
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Proof. Properties 1) and 3) are equivalent by Proposition 2.4, and from 1) it follows 2). According to
Theorems 3.1 and 3.3, from 2) follows 3), which concludes the proof.

Figure 1: Lattices L1, L2 and the corresponding posets ML1 ∪ JL1 , ML2 ∪ JL2 and ML1 = ML2 .

Example 3.5. Posets of meet irreducible elements of the slim lattice L1 and the slim semimodular lattice L2 are same,
but their posets ML1 ∪ JL1 (Fig. 1a)) and ML2 ∪ JL2 (Fig. 1b)) are different. In Figure 1, elements of poset MLi \ JLi

are marked by black filled circles, elements of poset JLi \MLi are marked by double circles, and elements of JLi ∩MLi

(i = 1, 2) are marked by double circles with the black filled center.

4. Conclusion

In this paper we give a representation of a finite slim lattice by a poset of its meet and join irreducibles.
A representation of a finite distributive lattices by the set of its join irreducible elements (or meet-irreducible
elements) is well known. A recent result by Czédli gives a representation of slim semimodular lattices by
a quasiplanar diagram of their meet irreducible elements.

Further investigation is planned in two directions. The first one is a generalization of obtained results
to infinite spatial (or dually spatial) meet-between lattices. Another line of investigation can be further
development of representation theorems by poset which is a union of meet and join-irreducible elements
for other types of lattices.
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