A Unified Common Fixed Point Theorem for a Family of Mappings

Vijay Dalakoti\(^a\), Ravindra K. Bisht\(^b\), R. P. Pant\(^c\), Mahesh C. Joshi\(^a\)

\(^a\)Department of Mathematics, DSB Campus, Kumaun University, Nainital, India
\(^b\)Department of Mathematics, National Defence Academy, Khadakwasla, Pune, India
\(^c\)Graphic Era Hill University, Bhimtal Campus, Sattal Road, PO Bhowali, Nainital, India

Abstract. The main objective of the paper is to prove some unified common fixed point theorems for a family of mappings under a minimal set of sufficient conditions. Our results subsume and improve a host of common fixed point theorems for contractive type mappings available in the literature of the metric fixed point theory. Simultaneously, we provide some new answers in a general framework to the problem posed by Rhoades (Contemp Math 72, 233-245, 1988) regarding the existence of a contractive definition which is strong enough to generate a fixed point, but which does not force the mapping to be continuous at the fixed point. Concrete examples are also given to illustrate the applicability of our proved results.

1. Introduction and preliminaries

One of the fundamental questions in fixed point theory is to seek or identify sufficient conditions which on imposing on the set \(X\) and/or the mapping \(T\), assure a nonempty set of fixed points, i.e., \(\text{Fix}(T) \neq \emptyset\). Common fixed point theorems are natural extensions of fixed point theorems. It is more efficient to study fixed point theorems for a pair or a family of mappings satisfying some conditions rather than fixed point theorems satisfying an individual mapping. These conditions are generally sufficient conditions and include continuity or weaker form of continuity, containment of range of the mappings, a noncommuting condition besides a contractive condition and every substantial common fixed point theorem attempts to minimize the set of conditions by weakening one or more of these sufficient conditions. In addition to ensuring existence of a common fixed point, it may be necessary to prove its uniqueness. From a computational view, a constructive algorithm to calculate the value of a common fixed point is desirable. Such algorithms often require iterates of the given mappings.

The interdependence of common fixed points and commuting mappings was first observed by Jungck [24]. His result in the setting of complete metric spaces yields an abstraction of the Banach contraction principle and partially answers the historical open question (see [6, 21]): For a pair of commuting self mappings \((S,T)\) on the \([0,1]\), what additional conditions guarantee that \(S\) and \(T\) have a common fixed point?

Jungck’s result motivated researcher to investigate common fixed point theorems for commuting and noncommuting pairs of mappings satisfying contractive conditions. The constructive technique used by
Jungck has been further improved and extended by other researchers to establish common fixed point theorems for three, four and sequence of mappings.

Definition 1.1. Let \((X, d)\) be a metric space with \(S, T : X \rightarrow X\). A pair of mappings \((S, T)\) is said to be:

1. **compatible** [25] if \(\lim_{n \rightarrow \infty} d(STx_n, TSx_n) = 0\), whenever \(\{x_n\}\) is a sequence in \(X\) such that \(\lim_{n \rightarrow \infty} Sx_n = \lim_{n \rightarrow \infty} Tx_n = t\) for some \(t\) in \(X\).

2. **\(\alpha\)-compatible** [56] if
 \[
 \lim_{n \rightarrow \infty} d(STx_n, TSx_n) = 0, \quad \lim_{n \rightarrow \infty} d(SSx_n, TSx_n) = 0, \quad \lim_{n \rightarrow \infty} d(STx_n, TTx_n) = 0, \quad \lim_{n \rightarrow \infty} d(SSx_n, TTx_n) = 0,
 \]
 whenever \(\{x_n\}\) is a sequence in \(X\) such that \(\lim_{n \rightarrow \infty} Sx_n = \lim_{n \rightarrow \infty} Tx_n = t\) for some \(t\) in \(X\).

3. **quasi-\(\alpha\)-compatible** [56] provided every sequence \(\{x_n\}\) in \(X\) satisfying \(\lim_{n \rightarrow \infty} Sx_n = \lim_{n \rightarrow \infty} Tx_n = t\) for some \(t\) in \(X\) splits into most four subsequences such that any of these subsequences, say \(\{x_{n_i}\}\), satisfies at least one of the four conditions
 \[
 \lim_{n \rightarrow \infty} d(STx_{n_i}, TSx_{n_i}) = 0, \quad \lim_{n \rightarrow \infty} d(SSx_{n_i}, TSx_{n_i}) = 0, \quad \lim_{n \rightarrow \infty} d(STx_{n_i}, TTx_{n_i}) = 0, \quad \lim_{n \rightarrow \infty} d(SSx_{n_i}, TTx_{n_i}) = 0.
 \]

4. **semi \(\alpha\)-compatible** [57] if \(\lim_{n \rightarrow \infty} d(STx_n, TSx_n) = 0\) or \(\lim_{n \rightarrow \infty} d(SSx_n, TSx_n) = 0\) or \(\lim_{n \rightarrow \infty} d(STx_n, TTx_n) = 0\) or \(\lim_{n \rightarrow \infty} d(SSx_n, TTx_n) = 0\), whenever \(\{x_n\}\) is a sequence in \(X\) satisfying \(Sx_n, Tx_n \in SX \cap TX \text{ and } \lim_{n \rightarrow \infty} Sx_n = \lim_{n \rightarrow \infty} Tx_n = t\) for some \(t\) in \(X\).

5. **weakly compatible** [26] if, for all \(x \in X\), \(Sx = Tx\) implies that \(STx = TSx\).

6. **non-trivially weakly compatible** if \(S(TX)\) commute on the set of coincidence points, whenever \(C(S, T) = \{x \in X : Sx = Tx\} \neq \emptyset\), i.e., the set of coincidences is nonempty.

Remark 1.2. It is well-known that the compatibility implies quasi-\(\alpha\)-compatibility or semi \(\alpha\)-compatibility but the converse need not be true [57]. However, quasi-\(\alpha\)-compatibility and semi \(\alpha\)-compatibility are independent to each other [57]. A systematic study of the relationship between various noncommuting conditions can be found in [20].

Remark 1.3. It may be observed that weakly compatible mappings commute at all the coincidence points, hence a minimal noncommuting condition for the existence of common fixed point for contractive type mapping pairs. However, the notion of semi \(\alpha\)-compatibility is useful not only in establishing the existence of a coincidence point but also implies commutativity at coincidence points.

Common fixed point theorems for a sequence of mappings have been studied by several authors. The best known results along these lines are the following theorems which encompass most of the results established in the literature of metric fixed point theory.

Theorem 1.4. (Jungck et al. [27]) Let \((X, d)\) be a complete metric space and \(S, T\) selfmaps of \(X\) with \(S\) or \(T\) continuous. Suppose their exist a sequence \(\{A_i\}\) of selfmaps of \(X\) satisfying

(i) either \(A_i : X \rightarrow SX \cap TX\) for each \(i\); or
(ii) \(S, T : X \rightarrow \cap_{i}A_iX\);
(iii) each \(A_i\) is compatible with \(S\) and \(T\);

and for any \(\epsilon > 0\) their exist a \(\delta > 0\), \(\delta\) being lower semicontinuous, such that

\[
\epsilon \leq \max\{d(Sx, Ty), d(A_1x, Sx), d(A_1y, Ty), [d(A_1x, Ty) + (A_1y, Sx)]/2\} < \epsilon + \delta \Rightarrow d(A_i x, A_i y) < \epsilon.
\]

Then all the \(A_i\), \(S\) and \(T\) have a unique common fixed point.

Theorem 1.4 is actually a correction of the result of Rhoades et al. [68].
Theorem 1.5. (Jachymski [22]) Let S and T be selfmaps of a complete metric space (X,d) and either S or T continuous. Let $\{A_i\}_{i=1}^\infty$ be a sequence of selfmaps of X satisfying

(i) $A_iX \subset TX, A_iX \subset SX$ for $i \in \mathbb{N}$;
(ii) pairs of (A_0, S) and (A_i, T), $i \in \mathbb{N}$, are compatible;
(iii) for each $i \in \mathbb{N}$ there exists an upper semicontinuous function $\phi_i : \mathbb{R}_+ \to \mathbb{R}_+$ such that $\phi_i(t) < t$ for all $t > 0$ and for any $x, y \in X$,

$$d(A_0x, A_0y) \leq \phi_i(max(d(Sx, Ty), d(A_0x, Sx), d(A_1y, Ty), [d(A_0x, Ty) + d(A_1y, Sx)])/2).$$

Then all the A_i, $i \in \mathbb{N} \cup \{0\}$, S and T have a unique common fixed point.

The following key lemma connects Theorems 1.4 and 1.5.

Lemma 1.6. [22] Let $\{A_i\}$, $i = 1, 2, 3, \ldots$, S and T be selfmappings of a metric space (X,d). For any $x, y \in X$ and $i, j \in \mathbb{N}$ define

$$M_{ij}(x, y) = \max\{d(Sx, Ty), d(A_0x, Sx), d(A_1y, Ty), [d(A_0x, Ty) + d(A_1y, Sx)])/2\}.$$

Then the following statements are same:

(I) There exists a lower semi continuous function $\delta : \mathbb{R}_+ \to \mathbb{R}_+$ such that, for any $\epsilon > 0$, $\delta(\epsilon) > \epsilon$ and for $x, y \in X$ and $i, j \in \mathbb{N}$ with $i \neq j$

$$\epsilon \leq M_{ij}(x, y) < \delta(\epsilon) \text{ implies } d(A_iX, A_jy) < \epsilon.$$

(II) There exists an upper semi continuous function $\phi : \mathbb{R}_+ \to \mathbb{R}_+$ such that $\phi(t) < t$ for all $t > 0$, and

$$d(A_iX, A_jy) \leq \phi(M_{ij}(x, y)), \text{ for } x, y \in X \text{ and } i, j \in \mathbb{N} \text{ with } i \neq j.$$

In 1996, Pant [53] proved the following theorem which is one of the most general fixed point theorem for a sequence of mappings.

Theorem 1.7. (Pant [53]) Let $\{A_i\}$, $i = 1, 2, 3, \ldots$, S and T be selfmappings of a complete metric space (X,d) and any one of A_1, A_2, S and T be continuous such that

(i) $A_1X \subset TX, A_2X \subset SX$;
(ii) pairs of (A_1, S) and (A_2, T) are compatible;
(iii) there exists an upper semicontinuous function $\phi : \mathbb{R}_+ \to \mathbb{R}_+$ such that $\phi(t) < t$ for all $t > 0$ and for any $x, y \in X$

$$d(A_1x, A_2y) \leq \phi(max(d(Sx, Ty), d(A_1x, Sx), d(A_1y, Ty), [d(A_1x, Ty) + d(A_1y, Sx)])/2));$$
(iv) $d(A_1x, A_2y) < \max\{d(Sx, Ty), d(A_1x, Sx), d(A_1y, Ty), [d(A_1x, Ty) + d(A_1y, Sx)])/2\})$.

Then all the A_i, S and T have a unique common fixed point.

If S and T are self-mappings of a metric space (X,d) and if $\{x_n\}$ is a sequence in X such that $Sx_n = T\{x_{n+1}, n = 0, 1, 2, \ldots, \}$ then the set $O(x_0, S, T) = \{Sx_n : n = 0, 1, 2, \ldots\}$ is called the (S, T)-orbit at x_0 and T (or S) is called (S, T)-orbitally continuous [12] if $\lim_{n \to \infty} Sx_n = x$ implies $\lim_{n \to \infty} TSx_n = Tz$ (or $\lim_{n \to \infty} Sx_n = x$ implies $\lim_{n \to \infty} SSx_n = Sz$).

The main objective of this paper is to prove common fixed point theorems for a family of mappings satisfying a minimal set of sufficient conditions. Our results generalize the results of Ćirić [12, 13], Fisher [16–18], Boyd and Wong [7], Agarwal et al. [1], Husain and Sehgal [32], Brodver [9], Chang [10], Jungck [24–26], Jungck et al. [27–29], Jachymski [22, 23], Sessa [70], Sessa et al. [72], Pant [53, 57], Pathak et al. [60, 61], Pathak and Khan [62], Singh [73], Singh and Singh [74], Singh and Tiwari [75], Hadjic [30], Iseki [34], Kaneko [35], Khan [38], Khan et al. [39, 40], Kubiac [41], Matkowski [43], Mukherjee [49], Kang and Kim [37], Meir and Keeler [44], Maiti and Pal [42], park and Bae [58], Park and Moon [59], Rao and Rao [63, 64], Ray [65], Reilly [66], Rhoades et al. [68], Sehgal [70], Rus [69], Yeh [76, 77] and many others.
2. Main Results

In the following theorems we shall denote
\[M_1(x, y) = \max\{d(Sx, Ty), d(A_1x, Sx), d(A_1y, Ty), \frac{[d(A_1x, Ty) + d(A_1y, Sx)]}{2}\} \]
for any \(x, y \in X \). Also, let \(\phi : R_+ \to R_+ \) denote an upper semicontinuous function such that \(\phi(t) < t \) for all \(t > 0 \).

Theorem 2.1. Let \(\{A_i\}, i = 1, 2, 3, \ldots, S \) and \(T \) be selfmappings of a complete metric space \((X, d)\) such that

1. \(A_iX \subset TX, A_iX \subset SX \) when \(i > 1 \);
2. \(d(A_1x, A_2y) \leq \phi(M_1(x, y)) \);
3. \(d(A_1x, A_2y) < M_1(x, y) \), whenever \(M_1(x, y) > 0 \).

Let \(S \) be semi \(\alpha \)--compatible with \(A_1 \) and \(T \) be semi \(\alpha \)--compatible with \(A_k \) for some \(k > 1 \). If the mappings in one of the semi \(\alpha \)--compatible pairs \((A_1, S)\) or \((A_k, T)\) are orbitally continuous, then all the \(A_i, S \) and \(T \) have a unique common fixed point.

Proof. Let \(x_0 \) be any point in \(X \). Define sequences \(\{x_n\} \) and \(\{y_n\} \) in \(X \) given by the rule
\[y_{2n} = A_1x_{2n} = Tx_{2n+1}, \quad y_{2n+1} = A_2x_{2n+1} = Sx_{2n+2}. \]
This can be done by virtue of (i). if \(A_1x_{2n} = A_2x_{2n+1} \) or \(A_2x_{2n+1} = A_1x_{2n+2} \) for some value of \(n \in N \cup \{0\} \), it becomes easier to establish the existence of the fixed point. So let us assume that \(A_1x_{2n} \neq A_2x_{2n+1} \) and \(A_2x_{2n+1} \neq A_1x_{2n+2} \). For each positive \(n \), we obtain

\[
\begin{align*}
(1) \quad d(y_{2n}, y_{2n+1}) & \leq \phi(d(y_{2n-1}, y_{2n})) < d(y_{2n-1}, y_{2n}) \quad \text{and} \\
(2) \quad d(y_{2n-1}, y_{2n+1}) & \leq \phi(d(y_{2n-2}, y_{2n-1})) < d(y_{2n-2}, y_{2n-1}).
\end{align*}
\]
We thus see that \(d(y_{n}, y_{n+1}) \) is a strictly decreasing sequence of positive numbers and hence tends to a limit \(r > 0 \). Then relation (1) on making \(n \to \infty \) and in view of upper semi continuity of \(\phi \) yields \(r = \lim_{n \to \infty} d(y_{n}, y_{n+1}) = 0 \). We show that \(\{y_n\} \) is a Cauchy sequence. Suppose it is not. Then there exist an \(\varepsilon > 0 \) and a subsequence \(\{y_{n_i}\} \) of \(\{y_n\} \) such that \(d(y_{n_i}, y_{n_{i+1}}) > 2\varepsilon \). Since \(\lim_{n \to \infty} d(y_{n}, y_{n+1}) = 0 \), there exist integers \(m_i \) satisfying \(n_1 < m_i < n_{i+1} \) such that \(d(y_{n_i}, y_{m_i}) \geq \varepsilon \). If not, then
\[
d(y_{n_i}, y_{m_i}) \leq d(y_{n_i}, y_{n_{i+1}}) + d(y_{n_{i+1}}, y_{m_i}) < \varepsilon + d(y_{n_{i+1}}, y_{m_i}) < 2\varepsilon
\]
a contradiction. If \(m_i \) be the smallest integer such that \(d(y_{n_i}, y_{m_i}) \geq \varepsilon \) then
\[
e \leq d(y_{n_i}, y_{m_i}) \leq d(y_{n_i}, y_{n_{i+1}}) + d(y_{n_{i+1}}, y_{m_i}) < \varepsilon + d(y_{n_{i+1}}, y_{m_i}) = d(y_{m_i}, y_{n_{i+1}}) + d(y_{m_i}, y_{n_{i+1}}).
\]
That is, there exists integers \(m_i \) satisfying \(n_i < m_i < n_{i+1} \) such that \(d(y_{n_i}, y_{m_i}) \geq \varepsilon \) and
\[
(3) \lim_{n \to \infty} d(y_{n_i}, y_{m_i}) = \varepsilon.
\]
Without loss of generality we can assume that \(n_i \) is odd and \(m_i \) even. Now, by virtue of (1), we have
\[
d(y_{n_i+1}, y_{m_i+1}) \leq \phi(d(y_{n_i}, y_{m_i}) + d(y_{n_i}, y_{n_{i+1}})).
\]
Now, on letting \(n_i \to \infty \) and in view of (3) and upper semi continuity of \(\phi \), the above relation yields \(e \leq \phi(e) < e \), a contradiction. Hence \(\{y_n\} \) is a Cauchy sequence. Since \(X \) is complete, there exists a point \(z \) in \(X \) such that \(y_n \to z \). Also
\[
y_{2n} = A_1x_{2n} = Tx_{2n+1} \to z \quad \text{and} \quad y_{2n+1} = A_2x_{2n+1} = Sx_{2n+2} \to z.
\]
We show that \(A_1x_{2n} \to z \) for each \(i > 2 \). If \(\lim_{i \to \infty} A_1x_{2n+1} \neq z \) for some \(i > 2 \), then there exists a subsequence \(\{A_1x_{2n+1}\} \) of \(\{A_2x_{2n+1}\} \), a number \(r > 0 \) and a positive integer \(M \) such that for each \(m \geq M \) we have
\[
d(A_1x_{2m}, A_1x_{2m+1}) \geq r, \quad d(A_1x_{2m+1}, z) \geq r \quad \text{and}
\]
\[
d(A_1x_{2m}, A_2x_{2m+1}) < M_1(x_{2m}, x_{2m+1}) = d(A_1x_{2m}, A_1x_{2m+1})
\]
a contradiction. Hence \(A_kx_{2n+1} \to z \) for each \(i > 1 \).

Suppose that \(T \) is semi \(\alpha \)-compatible with \(A_k \) for some \(k > 1 \) and \(T \) and \(A_k \) are orbitally continuous. Then orbital continuity of \(A_k \) and \(T \) implies that \(A_kTx_{2n+1} \to A_kz, A_kT_kx_{2n+1} \to A_kz, TA_kx_{2n+1} \to Tz \) and \(TTx_{2n+1} \to Tz \). Semi \(\alpha \)-compatibility of \(A_k \) and \(T \) yields \(\lim_{n \to \infty} d(A_kTx_{2n+1}, TA_kx_{2n+1}) = 0 \) or \(\lim_{n \to \infty} d(A_kTx_{2n+1}, TTx_{2n+1}) = 0 \) or \(\lim_{n \to \infty} d(A_kx_{2n+1}, TA_kx_{2n+1}) = 0 \), whenever \(\{x_n\} \) is a sequence in \(X \) satisfying \(A_kx_0, Tx_n \in A_kX \cap TX \) and \(\lim_{n \to \infty} A_kx_{2n+1} = \lim_{n \to \infty} TX_{2n+1} = z \) for some \(z \) in \(X \). Hence \(A_kz = Tz \).

Since \(A_kx \in SX \), there exists a point \(u \) in \(X \) such that \(A_ku = Su \). We show that \(Su = A_1u \). If not, then the inequality

\[
d(A_1u, A_kz) = d(A_1u, z)
\]

yields a contradiction. Hence \(Tz = A_kz = Su = Au \).

Semi \(\alpha \)-compatibility of \(A_1 \) and \(S \) implies that \(A_1A_1u = A_1Su = SA_1u = SSu \). Similarly, Semi \(\alpha \)-compatibility of \(A_k \) and \(T \) implies that \(A_kA_kz = A_kTz = TA_kz = TTz \). If \(A_1u \neq A_1A_1u \) using (iii) we get

\[
d(A_1u, A_1A_1u) = d(A_1A_1u, A_kz) < M_1(u, z) = d(A_1u, A_kz),
\]

a contradiction. Hence \(A_1u = A_1A_1u \) and \(A_1u = A_1A_1u = SA_1u \), i.e., \(A_1u \) is a common fixed point of \(A_1 \) and \(S \). Similarly, using (iii) we find that \(A_ku = A_kx \) is a common fixed point of \(A_k \) and \(T \). Moreover, if \(A_kz \neq A_kA_kz \) for some \(i > 1 \), using (iii) we get

\[
d(A_kz, A_kA_kz) = d(A_ku, A_kz) < M_1(u, A_kz) = d(A_ku, A_kz),
\]

a contradiction. Hence \(A_kz = A_1u \) is a common fixed point of \(T \) and \(A_i \) for \(i > 1 \). The proof is similar when \(A_1 \) and \(S \) are assumed semi \(\alpha \)-compatible and orbitally continuous. Uniqueness of the common fixed point follows easily. \(\square \)

Remark 2.2. Theorem 2.1 is also true if we replace the condition (i), i.e., \(A_1X \subset TX \) and \(A_1X \subset SX \) when \(i > 1 \) by the following condition: Given \(x_0 \) in \(X \) there exist \(x_1 \) and \(x_2 \) in \(X \) such that \(A_1x_0 = TX_1 \) and \(A_1x_1 = SX_2 \) when \(i > 1 \).

Theorem 2.3. Let \(\{A_i\} \), \(i = 1, 2, 3, \ldots, S \) and \(T \) be selfmappings of a complete metric space \((X, d) \) such that

1. \(A_1X \subset TX, A_1X \subset SX \) when \(i > 1 \);
2. \(d(A_1x, A_2y) \leq \phi(M_1(x, y)) \);
3. \(d(A_1x, A_1y) < M_1(x, y) \), whenever \(M_1(x, y) > 0 \).

Let \(S \) be \(\alpha \)-compatible with \(A_1 \) and \(T \) be \(\alpha \)-compatible with \(A_k \) for some \(k > 1 \). If the mappings in one of the \(\alpha \)-compatible pairs \((A_1, S) \) or \((A_k, T) \) are orbitally continuous, then all the \(A_i, S \) and \(T \) have a unique common fixed point.

Proof. The proof is similar to the proof of Theorem 2.1. \(\square \)

We now give a common fixed point theorem in which the notion of semi \(\alpha \)-compatibility is replaced by an independent notion of quasi \(\alpha \)-compatibility.

Theorem 2.4. Let \(\{A_i\} \), \(i = 1, 2, 3, \ldots, S \) and \(T \) be selfmappings of a complete metric space \((X, d) \) such that

1. \(A_1X \subset TX, A_1X \subset SX \) when \(i > 1 \);
2. \(d(A_1x, A_2y) \leq \phi(M_1(x, y)) \);
3. \(d(A_1x, A_1y) < M_1(x, y), A_1x \neq A_1y \).

Let \(S \) be quasi \(\alpha \)-compatible with \(A_1 \) and \(T \) be quasi \(\alpha \)-compatible with \(A_k \) for some \(k > 1 \). If the mappings in one of the quasi \(\alpha \)-compatible pairs \((A_1, S) \) or \((A_k, T) \) are orbitally continuous, then all the \(A_i, S \) and \(T \) have a unique common fixed point.
Corollary 2.5. Let \(\{A_i\} \), \(i = 1, 2, 3, \ldots \), \(S \) and \(T \) be selfmappings of a complete metric space \((X, d) \) such that

(i) \(A_iX \subset TX, A_iX \subset SX \) when \(i > 1 \);
(ii) \(d(A_1x, A_2y) \leq \phi(M_{12}(x, y)) \);
(iii) \(d(A_1x, A_2y) < M_{12}(x, y), A_1x \neq A_2y \).

Let \(S \) be quasi \(\alpha \)--compatible with \(A_1 \) and \(T \) be quasi \(\alpha \)--compatible with \(A_2 \) for some \(k > 1 \). If the mappings in one of the quasi \(\alpha \)--compatible pairs \((A_1, S) \) or \((A_2, T) \) are continuous, then all the \(A_i, S \) and \(T \) have a unique common fixed point.

Corollary 2.6. Let \(\{A_i\} \), \(i = 1, 2, 3, \ldots \), \(S \) and \(T \) be selfmappings of a complete metric space \((X, d) \) such that

(i) \(A_iX \subset TX, A_iX \subset SX \) when \(i > 1 \);
(ii) \(d(A_1x, A_2y) \leq \phi(M_{12}(x, y)) \);
(iii) \(d(A_1x, A_2y) < M_{12}(x, y), A_1x \neq A_2y \).

Let \(S \) be quasi \(R \)--commuting with \(A_1 \) and \(T \) be quasi \(R \)--commuting with \(A_2 \) for some \(k > 1 \). If the mappings in one of the quasi \(R \)--commuting pairs \((A_1, S) \) or \((A_2, T) \) are orbitally continuous, then all the \(A_i, S \) and \(T \) have a unique common fixed point.

Putting \(k = 1, 2 \) in Theorem 2.1, we get the following result for four mappings.

Theorem 2.7. Let \(A_1, A_2, S \) and \(T \) be selfmappings of a complete metric space \((X, d) \) such that for all \(x, y \in X \),

(i) \(A_1X \subset TX, A_2X \subset SX \);
(ii) \(d(A_1x, A_2y) \leq \phi(\max(d(Sx, Ty), d(A_1x, Sx), d(A_2y, Ty), [d(A_1x, Ty) + d(A_2y, Sx)])/2)) \).

Let \(S \) be semi \(\alpha \)--compatible with \(A_1 \) and \(T \) be semi \(\alpha \)--compatible with \(A_2 \). If the mappings in one of the semi \(\alpha \)--compatible pairs \((A_1, S) \) or \((A_2, T) \) are orbitally continuous, then \(A_1, A_2, S \) and \(T \) have a unique common fixed point.

Taking \(A_2 = A_1 \) and \(T = S \) in Theorem (2.7), we get the following fixed point theorem for a pair of mappings:

Theorem 2.8. Let \(A_1 \) and \(S \) be selfmappings of a complete metric space \((X, d) \) such that for all \(x, y \in X \),

(i) \(A_1X \subset SX \);
(ii) \(d(A_1x, A_1y) \leq \phi(\max(d(Sx, Sy), d(A_1x, Sx), d(A_1y, Sy), [d(A_1x, Sy) + d(A_1y, Sx)])/2)) \).

Let \(S \) be semi \(\alpha \)--compatible with \(A_1 \) and \((A_1, S) \) be orbitally continuous. Then \(A_1 \) and \(S \) have a unique common fixed point.

By putting in Theorem 2.7, \(S = T = I \), the identity mapping on \(X \), we get a distinct category of common fixed point theorems where we do not require the mappings to satisfy any commuting or noncommuting conditions.

Theorem 2.9. Let \(A_1 \) and \(A_2 \) be selfmappings of a complete metric space \((X, d) \) such that for all \(x, y \in X \),

\[
d(A_1x, A_2y) \leq \phi(\max(d(x, y), d(A_1x, x), d(A_2y, y), [d(A_1x, y) + d(A_2y, x)])/2))
\]

Also, let \(\phi : \mathbb{R}_+ \to \mathbb{R}_+ \) be an upper semicontinuous function such that \(\phi(t) < t \) for all \(t > 0 \). Then \(A_1 \) and \(A_2 \) have a unique common fixed point.

Putting \(A_2 = A_1 \) and \(S = T = I \), the identity mapping on \(X \) in Theorem (2.9), we get the following result:
Corollary 2.10. [Agarwal et al. [11]] Let A_i be a selfmapping of a complete metric space (X, d) such that for all $x, y \in X$,
\[d(A_i x, A_i y) \leq \phi(\max\{d(x, y), d(A_i x, x), d(A_i y, y), [d(A_i x, y) + d(A_i y, x)]/2\}).\]
Also, let $\phi : \mathbb{R}_+ \to \mathbb{R}_+$ be an upper semicontinuous function such that $\phi(t) < t$ for all $t > 0$. Then A_i has a unique fixed point.

Corollary 2.11 (Boyd and Wong [7]). Let A_i be a selfmapping of a complete metric space (X, d) such that for all $x, y \in X$,
\[d(A_i x, A_i y) \leq \phi(d(x, y)).\]
Also, let $\phi : \mathbb{R}_+ \to \mathbb{R}_+$ be an upper semicontinuous function such that $\phi(t) < t$ for all $t > 0$. Then A_i has a unique fixed point.

In the next theorem we obtain a generalization of Theorem 2.1 by dropping the assumption on orbital continuity and semi α–compatibility of the mappings and completeness of the space X replacing the later two by nontrivial weak compatibility and completeness of the range of one of the mappings.

Theorem 2.12. Let $\{A_i\}, i = 1, 2, 3, \ldots, S$ and T be selfmappings of a metric space (X, d) such that
(i) $A_i X \subset TX, A_i X \subset SX$ when $i > 1$;
(ii) $d(A_i x, A_i y) \leq \phi(M_{12}(x, y))$;
(iii) $d(A_i x, A_i y) < M_i(x, y)$, whenever $M_i(x, y) > 0$.
Let S be nontrivially weakly compatible with A_1 and T be nontrivially weakly compatible with A_i for some $i > 1$. If the range of one of the mappings is a complete subspace of X, then all the A_i, S and T have a unique common fixed point.

Proof. Let x_0 be any point in X. Define sequences $\{x_n\}$ and $\{y_n\}$ in X given by the rule
\[y_{2n} = A_1 x_{2n} = Tx_{2n+1}, \quad y_{2n+1} = A_2 x_{2n+1} = Sx_{2n+2}.\]
Then proceeding exactly as in Theorem 2.1 it follows that $\{y_n\}$ is a Cauchy sequence and $\{y_{2n} = A_1 x_{2n} = T x_{2n+1}\}$ and $\{y_{2n+1} = A_2 x_{2n+1} = S x_{2n+2}\}$ are also Cauchy sequences. Suppose that the range of T is a complete subspace of X. Then, since $\{y_{2n} = Tx_{2n+1}\}$ is a Cauchy sequence in TX, there exists some $u \in X$ such that $Tx_{2n+1} \to Tu$. Thus $A_1 x_{2n} = Tx_{2n+1} \to Tu$ and $A_2 x_{2n+1} = Sx_{2n+2} \to Tu$. We now show that $A_2 u = Tu$. If not, using (ii), for large values of n we get
\[d(A_1 x_{2n}, A_2 u) \leq \phi(M_{12}(x_{2n}, u)) = \phi(d(A_2 u, Tu)).\]
On making $n \to \infty$ this yields $d(Tu, A_2 u) \leq \phi(d(A_2 u, Tu)) < d(Tu, A_2 u)$, a contradiction. Hence $A_2 u = Tu$. Since $A_2 X \subset SX$, there exists some $w \in X$ such that $Tu = A_2 u = Sw$. We claim that $A_1 w = Sw$. If $A_1 w \neq Sw$, we have $d(A_1 w, A_2 u) < \phi(M_{12}(w, u)) = d(A_1 w, A_2 u)$, a contradiction. Hence $A_1 w = A_2 u = Tu = Sw$. If $A_1 w \neq A_2 u$, for some $i > 2$, by (iii) we get $d(A_1 w, A_i u) < M_{12}(w, u) = d(A_1 w, A_i u)$, a contradiction. Hence for each $i > 1$ we get $A_1 w = A_i u = Tu = Sw$. Now nontrivial weak compatibility of A_1, A_i, S and T and the contractive conditions imply that $A_1 w$ is a common fixed point of A_1, A_i, S and T. Moreover, if $A_1 w \neq A_1 A_i w$ for some $i > 1$, we get $d(A_1 w, A_i A_1 w) < M_{12}(w, A_1 w) = d(A_1 w, A_i A_1 w)$, a contradiction. Hence $A_1 w$ is a common fixed point of all A_i, S and T. The proof is similar when the range of S is assumed a complete subspace of X. This completes the proof of the theorem. \[\Box\]

Putting $k = 1, 2$ in Theorem 2.12, we get the following result for four mappings.

Theorem 2.13. Let A_1, A_2, S and T be selfmappings of a complete metric space (X, d) such that for all $x, y \in X$,
(i) $A_1 X \subset TX, A_2 X \subset SX$;
(ii) $d(A_1 x, A_2 y) \leq \phi(\max\{d(Sx, Ty), d(A_1 x, Sx), d(A_2 y, Ty), [d(A_1 x, Ty) + d(A_2 y, Sx)]/2\}).$
Let \(S \) be nontrivially weakly compatible with \(A_1 \) and \(T \) be nontrivially weakly compatible with \(A_2 \). If the range of one of the mappings be a complete subspace of \(X \), then \(A_1, A_2, S, T \) have a unique common fixed point.

Taking \(A_2 = A_1 \) and \(T = S \) in Theorem 2.13, we get the following fixed point theorem for a pair of mappings:

Theorem 2.14. Let \(A_1 \) and \(S \) be selfmappings of a complete metric space \((X, d)\) such that for all \(x, y \in X, \)

(i) \(A_1 X \subset SX \);

(ii) \(d(A_1 x, A_1 y) \leq \phi(\max\{d(Sx, Sy), d(A_1 x, Sx), d(A_1 y, Sy), [d(A_1 x, Sy) + d(A_1 y, Sx)]/2\}) \).

Let \(S \) be nontrivially weakly compatible with \(A_1 \). If \(SX \) is a complete subspace of \(X \), then \(A_1 \) and \(S \) have a unique common fixed point.

The following result is a consequence of Theorem 2.12, since nontrivially weakly compatible mappings are \(\alpha \)-compatible.

Theorem 2.15. Let \(\{A_i\}, i = 1, 2, 3, \ldots, S, T \) be selfmappings of a complete metric space \((X, d)\) such that

(i) \(A_i X \subset TX, A_i X \subset SX \) when \(i > 1 \);

(ii) \(d(A_1 x, A_2 y) \leq \phi(M_{12}(x, y)) \);

(iii) \(d(A_1 x, A_2 y) < M_{12}(x, y), \) whenever \(M_{12}(x, y) > 0 \).

Let \(S \) be semi \(\alpha \)-compatible with \(A_1 \) and \(T \) be semi \(\alpha \)-compatible with \(A_k \) for some \(k > 1 \). If the range of one of the mappings be a complete subspace of \(X \), then all the \(A_i, S, T \) have a unique common fixed point.

3. Examples

The following examples illustrate Theorems 2.3 and 2.12.

Example 3.1. Let \(X = [2, 20] \) with usual metric \(d \). Define mappings \(A_i, S, T : X \to X, i = 1, 2, 3, \ldots, \) by

\[
\begin{align*}
A_1 &= 2, & A_1 x &= 3 \text{ if } x > 2, \\
A_2 &= 2 \text{ if } x = 2 \text{ or } x > 5, & A_2 x &= 6 \text{ if } 2 < x \leq 5, \\
S &= 2, & S x &= 6 \text{ if } x > 2, \\
T &= 2, & T x &= 12 \text{ if } 2 < x \leq 5, & T x &= x - 3 \text{ if } x > 5, \\
\text{and for } i > 2, & A_i x &= 2 \text{ if } x \leq 2 + \frac{1}{i} \text{ or } > 5, & A_i x &= 6 \text{ if } 2 + \frac{1}{i} < x \leq 5.
\end{align*}
\]

Then \(\{A_i\} \), \(S \) and \(T \) satisfy all the conditions of Theorems 2.3 and 2.12 and have a unique common fixed point \(x = 2 \). It is also easy to observe that \(A_1 \) and \(S \) are orbitally continuous and \(\alpha \)-compatible mappings. But neither \(A_1 \) nor \(S \) is continuous, not even at their common fixed point \(x = 2 \). It may also be verified that \(T \) and \(A_i \) are \(\alpha \)-compatible when \(i > 2 \). However, one can easily verified that \(T \) and \(A_i \) are quasi \(\alpha \)-compatible.

Example 3.2. Let \(X = [2, \infty) \) with usual metric \(d \). Define mappings \(A_i, S, T : X \to X, i = 1, 2, 3, \ldots, \) by

\[
\begin{align*}
A_1 &= A_2 = 2 \text{ for all } x, \\
S x &= 2 \text{ if } x \geq 2, \\
T &= 2x \text{ if } x \geq 3, & T x &= 2x \text{ if } x < 3, \\
\text{and for } i > 2, & A_i x &= 2(3 + \frac{1}{i}) \text{ if } x > 3 + \frac{1}{i}, & A_i x &= 2 \text{ if } x \leq 3 + \frac{1}{i}.
\end{align*}
\]

Then \(\{A_i\} \), \(S \) and \(T \) satisfy all the conditions of Theorems 2.1 and 2.3 and have a unique common fixed point \(x = 2 \). It is also easy to observe that \(A_1 \) and \(S \) are orbitally continuous and \(\alpha \)-compatible mappings. It may also be verified that \(T \) and \(A_i \) are \(\alpha \)-compatible when \(i > 2 \). However, \(T \) and \(A_i \) are quasi \(\alpha \)-compatible when \(i > 2 \).

The following example [57] illustrates Theorem 2.8.
Example 3.3. Let $X = [0, 10]$ be equipped with the usual metric on X. Define mappings $A_1, S : X \to X$ by

$$A_1x = (6 - x)/2 \text{ if } x \leq 2, \quad A_1x = 3 \text{ if } 2 < x \leq 5, \quad A_1x = 2 \text{ if } x > 5,$$

$$Sx = x \text{ if } x \leq 2, \quad Sx = 10 \text{ if } 2 < x \leq 5, \quad Sx = (x + 1)/3 \text{ if } x > 5.$$

Then A_1 and S satisfy all the conditions of Theorem 2.8 and have a unique common fixed point $x = 2$. It can be seen in this example that $\lim_{n \to \infty} d(A_1A_1x_n, SA_1x_n) = 0$, whenever $\{x_n\}$ is a sequence in X satisfying $A_1x_n, Sx_n \in A_1X \cap Sx$ and $\lim_{n \to \infty} A_1x_n = \lim_{n \to \infty} Sx_n = t$ for some t in X. It can also be verified that A_1 and S satisfy the contractive condition $d(A_1x, A_1y) \leq \varphi(d(Sx, Sy))$ for all $x, y \in X$ whenever $\varphi(t) = 1/2$. Moreover, it is also easy to observe that A_1 and S are orbitally continuous mappings. It may be seen in this example that A_1 and S are neither compatible, nor A_1–compatible, nor S–compatibility nor compatible of type (P).

Remark 3.4. In Theorem 2.8, the notion of nontrivial weak compatibility cannot be replaced by weak compatibility. The following example illustrates this fact:

Example 3.5. Let $X = [2, 20]$ be equipped with the usual metric on X. Define mappings $A_1, S : X \to X$ by

$$A_1x = 6 \text{ if } 2 \leq x \leq 5, \quad A_1x = (x + 5)/5 \text{ if } x > 5,$$

$$Sx = 12 \text{ if } 2 \leq x \leq 5, \quad Sx = (x + 1)/3 \text{ if } x > 5.$$

Then A_1 and S satisfy all the conditions of Theorem 2.8 but do not have a common fixed point. It can be seen in this example that A_1 and S are trivially weakly compatible.

Remark 3.6. In Theorem 2.8 we cannot replace the notion of semi α–compatibility by weak compatibility. This can be seen from Example 3.5 above.

4. Discussion

Our proved theorems apply to a wider class of mappings than the results of compatible and continuous maps since our theorems apply to semi α–compatible or nontrivially weakly compatible and orbitally continuous maps also. Moreover, as compared to the analogous results, the present theorems have been proved under considerably weaker assumptions. A few observations regarding the above proved theorems are in order.

(i) Theorem 2.1 assumes S to be semi α–compatible with A_1 and T to be compatible with A_i where $i > 1$. In comparison to this, Theorem 5.1 of Jachymski [22] assumes T to be compatible with A_i for each $i > 1$ while Rhoades et al. [68] (see also Jungck et al. [27]) assume each A_i to be compatible with both S and T. In Example 3.1, T and A_2 are not compatible.

(ii) In Theorem 2.1 for each $i > 2$ the mappings A_i, A_i satisfy the plain contractive condition $d(A_i x, A_i y) < M_i(x, y)$. On the other hand, Theorem 5.1 of Jachymski [23] requires A_i, A_i, $i > 2$, to satisfy the contractive condition $d(A_i x, A_i y) < \phi_i(M(x, y))$ where $\phi_i : R_+ \to R_+$ is an upper semicontinuous function such that $\phi_i(t) < t$ for each $t > 0$. This condition is not satisfied in Example 3.2 for any $i > 2$ since the required function ϕ_i would not be upper semicontinuous at $t = 4 + (2/i)$. Similarly the theorem of Rhoades et al. [68] (see also Jungck et al. [27]) requires each A_i, A_i to satisfy a Meir-Keeler type (ϵ, δ) contractive condition and δ is required to be lower semicontinuous. However, in Example 3.2 above, A_1 and A_1 fail to satisfy the (ϵ, δ) condition at $\epsilon = 4 + (2/i)$ when $i > 2$.

(iii) Theorem 2.1 assumes the mappings in one of the semi α–compatible pairs (A_1, S) or (A_i, T), where $k > 1$ be orbitally continuous. In comparison to this, Theorem 5.1 of Jachymski [22, 23] assumes S or T to be continuous while Rhoades et al. [27] (see also Jungck et al. [27]) also assumes S or T be continuous. Likewise, the theorems of Fisher [18] and Pant [53] assume one of the mappings to be continuous. In Example 3.1 none of the mappings are continuous.

Remark 4.1. Our work provides a possibility to extend our proved results in other generalized metric spaces, namely, b–metric space, b–rectangular metric space, $b_i(s)$– metric spaces[2, 3, 9, 14, 15, 19, 33, 45–48, 78].
Remark 4.2. In all the theorems established in this paper, we have not assumed any mapping to be continuous. In fact, the mappings assumed by us are not only discontinuous in their domain of definition but also discontinuous at their common fixed point. Thus, we provide more answers to the problem posed by Rhoades [67] regarding the existence of a contractive definition which generate a fixed point, but does not force the mapping to be continuous at the fixed point. The first answer to this problem was given by Pant [52]. The new answers of the Rhoades’s problem are distinct from [4, 5, 57, 60, 62].

5. Acknowledgment

The authors are thankful to the learned referee for his/her valuable suggestions for improving the content of the paper.

References