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Abstract. In this study, we firstly introduce a different type of directional Fermi-Walker transportations
along with vortex lines of a non-vanishing vector field in three-dimensional Minkowski space. Then we
consider some geometric quantities, which are used to characterize vortex lines, in order to express angular
velocity vector (Darboux vector) of the system in terms of these quantities. Later we present timelike
directional magnetic vortex lines by computing the Lorentz force. Hence, we reach a remarkable relation
between timelike directional magnetic vortex lines and angular velocity vector of vortex lines with a non-
rotating frame in Minkowski space. We also determine the timelike directional electric vortex lines by
considering the electromagnetic force equation. We finally investigate the conditions of being uniform for
magnetic fields of timelike directional magnetic vortex lines and we improve such a remarkable approach
to find the electromagnetic curvature which contains many geometrical features belonging to timelike
directional magnetic and electric vortex line.

1. Introduction

Recently, it has been intensively concentrated on the phenomena connected with topological and geo-
metric features of some parameters evolving in time, which is given in the form of a space curve traced
by the quantum or mechanical system. For instance, Berry proved that a quantum system can pick up a
topological phase apart from the ordinary dynamical phase. Even though the complete phase of a system
is not commonly estimated Berry argued a special case when the phase of a quantum system is observed
due to the intervention with the phase of the alternative quantum system [1]. A traditional example for this
case can be observed through the polarized light ray propagating along with optical fibers or waveguides.
This observation provides detailed information regarding the related phases of the polarized light in both
optical fibers and waveguides. Furthermore, phase dependence and geometric nature of the rotational
polarized light ray in optical fibers or waveguides can be comprehended by the parallel transportation
along with unit vectors of space curves described by optical fibers or waveguides [2, 3].

One of the well-known and highly important parallel transportation is given by the Fermi-Walker
derivative. Fermi-Walker transportation is significant to understand various experiments and investiga-
tions. As is known an orthogonal frame undergoing rotational or linear acceleration can be determined by
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the Serret-Frenet frame. This frame together with the Fermi-Walker transportation is useful to characterize
also some essential physical events. They are effectively used in the investigation of the gravitational
wave resonant detectors, in the search of the inertial effects on a Dirac particle, in the study of gyroscopic,
Lense-Thirring and geodetic precession [4, 5, 6].

From the physical point of view, space curves are considered as the path or trajectory followed by the
state of the system for a given specific parameter. In particular, they could symbolize vortex filaments,
waveguides, polymer chains, optical fibers, elastic rods, etc. Many authors focus their attention on space
curves to characterize the intrinsic properties of given systems. For example, Dandoloff and Zakrzewski
found that two different phase-like quantities could help to represent a space curve and they concluded
that these quantities are associated to the Berry’s phase, which emerges in the action of propagating of a
light ray in a waveguide or optical fiber [7]. Dandoloff also defined other possible parallel transportation
laws and their relations with the Berry’s phase [8] .Moreover, it has been investigated that the Berry’s phase
can appear completely theoretical systems. For instance, in an integrable finite-dimensional Hamiltonian
system, the straightforward analogue of the Berry phase is given by the Hannay angle [9]. As opposed to
the former case if the integrability and existence of time-dependent parameters are not necessarily required
then another type of phase is given as the straightforward anologue of the Aharanov-Anandan phase [10].

2. Geometric Background for Minkowski Space

In the pure geometric context, all phase-like quantities are evenly significant and closely linked. These
quantities can be derived by considering the Serret-Frenet triad and Fermi-Walker parallel transportation
for a given parameter of a vortex line in Minkowski space.

According to this approach s−lines, which are vortex lines whose tangent vector t is defined by c = c (s) ,
where s is treated as the arc-length parameter. In Minkowski space, unit Serret-Frenet vectors along with
s−lines are denoted by t, n, b,which respectively stand for the unit tangent, principal normal and binormal
vectors. Thus these vectors form a moving orthogonal frame for s−lines, which is known to satisfy the
following Serret-Frenet equations in Minkowski space.

∇st = ε2κn,
∇sn = −ε1κt − ε3τb, (1)
∇sb = ε2τn,

where κ = κ (s) , τ = τ (s) are the curvature and torsion of the given s−lines and (t · t) = ε1, (n · n) = ε2,
(b · b) = ε3. The vector product of Frenet-Serret vector fields is given by

t × n =ε3b, n × b =ε1t, b × t =ε2n.

Here it is also assumed that ∇s = d/ds.
The angular velocity of the Serret-Frenet frame is given by the Darboux vectorD and it has components

along with unit vectors of (t,b) forming the rectifying plane and satisfying the following identities.

∇st = D×t,
∇sn = D×n, (2)
∇sb = D×b,

whereD = −τt + κb [11] .
For the rest of the article, we will only investigate the special case of timelike curves i.e. s−lines,

which are vortex lines whose tangent vector t is timelike tangent vector t such that (t · t) = ε1 = −1, and
(n · n) =ε2 = (b · b) =ε3 = 1.

Now let us observe the normal plane spanned by unit vectors (n,b) in Minkowski space. The angular
velocity of the Serret-Frenet triad around the timelike tangent vector t is given by τ. Hence it can be found
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that Berry phase is B1=
∫ s0

0 τ (s) ds between unit vectors (n,b) and associated non-rotating frame, which
is described by considering the ordinary Fermi-Walker derivative ∇◦ along with timelike s−lines in the
following way [7, 12] .

∇
◦

sA =∇sA+(t · A)∇st − (∇st · A)t, (3)

which is induced to

∇sA = −κ (b ×A) (4)

ifA is supposed to Fermi-Walker parallel transported.
If one observes the osculating plane spanned by unit vectors (t,n) then the angular velocity of the

Serret-Frenet triad around the binormal vector b is given by κ. Hence it can be found that modified Berry
phase is a B2=

∫ s0

0 κ (s) ds between unit vectors (t,n) and associated non-rotating frame, which is described
by considering the modified Fermi-Walker derivative (∇◦)M along with timelike s−lines in the following
way [7, 12] .

(∇◦)M
s A=∇sA+(b · A)∇sb − (∇sb·A)b, (5)

which is induced to

∇sA = −τ (t ×A) (6)

ifA is supposed to modified Fermi-Walker parallel transported.
Finally, modified Fermi-Walker parallel transportation and ordinary Fermi-Walker parallel transporta-

tion yield the normal Fermi-Walker parallel transportation in the following way.

(∇◦)N
s A=∇sA+(n · A)∇sn − (∇sn·A)n, (7)

which is induced to

∇sA = κ (b ×A) − τ (t ×A)
= D×A (8)

ifA is supposed to normal Fermi-Walker parallel transported [7].
In three-dimensions, the intrinsic characterization of vortex lines is given by the curvature and binormal

functions together with the arc-length parameter defined along the vortex lines. However, investigating the
intrinsic characterization of a vector field is significantly sophisticated as the vector field may be defined
by non-holonomic coordinates which includes much more partial differential equations and parameters.
It can be introduced the orthonormal basis at points along with the tangent vector (t), normal vector
(n) and binormal vector (b) on a given vortex line of the non-vanishing vector field [13, 14]. Directional
derivative in the tangential direction is given by the Eq. (1) and it is known as the Serret-Frenet triad in
Minkowski space. Directional derivatives in the normal and binormal directions were introduced by Marris
and Passman [14, 15] and their counterparts in the Minskowski space was given by the Gürbüz [16] in the
following manner:

∇nt = δnsn − (πb + τ) b,
∇nn = −δnst − (divb) b, (9)
∇nb = − (πb + τ) t + (divb) n,

where ∇n = d/dn is the directional derivative in the principal normal direction.

∇bt = − (πn + τ) n + δbsb,
∇bn = (πn + τ) t + (−κ + divn)b, (10)
∇bb = δbst − (−κ + divn)n,
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where ∇b = d/db is the directional derivative in the binormal direction. Here, ∇ is considered as gradient
operator and it can be expressed by

∇ = b∇b + n∇n − t∇s. (11)

Geometric constants δns and δbs are defined by Gürbüz [16] as follows.

δns = n∇nt, δbs = b∇bt, (12)

and

(∇ · t) = divt =δns + δbs,

(∇ · n) = divn =κ + b·∇bn, (13)
(∇ · b) = divb = −b∇nn.

Moreover,

curlt = −πst − κb,
curln = −(divb)t + πnn − δnsb, (14)
curlb = −(κ − divn)t+δbsn + πbb,

where

curl = b×∇b + n×∇b − t×∇s, (15)

and

curlt · t = πs = b·∇nt − n·∇bt,
curln · n = πn = −t·∇bn−τ, (16)
curlb · b = πb = −τ + t·∇nb.

Hereπs, πn, πb are called abnormality functions of the unit Serret-Frenet vectors t, n, b. These abnormalities
represent total moments of the unit tangent, principal normal and binormal vectors, respectively [13 − 16].

3. Directional Fermi-Walker Parallel Transportations and Geometric Phases of Vortex Lines in Minkowski
Space

In this section, we focus our attention to define a new type of directional Fermi-Walker derivatives in
three dimensions to reach a complete understanding with the parallelism of vortex lines of a non-vanishing
vector field. Different kind of Fermi-Walker parallel transportations for timelike s−lines, which are curves
whose timelike tangent vector is t, has been given by Eqs. (1, 3, 5, 7) . These parallel transportations can
be considered as the directional Fermi-Walker derivative in the tangential direction. Now we will define
directional Fermi-Walker derivative in the principal normal direction for n−lines and directional Fermi-
Walker derivative in the binormal direction for b−lines, respectively, in Minkowski space.

3.1. Fermi-Walker Derivative and Geometric Phases in the Principal Normal Direction in Minkowski Space

In this subsection, we consider a three dimensional non-vanishing vector field defined along with
n−lines, which are vortex lines whose tangent vector is n, to investigate its Fermi-Walker parallelism in the
principal normal direction in Minkowski space.
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Definition 1. A be any three dimensional non-vanishing vector field defined along with n−lines in
Minkowski space.

i. In Minkowski space, ordinary Fermi-Walker derivative in the principal normal direction is defined by

∇
◦

nA =∇nA+(t · A)∇nt − (∇nt · A)t. (17)

ii. In Minkowski space, normal Fermi-Walker derivative in the principal normal direction is defined by

(∇◦)N
n A =∇nA−(n · A)∇nn + (∇nn · A)n. (18)

iii. In Minkowski space, modified Fermi-Walker derivative in the principal normal direction is defined
by

(∇◦)M
n A =∇nA− (b · A)∇nb + (∇nb · A)b. (19)

Theorem 2. i. LetA be any three-dimensional non-vanishing vector field defined along with n−lines in
Minkowski space. The vector fieldA = A1t +A2n +A3b is an ordinary Fermi-Walker parallel transported
in the principal normal direction if and only if

d
dn

 A1
A2
A3

 = 2


0 δns 0
0 0 −

divb
2

0 divb
2 0


 A1
A2
A3

 , (20)

where ∇n = d/dn.
ii. LetA be any three-dimensional non-vanishing vector field defined along with n−lines in Minkowski

space. The vector fieldA = A1t +A2n +A3b is a normal Fermi-Walker parallel transported in the principal
normal direction if and only if

d
dn

 A1
A2
A3

 = 2

 0 0 (πb+τ)
2

−δns 0 0
(πb+τ)

2 0 0


 A1
A2
A3

 , (21)

where ∇n = d/dn.
iii. LetA be any three-dimensional non-vanishing vector field defined along with n−lines in Minkowski

space. The vector fieldA = A1t+A2n+A3b is a modified Fermi-Walker parallel transported in the principal
normal direction if and only if

d
dn

 A1
A2
A3

 =

 0 δns 0
−δns 0 0

0 0 0


 A1
A2
A3

 , (22)

where ∇n = d/dn.

Proof. i. A be any three-dimensional non-vanishing vector field defined along with n−lines in
Minkowski space such that it has a form of A = A1t + A2n + A3b. Let assume that A is an ordinary
Fermi-Walker parallel transported in the principal normal direction. Thus one has from the Eq. (17)

∇
◦

nA =0,

which implies that

∇nA =(∇nt · A)t−(t · A)∇nt.
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Now if one reconsiders the Eq. (9) and solves the above equality then it is obtained that

dA1

dn
= 2δnsA2,

dA2

dn
= −divbA3,

dA3

dn
= divbA2.

The converse part of the proof is trivial. The rest of the proof can be completed by using the similar
argument as in the first case.

Lemma 3. i. Let A be any three-dimensional non-vanishing vector field defined along with n−lines in
Minkowski space. The derivative of the vector fieldA = A1t +A2n +A3b in the principal normal direction
coincides with the ordinary Fermi-Walker derivative in the principal normal direction if and only if

A1 = 0, A2 = (πb + τ) , A3 = δns. (23)

ii. LetA be any three-dimensional non-vanishing vector field defined along with n−lines in Minkowski
space. The derivative of the vector fieldA = A1t +A2n +A3b in the principal normal direction coincides
with the normal Fermi-Walker derivative in the principal normal direction if and only if

A2 = 0, A1 = divb, A3 = δns. (24)

iii. LetA be any three-dimensional non-vanishing vector field defined along with n−lines in Minkowski
space. The derivative of the vector fieldA = A1t +A2n +A3b in the principal normal direction coincides
with the modified Fermi-Walker derivative in the principal normal direction if and only if

A3 = 0, A1 = −divb, A2 = (πb + τ) . (25)

Proof. i. A be any three-dimensional non-vanishing vector field defined along with n−lines in
Minkowski space such that it has a form of A = A1t + A2n + A3b. The derivative of the vector field
A in the principal normal direction coincides with the ordinary Fermi-Walker derivative in the principal
normal direction if and only if ∇◦nA =∇nA, which is induced by Eqs. (17) . If one considers the Eq. (17) then
one should have

(∇nt · A)t =(t · A)∇nt.

Thus it is obtained that this equality holds whenA1 = 0,A2 = (πb + τ) ,A3 = δns. The rest of the proof can
be completed by using the similar argument as in the first case.

Lemma 4. i. In Minkowski space, non-vanishing Serret-Frenet vectors defined along with n−lines are
ordinary Fermi-Walker parallel transported in the principal normal direction if and only if

δns = divb =0. (26)

ii. In Minkowski space, non-vanishing Serret-Frenet vectors defined along with n−lines are normal
Fermi-Walker parallel transported in the principal normal direction if and only if

δns = (πb + τ) =0. (27)

iii. In Minkowski space, non-vanishing Serret-Frenet vectors defined along with n−lines are modified
Fermi-Walker parallel transported in the principal normal direction if and only if

δns=0. (28)

Proof. i. In Minkowski space, non-vanishing Serret-Frenet vectors defined along with n−lines are
ordinary Fermi-Walker parallel transported in the principal normal direction if and only if

∇
◦

nt =0, ∇◦nn =0, ∇◦nb =0.
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Hence the proof is evident if one uses Eqs. (9, 17) . The rest of the proof can be completed by using the
similar argument as in the first case.

Main Results 1. So far it has been given a mathematical insight of the Fermi-Walker parallel transporta-
tion in the principal normal direction based on the basic definitions and some elementary computations.
Now, we will present the geometric and physical interpretation of the obtained data.

i. One can obtain an ordinary Darboux vector of the non-rotating frame, which is defined along with
n-lines in Minkowski space if one considers Eqs. (23, 26) . Thus the ordinary Darboux vector in the principal
normal direction is written by

∇nt =Dn×t, ∇nn =Dn×n, ∇nb =Dn×b,

whereDn= (πb + τ) n and ∇n = d/dn.
ii. One can obtain a normal Darboux vector of the non-rotating frame, which is defined along with

n-lines in Minkowski space if one considers Eqs. (24, 27) . Thus the normal Darboux vector in the principal
normal direction is written by

∇nt =DN
n ×t, ∇nn =DN

n ×n, ∇nb =DN
n ×b,

whereDN
n = − (divb) t and ∇n = d/dn.

iii. One can obtain a modified Darboux vector of the non-rotating frame, which is defined along with
n-lines in Minkowski space if one considers Eqs. (25, 28) . Thus the modified Darboux vector in the principal
normal direction is written by

∇nt =DM
n ×t, ∇nn =DM

n ×n, ∇nb =DM
n ×b,

whereDM
n = − (divb) t + (πb + τ) n and ∇n = d/dn.

3.2. Fermi-Walker Derivative and Geometric Phases in the Binormal Direction in Minkowski Space

In this subsection, we consider a three-dimensional non-vanishing vector field defined along with
b−lines in Minkowski space, which are vortex lines whose tangent vector is b, to investigate its Fermi-
Walker parallelism in the binormal direction.

Definition 5. A be any three-dimensional non-vanishing vector field defined along with b−lines in
Minkowski space.

i. In Minkowski space, ordinary Fermi-Walker derivative in the binormal direction is defined by

∇
◦

bA =∇bA+(t · A)∇bt − (∇bt · A)t. (29)

ii. In Minkowski space, normal Fermi-Walker derivative in the binormal direction is defined by

(∇◦)N
b A =∇bA−(n · A)∇bn + (∇bn · A)n. (30)

iii. In Minkowski space, modified Fermi-Walker derivative in the binormal direction is defined by

(∇◦)M
b A =∇bA−(b · A)∇bb + (∇bb · A)b. (31)
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Theorem 6. i. LetA be any three-dimensional non-vanishing vector field defined along with b−lines in
Minkowski space. The vector fieldA = A1t +A2n +A3b is an ordinary Fermi-Walker parallel transported
in the binormal direction if and only if

d
db

 A1
A2
A3

 = 2


0 − (πn + τ) 0
0 0 (−κ+divn)

2
0 −(−κ+divn)

2 0


 A1
A2
A3

 , (32)

where ∇b = d/db.
ii. LetA be any three-dimensional non-vanishing vector field defined along with b−lines in Minkowski

space. The vector fieldA = A1t+A2n+A3b is a normal Fermi-Walker parallel transported in the binormal
direction if and only if

d
db

 A1
A2
A3

 = 2

 0 0 −
δbs
2

(πn + τ) 0 0
−
δbs
2 0 0


 A1
A2
A3

 , (33)

where ∇b = d/db.
iii. LetA be any three-dimensional non-vanishing vector field defined along with b−lines in Minkowski

space. The vector fieldA = A1t+A2n+A3b is a modified Fermi-Walker parallel transported in the binormal
direction if and only if

d
db

 A1
A2
A3

 =

 0 − (πn + τ) 0
(πn + τ) 0 0

0 0 0


 A1
A2
A3

 , (34)

where ∇b = d/db.

Proof. i.Abe any three-dimensional non-vanishing vector field defined along with b−lines in Minkowski
space such that it has a form of A = A1t +A2n +A3b. Let assume that A is an ordinary Fermi-Walker
parallel transported in the binormal direction. Thus one has from the Eq. (29)

∇
◦

bA =0,

which implies that

∇bA =(∇bt · A)t−(t · A)∇bt.

Now if one reconsiders the Eq. (10) and solves the above equality then it is obtained that

dA1

db
= −2 (πn + τ) ,

dA2

db
= (−κ + divn)A3,

dA3

db
= − (−κ + divn)A2.

The converse part of the proof is trivial. The rest of the proof can be completed by using the similar
argument as in the first case.

Lemma 7. i. Let A be any three-dimensional non-vanishing vector field defined along with b−lines
in Minkowski space. The derivative of the vector field A = A1t +A2n +A3b in the binormal direction
coincides with the ordinary Fermi-Walker derivative in the binormal direction if and only if

A1 = 0, A2 = δbs, A3 = (πn + τ) . (35)

ii. LetA be any three-dimensional non-vanishing vector field defined along with b−lines in Minkowski
space. The derivative of the vector fieldA = A1t +A2n +A3b in the binormal direction coincides with the
normal Fermi-Walker derivative in the binormal direction if and only if

A2 = 0, A1 = (−κ + divn) , A3 = (πn + τ) . (36)
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iii. LetA be any three-dimensional non-vanishing vector field defined along with b−lines in Minkowski
space. The derivative of the vector fieldA = A1t +A2n +A3b in the binormal direction coincides with the
modified Fermi-Walker derivative in the binormal direction if and only if

A3 = 0, A1 = (−κ + divn) , A2 = −δbs. (37)

Proof. i.Abe any three-dimensional non-vanishing vector field defined along with b−lines in Minkowski
space such that it has a form of A = A1t +A2n +A3b. The derivative of the vector field A in the binor-
mal direction coincides with the ordinary Fermi-Walker derivative in the binormal direction if and only if
∇
◦

bA =∇bA, which is induced by Eqs. (29) . If one considers the Eq. (29) then one should have

(t · A)∇bt = (∇bt · A)t.

Thus it is obtained that this equality holds whenA1 = 0,A2 = δbs,A3 = (πn + τ) . The converse part of the
proof is trivial. The rest of the proof can be completed by using the similar argument as in the first case.

Lemma 8. i. In Minkowski space, non-vanishing Serret-Frenet vectors defined along with b−lines are
ordinary Fermi-Walker parallel transported in the binormal direction if and only if

(πn + τ) = (−κ + divn) =0. (38)

ii. In Minkowski space, non-vanishing Serret-Frenet vectors defined along with b−lines are normal
Fermi-Walker parallel transported in the binormal direction if and only if

δbs = (πn + τ) = (−κ + divn) =0. (39)

iii. In Minkowski space, non-vanishing Serret-Frenet vectors defined along with b−lines are modified
Fermi-Walker parallel transported in the binormal direction if and only if

(πn + τ) =0. (40)

Proof. i. In Minkowski space, non-vanishing Serret-Frenet vectors defined along with b−lines are
ordinary Fermi-Walker parallel transported in the binormal direction if and only if

∇
◦

bt =0, ∇◦bn =0, ∇◦bb =0.

Hence the proof is evident if one uses Eqs. (10, 29) . The rest of the proof can be completed by using the
similar argument as in the first case.

Main Results 2. So far it has been given a mathematical insight of the Fermi-Walker parallel transporta-
tion in the binormal direction based on the basic definitions and some elementary computations. Now, we
will present the geometric and physical interpretation of the obtained data.

i. One can obtain an ordinary Darboux vector of the non-rotating frame, which is defined along with
b-lines in Minkowski space if one considers Eqs. (35, 38) . Thus the ordinary Darboux vector in the binormal
direction is written by

∇bt =Db×t, ∇bn =Db×n, ∇bb =Db×b,

whereDb= −δbsn and ∇b = d/db.
ii. One can obtain a normal Darboux vector of the non-rotating frame, which is defined along with

b-lines in Minkowski space if one considers Eqs. (36, 39) . Thus the normal Darboux vector in the binormal
direction is written by

∇bt =DN
b ×t, ∇bn =DN

b ×n, ∇bb =DN
b ×b,
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whereDN
b =0 and ∇b = d/db.

iii.One can obtain a modified Darboux vector of the non-rotating frame, which is defined along with
b-lines in Minkowski space if one considers Eqs. (37, 40) . Thus the modified Darboux vector in the principal
normal direction is written by

∇bt =DM
b ×t, ∇bn =DM

b ×n, ∇bb =DM
b ×b,

whereDM
b = (−κ + divn) t − δbsn and ∇b = d/db.

4. Directional Magnetic Vortex Lines in Minkowski Space

In the literature magnetic curves, magnetic fields and magnetic flows of vortex filaments or charged
particles have been intensively studied. For instance, Barros et al. used a variational method and Lorentz
force equation to investigate the relation between Killing magnetic fields and magnetic flows. They have
obtained a remarkable connection between the Hall effect and elastic theory [18]. Some other solutions
of the Lorentz force equation and some special magnetic flows and magnetic curves have been charac-
terized by Bozkurt et al. [19] . A similar approach is used in various studies to understand the behavior
of magnetic curves and their flows in different geometric structure. For example, Druta-Romaniuc and
Munteanu [20, 21] studied on magnetic curves associated with the Killing magnetic fields in both Euclidean
and Minkowski space separately. Munteanu and Nistor [22] generalized local description of magnetic
trajectories corresponding to Killing vector fields in S2

×R. Classification of the trajectories of the charged
particle corresponding to Kahler magnetic fields in Kahler manifolds; Killing vector fields in Walker mani-
fold; contact magnetic fields in Sasakian, quasi-Sasakian, quasi-para-Sasakian, and cosymplectic manifolds
were given by [23 − 28] . In [27, 28] , we defined frictional and gravitational magnetic curves together with
their energy functionals and uniformity conditions on the 3D Riemannian surface. Even though all these
studies have distinct consequences and physical interpretations magnetic flows obtained through as the
solution of the Lorentz force equation belong to s−lines, which are vortex lines whose tangent vector is t.
Following is the summary of the common approach that has been mainly considered so far.

A magnetic field can be described on an n-dimensional Riemannian manifold (Kn, ·) as a closed two-form
V ∈ Λ (Kn, ·) such that anti-symmetric Lorentz force operator Π satisfies

Π(S) · Z =V (S,Z) , (41)

where S,Z ∈ (Kn, ·) . Then magnetic trajectories associated with the magnetic field V are magnetic curves
in (Kn, ·) provided that their tangent vectors t satisfy the non-linear second-order Lorentz force equation

∇st =Π (t) . (42)

In three-dimensional space, magnetic fields possess very elegant features that make this case special.
In three dimensions, 2-forms and vector fields, magnetic fields and divergence-free vector fields, uniform
magnetic fields, and parallel vector fields are said to equivalent to each other and their definitions allow
one to interchange each concept with other. Finally, these facts imply that the Lorentz force equation (41)
can be written in terms of vector product by

∇st =Π (t) = V × t. (43)

In the following subsections, the solution of the Lorentz force equation on n−lines, which are vortex
lines whose tangent vector is n and the Lorentz force equation on b−lines, which are vortex lines whose
tangent vector is b are computed. Thus we define timelike directional magnetic vortex lines of n−lines in
the principal normal direction and timelike directional magnetic vortex lines for b−lines in the binormal
direction, respectively, in Minkowski space. Consequently, it is aimed to establish a relation between
directional magnetic vector fields of timelike directional magnetic vortex lines and angular velocity vectors
of vortex lines with non-rotating frame in Minkowski space.
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4.1. Magnetic Vector Fields of Timelike Directional Magnetic Vortex Lines in the Principal Normal Direction in
Minkowski Space

In this subsection, it is firstly defined the adapted Lorentz force equation for n−lines, which are vortex
lines whose tangent vector is n. Later it is defined timelike directional magnetic vortex lines and associated
magnetic fields in the principal normal direction in Minkowski space.

Definition 9. i. Timelike tangent magnetic vortex lines along with n−lines (tnmt) are defined by

Πn (t) = ∇nt = V1×t, (44)

where Πn is the ordinary Lorentz force equation in the principal normal direction and V1 is a vector field
with div (V1) = 0 in Minkowski space.

ii. Timelike principal normal magnetic vortex lines along with n−lines (tnmn) are defined by

ΠN
n (n) = ∇nn = V2×n, (45)

where ΠN
n is the normal Lorentz force equation in the principal normal direction and V2 is a vector field

with div (V2) = 0 in Minkowski space.
iii. Timelike binormal magnetic vortex lines along with n−lines (tnmb) are defined by

ΠM
n (b) = ∇nb = V3×b, (46)

where ΠM
n is the modified Lorentz force equation in the principal normal direction and V3 is a vector field

with div (V3) = 0 in Minkowski space.

Theorem 10. i. tnmt is a magnetic trajectory of the magnetic field V1 if and only if V1 = ε1t+ (πb + τ) n+δnsb
along with n−lines in Minkowski space.

ii. tnmn is a magnetic trajectory of the magnetic field V2 if and only if V2 = − (divb) t−δnsb along with
n−lines in Minkowski space.

iii. tnmb is a magnetic trajectory of the magnetic field V3 if and only if V3 = − (divb) t + (πb + τ) n along
with n−lines in Minkowski space.

Proof. i. Let assume first that tnmt is a magnetic trajectory of the magnetic field V1 along with n−lines
in Minkowski space. Then the ordinary Lorentz force equation of the orthonormal frame (t,n,b) in the
principal normal direction can be computed if one considers the Eq. (44) and following identities

Πn(t) · n = −Πn(n) · t, Πn(t) · b = −Πn(b) · t, Πn(n) · b = −Πn(b) · n. (47)

Thus we have

Πn(t) = δnsn− (πb + τ) b, Πn(n) = δnst+ε1b, (48)
Πn(b) = − (πb + τ) t−ε1n,

where ε1 is an arbitrarily choosen smooth function along with the tnmt. Now, one can observe that V1 can
be spanned by (t,n,b) in the following manner:

V1 = v1t + v2n + v3b, (49)

where v j, 1 ≤ j ≤ 3 are sufficiently smooth fucntions. If one considers Eqs. (44, 48) then we have following
two facts:

V1×t =δnsn− (πb + τ) b,
0 = Πn (V1) = v1Πn(t) + v2Πn(n) + v3Πn(b). (50)
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Finally, it is computed by the Eq. (50) that V1 = ε1t+ (πb + τ) n+δnsb. The rest of the proof can be completed
by using the similar argument as in the first case.

Main Results 3. i. The ordinary Darboux vector field of the non-rotating frame, which is defined along
with n-lines in Minkowski space, is said to coincide with the magnetic vector field of tangent magnetic
vortex lines in the principal normal direction when the arbitrarily chosen smooth function ε1 and δns
vanishes.

ii. The normal Darboux vector field of the non-rotating frame, which is defined along with n-lines in
Minkowski space, is said to coincide with the magnetic vector field of principal normal magnetic vortex
lines in the principal normal direction when the arbitrarily chosen smooth function δns vanishes.

iii. The modified Darboux vector field of the non-rotating frame, which is defined along with n-lines in
Minkowski space, is said to coincide with the magnetic vector field of binormal magnetic vortex lines in
the principal normal direction.

4.2. Magnetic Vector Fields of Timelike Directional Magnetic Vortex Lines in the Binormal Direction

In this subsection, it is firstly defined the adapted Lorentz force equation for b−lines in Minkowski
space, which are vortex lines whose tangent vector is b. Later it is defined timelike directional magnetic
vortex lines and associated magnetic fields in the binormal direction.

Definition 11. i. Timelike tangent magnetic vortex lines along with b−lines (tbmt) are defined by

Πb (t) = ∇bt = W1×t, (51)

where Πb is the ordinary Lorentz force equation in the binormal direction and W1 is a vector field with
div (W1) = 0 in Minkowski space.

ii. Timelike principal normal magnetic vortex lines along with b−lines (bmn) are defined by

ΠN
b (n) = ∇bn = W2×n, (52)

where ΠN
b is the normal Lorentz force equation in the binormal direction and W2 is a vector field with

div (W2) = 0 in Minkowski space.
iii. Timelike binormal magnetic vortex lines along with b−lines (bmb) are defined by

ΠM
b (b) = ∇bb = W3×b, (53)

where ΠM
b is the modified Lorentz force equation in the binormal direction and W3 is a vector field with

div (W3) = 0 in Minkowski space.

Theorem 12. i. tbmt is a magnetic trajectory of the magnetic field W1 if and only if W1 = η1t−δbsn −
(πn + τ) b along with b−lines in Minkowski space.

ii. tbmn is a magnetic trajectory of the magnetic field W2 if and only if W2 = (−κ + divn) t+ (πn + τ) b
along with b−lines in Minkowski space.

iii. tbmb is a magnetic trajectory of the magnetic field W3 if and only if W3 = (−κ + divn) t − δbsn along
with b−lines in Minkowski space.

Proof. i. Let assume first that tbmt is a magnetic trajectory of the magnetic field W1 along with b−lines
in Minkowski space. Then the ordinary Lorentz force equation on the orthonormal frame (t,n,b) in the
binormal direction can be computed if one considers the Eq. (51) and following identities

Πb(t) · n = −Πb(n) · t, Πb(t) · b = −Πb(b) · t, Πb(n) · b = −Πb(b) · n. (54)
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Thus we have

Πb(t) = − (πn + τ) n+δbsb, Πb(n) = (πn + τ) t+η1b, (55)
Πb(b) = −δbst−η1n,

where η1 is an arbitrarily choosen smooth function along with the tbmt. Now, one can observe that W1 can
be spanned by (t,n,b) that is

W1 = w1t + w2n + w3b, (56)

where w j, 1 ≤ j ≤ 3 are sufficiently smooth fucntions. If one considers Eqs. (57, 61) then we have following
two facts:

W1×t = − (πn + τ) n+δbsb,
0 = Πb (W1) = w1Πb(t) + w2Πb(n) + w3Πb(b). (57)

Finally, it is computed by the Eq. (57) that W1 = η1t−δbsn− (πn + τ) b. The rest of the proof can be completed
by using the similar argument as in the first case.

Main Results 4. i. The ordinary Darboux vector field of the non-rotating frame, which is defined along
with b-lines in Minkowski space, is said to coincide with the magnetic vector field of tangent magnetic
vortex lines in the binormal direction when the arbitrarily chosen smooth function η1 and (πn + τ) vanishes.

ii. The normal Darboux vector field of the non-rotating frame, which is defined along with b-lines in
Minkowski space, is said to coincide with the magnetic vector field of principal normal magnetic vortex
lines in the binormal direction when (−κ + divn) and (πn + τ) vanishes.

iii. The modified Darboux vector field of the non-rotating frame, which is defined along with b-lines in
Minkowski space, is said to coincide with the magnetic vector field of binormal magnetic vortex lines in
the binormal direction.

5. Directional Electric Vortex Lines in Minkowski Space

The idea of electric lines was firstly presented by M. Faraday in his famous research on electromagnetism.
He discussed that the forces of gravity, magnetism and electricity are all well-defined by fields, charactrized
with field lines.

The fundamental of electrodynamics together with the electromagnetic field, energy, force, and momen-
tum, which are closely connected with each other via the Lorentz force law and the theory of the Poynting
vector, have been constructed upon the theory of Maxwell. This theory also governs the electromagnetic
energy flow and its exchange between magnetic field (V) and electric field (E).

The well-known electromagnetic force on the moving particle whose trajectory is defined to be a curve
(Υ) in three dimensional space is given by

F =m∇s(∇sΥ) =q(E+∇sΥ ×V), (58)

where q is the charge of the particle. For the sake of clarity, it is assumed that no other forces acts on the
given system. It is also considered a non-relativistic case for the simplicity purpose.

In the following subsections, the solution of the electromagnetic force equation of the positively charged
particle moving under the action of electric and magnetic fields along with n−lines, which are vortex
lines whose tangent vector is n and the solution of the electromagnetic force equation of the positively
charged particle moving under the action of electric and magnetic fields along with b−lines, which are
vortex lines whose tangent vector is b are computed. Thus we define timelike directional electric vortex
lines of n−lines in the principal normal direction and timelike directional electric vortex lines for b−lines
in the binormal direction, respectively, in Minkowski space. Consequently, it is aimed to investigate the
physical and geometrical dynamics of the electric field lines in the principal normal and binormal directions
in Minkowski space.
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5.1. Electric Vector Fields of Timelike Directional Electric Vortex Lines in the Principal Normal Direction in
Minkowski Space

In this subsection, it is firstly defined the adapted electromagnetic force equations of the positively
charged particle moving under the action of electric and magnetic fields along with n−lines in Minkowski
Space, which are vortex lines whose tangent vector is n. Later it is obtained both electric fields in the
principal normal direction and some further investigations on the dynamics of the charged particle.

Definition 13. i. Timelike tangent electric vortex lines along with n−lines (tnet) are defined by

F =m∇n(∇nΥ) =q(E1+∇nΥ ×V1), (59)

where V1 is the magnetic vector field of tangent magnetic vortex lines in the principal normal direction
in Minkowski space. Here if one considers Eqs. (9, 59) and the Theorem 10 (i) then electric vector field of
timelike tangent electric vortex lines (E1) in the principal normal direction is written by

E1 = δns(1 −
m
q

)t + (ε1 −
m
q

divb)b. (60)

ii. Timelike principal normal electric vortex lines along with n−lines (tnen) are defined by

F =m∇n(∇nΥ) =q(E2+∇nΥ ×V2), (61)

where V2 is the magnetic vector field of principal normal magnetic vortex lines in the principal normal
direction in Minkowski space.

Here if one considers Eqs. (9, 61) and the Theorem 10 (ii) then electric vector field of principal normal
electric vortex lines (E2) in the principal normal direction is written by

E2 = −δns(1 +
m
q

)t−divb(1 +
m
q

)b. (62)

iii. Timelike binormal electric vortex lines along with n−lines (tneb) are defined by

F =m∇n(∇nΥ) =q(E3+∇nΥ ×V3), (63)

where V3 is the magnetic vector field of binormal magnetic vortex lines in the principal normal direction
in Minkowski space.

Here if one considers Eqs. (9, 63) and the Theorem 10 (iii) then electric vector field of binormal electric
vortex lines (E3) in the principal normal direction is written by

E3 = −
m
q
δnst−divb(1 +

m
q

)b. (64)

5.2. Electric Vector Fields of Timelike Directional Electric Vortex Lines in the Binormal Direction in Minkowski
Space

In this subsection, it is firstly defined the adapted electromagnetic force equations of the positively
charged particle moving under the action of electric and magnetic fields along with b−lines in Minkowski
space, which are vortex lines whose tangent vector is b. Later it is obtained both electric fields in the
principal normal direction and some further investigations on the dynamics of the charged particle.

Definition 14. i. Timelike tangent electric vortex lines along with b−lines (tbet) are defined by

F =m∇b(∇bΥ) =q(G1+∇bΥ ×W1), (65)
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where W1 is the magnetic vector field of tangent magnetic vortex lines in the binormal direction in
Minkowski space.

Here if one considers Eqs. (10, 65) and the Theorem 12 (i) then electric vector field of tangent electric
vortex lines (G1) in the binormal direction is written by

G1 = δbs(1 +
m
q

)t − (−η1 +
m
q

(−κ + divn))n. (66)

ii. Timelike principal normal electric vortex lines along with b−lines (tben) are defined by

F =m∇b(∇bΥ) =q(G2+∇bΥ ×W2), (67)

where W2 is the magnetic vector field of principal normal magnetic vortex lines in the binormal direction
in Minkowski space.

Here if one considers Eqs. (10, 67) and the Theorem 12 (ii) then electric vector field of principal normal
electric vortex lines (G2) in the binormal direction is written by

G2 =
m
q
δbst − (−κ + divn)(1 +

m
q

)b. (68)

iii. Timelike binormal electric vortex lines along with b−lines (tbeb) are defined by

F =m∇b(∇bΥ) =q(G3+∇bΥ ×W3), (69)

where W3 is the magnetic vector field of binormal magnetic vortex lines in the binormal direction in
Minkowski space.

Here if one considers Eqs. (10, 69) and the Theorem 12 (iii) then electric vector field of binormal electric
vortex lines (E3) in the binormal direction is written by

G3 = δbs(1 +
m
q

)t − (−κ + divn)(1 +
m
q

)n. (70)

6. Conclusion

We have used anholonomic coordinates of a three-dimensional vector field, which are supposed to
govern the intrinsic features of vortex lines, to deduce particular geometric consequences of physical
importance including the Fermi-Walker transportations of vortex lines, the angular velocity vectors of
vortex lines, the magnetic fields of vortex lines in Minkowski space. We also give relations between the
obtained consequences. As one of the most important conclusions of the study, we finalize the paper by
presenting the uniformness of the magnetic vector fields of directional magnetic vortex lines.

Uniformness of a magnetic field in a surface is the significant part of Landau-Hall problem, which
deals with obtaining constant curvature curves in the given surface. Based on this study one can deduce
the conditions of being uniform for each magnetic vector field of directional magnetic vortex lines in the
principal normal and binormal direction in Minkowski space by considering the fact that uniform magnetic
fields are made up of parallel two forms. That is a magnetic field V is said to uniform if and only if

∇ ·V =0. (71)

Due to the Eq. (71) , one can identify uniformness condtion for each magnetic vector fields computed
throughout the paper.
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In the three-dimensional space, an electric field line is supposed to be a space curve whose direction is
equal to the electric field’s direction. Namely, the electric field line Ψ must meet the following equation:

d
dx

Ψ = E,

where E is the electric field and d
dx represents the derivative in the x direction [31]. Since we have investigated

distinct electric vortex lines in the principal normal and binormal directions we can transform the above
equation into the following forms:

d
dn

Ψ = E, (72)

d
db

Ψ = E. (73)

Thus we can define a curvature of the space curve Ψ in the principal normal and binormal directions in
Minkowski space respectively in the following manner:

κ =

∣∣∣ d
dn Ψ × d

dn ( d
dn Ψ)

∣∣∣∣∣∣ d
dn Ψ

∣∣∣3 , (74)

κ =

∣∣∣ d
db Ψ × d

db ( d
db Ψ)

∣∣∣∣∣∣ d
db Ψ

∣∣∣3 . (75)

Thanks to these definitions we are able to determine the electromagnetic curvature of a tangent, principal
normal, binormal electric vortex lines with n−lines in Minkowski space, which are vortex lines whose
tangent vector is n and tangent, principal normal, binormal electric vortex lines with b−lines in Minkowski
space. For instance, the electromagnetic curvature of the tangent electric vortex line along with n−lines can
be computed by

κ =

∣∣∣E1 ×
d

dn (E1)
∣∣∣

|E1|
3

where d
dn (tnet) = E1 and E1 is given by the Eq. (60) . Hence the electromagnetic curvature of the tangent

electric vortex line along with n−lines is written by

κ =
1

(−δ2
ns(1 + m

q )2 + (ε1 −
m
q divb)2)

3
2

((−δ2
ns(1 +

m
q

)

+(ε1 −
m
q

divb)divb)2(δns(1 +
m
q

)2 + (ε1 −
m
q

divb)2)

+(−δ2
ns(1 +

m
q

)2(πb + τ) + δns(1 +
m
q

)
d

dn
(ε1 −

m
q

divb)

−(ε1 −
m
q

divb)(1 +
m
q

)
d

dn
(δns) − (ε1 −

m
q

divb)2(πb + τ))2)
1
2 .

This study will be also a fundamental source for anyone whose aim is to concentrate on the various type
of flows (inextensible flows, Beltrami flows, Complex-Lamellar flows, etc.) of vortex lines and directional
magnetic (or electric) vortex lines in principal and binormal direction in Minkowski space. In the future, we
will further investigate solitonic behavior of directional magnetic vortex lines and the directional electric
vortex lines and their features of motions (uniformly accelerated motions, uniformly circular motion,
unchanged direction motion).
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