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Abstract. Image restoration is an important branch of image processing which has been studied extensively
while there are several methods to solve this problem by many authors with the challenges of computational
speed and accuracy of algorithms. In this paper, we present two methods, called ”Inertial S-iteration
forward-backward algorithm (ISFBA)” and ”A fast iterative shrinkage-thresholding algorithm-Siteration
(FISTA-S)”, for finding an approximate solution of least absolute shrinkage and selection operator problem
by using a special technique in fixed point theory and prove weak convergence of the proposed methods
under some suitable conditions. Moreover, we apply our main results to solve image restoration problems.
It is shown by some numerical examples that our algorithms have a good behavior compared with forward-
backward algorithm (FBA), a new accelerated proximal gradient algorithm (nAGA) and a fast iterative
shrinkage-thresholding algorithm (FISTA).

1. Introduction

A recently emerging technique used in signal and image processing is compressive sensing (CS). An
important brance of image/signal processing is image restoration which is one of the most popular classical
inverse problems. Such problem has been extensively studied in various applications such as image de-
bluring, astronomical imaging, remote sensing, radar imaging, digital photography, microscopic imaging.
The image restoration problem can be explained in one dimensional vector by the following model:

Ax = b + w (1)

where x ∈ RN×1 is an original image, b ∈ RM×1 is the observed image, w is additive noise and A ∈ RM×N is
the blurring operation. In order to solve problem (1), we aim to approximate the original image, vector x,
by minimizing the additive noise, which is known as the least squares (LS) problem, by the following model:

min
x
‖Ax − b‖22 , (2)
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where ‖·‖2 is l2-norm defined by ‖x‖2 =

√∑N
i=1 |xi|

2. The solution of (2) can be estimated by many iterations
e.g. Richardson iteration, see [26] for detail. However, the number of unknown variables is much more
than the observations which causes (2) to be ill-posed problem because of a huge norm result which is thus
meaningless, see [8] and [9]. Therefore, in order to improve ill-conditioned least squares problem, several
regularization methods, were introduced such as the R1 and R2 regularization methods. As in [8], the method of
quasisolution, called R1, was introduced and studied by [11] while R2 regularization method was suggested
by [18] and [7]. One of the most popular regularization methods is Tikhonov regularization suggested by
[24]. It is defined to solve the following minimization problem:

min
x
‖Ax − b‖22 + λ ‖Kx‖22 (3)

where λ > 0, is called regularization parameter, and K ∈ RP×N, is called Tikhonov matrix. In the standard
form, K is set to be the identity. In statistics, (3) is known as ridge regression. For improving the original LS (2)
and classical regularization such as subset selection and ridge regression (3), a new method for estimation
a solution of (1) called least absolute shrinkage and selection operator (LASSO), was proposed and discussed by
[23] as follows:

min
x
‖Ax − b‖22 + λ ‖x‖1 , (4)

where ‖·‖1 is l1-norm defined by ‖x‖1 =
∑N

i=1 |xi|. Moreover, the LASSO can be applied to regression problems
[23], image restoration problems [4], etc.

In general, (2)-(4) can be formulated in a general form by estimating the minimizer of sum of two
functions as follows:

min
x

F(x) := f (x) + 1(x), (5)

where 1 is a convex smooth (or possible non-smooth) function and f is a smooth convex loss function with
gradient having Lipschitz constant L. By using Fermat’s rule, Theorem 16.3 of [3], the solution of (5) can be
characterized as follows: x̄ minimizing ( f + 1) if and only if 0 ∈ ∂1(x̄) + ∇ f (x̄) where ∂1(x̄) and ∇ f (x̄) refer
to the subdifferential and gradient of 1 and f respectively. Moreover, Parikh and Boyd [17] showed that
problem (5) can also be interpreted as a fixed point problem: x̄ minimizing ( f + 1) if and only if

x̄ = proxc1(I − c∇ f )(x̄) = Jc∂1(I − c∇ f )(x̄), (6)

where c > 0, I is an identity operator, proxc1 is the proximity operator of c1 and J∂1 is the resolvent of
∂1 defined by J∂1 = (I + ∂1)−1, more description of these operators will be mentioned in Section 2. For
convenience, the equation (6) can be rewritten as:

x̄ = Tx̄, (7)

where T := proxc1(I − c∇ f ) which is called forward-backward operator. It is observed that a solution of (7)
is a fixed point of T and T is a nonexpansive mapping when c ∈ (0, 2

L ). The existence of a fixed point of
nonexpansive mappings was guaranteed by Browder’s theorem, see [1] for detail. In order to find a point
x̄ satisfying (7), many researchers proposed various methods for finding the approximate solution. One of
most popular iterative methods, called Picard iteration process, was defined by:

xn+1 = Txn, (8)

where initial point x1 is chosen randomly. In addition, other iterative methods for improving picard iteration
process have been studied extensively such as follows.

Mann iteration process [14] is defined by:

xn+1 = (1 − αn)xn + αnTxn,n ≥ 1, (9)
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where initial point x1 is chosen randomly and {αn} is a sequence in [0, 1]. In case of αn = 1 for all n ≥ 1, this
iteration process reduces to the Picard iteration process.

Ishikawa iteration process [10] is defined by:{
yn = (1 − βn)xn + βnTxn,

xn+1 = (1 − αn)xn + αnTyn,n ≥ 1,
(10)

where initial point x1 is chosen randomly and {αn}, {βn} are sequences in [0, 1]. This iteration process reduces
to the Mann iteration process when βn = 0 for all n ≥ 1.

S-iteration process [2] is defined by:{
yn = (1 − βn)xn + βnTxn,

xn+1 = (1 − αn)Txn + αnTyn,n ≥ 1,
(11)

where initial point x1 is chosen randomly and {αn}, {βn} are sequences in [0, 1]. In 2017, Agqrwal, O’Regan
and Sahu proved that this iteration process is independent of Mann and Ishikawa iteration process and
converges faster than both of them. However, the processes mentioned above have a badly convergence
rate. Thus, to speed up, the technique for improving speed and giving a better convergence behavior was
introduced firstly by Polyak [19] by adding an inertial step. The following classical iterative method for
finding a zero of sum of two operators, i.e. find x∗ ∈ H such that x∗ ∈ zer(∇ f + ∂1) can be viewed as Mann
interation and it is known as

Forward-backward algorithm (FBA) is defined by:{
yn = xn − γ∇ f xn,

xn+1 = xn + αn(Jγ∂1yn − xn).
(12)

where x0 ∈ H, L is a Lipschitz constant of ∇ f , γ ∈ (0, 2
L ), δ = 2 − γL

2 and a sequence {αn} in [0, δ] such that∑
n∈N αn(δ − αn) = +∞.

The following iterative methods with inertial step can be used for improving performance of Forward-
backward algorithm.

A fast iterative shrinkage-thresholding algorithm (FISTA) [4], is defined by:
yn = Txn,

tn+1 =
1 +

√
1 + 4t2

n

2
, θn =

tn − 1
tn+1

,

xn+1 = yn + θn(yn − yn−1),

(13)

where x1 = y0 ∈ Rn, t1 = 1, T := prox 1
L 1

(I − 1
L∇ f ) and θn is called inertial step size. FISTA was suggested

by Beck and Teboulle. They proved that rate of convergence of FISTA is better than that of ISTA and
applied FISTA to image deblurring problems [4]. The inertial step size θn of FISTA was firstly introduced
by Nesterov [16]. Generally, FISTA was modified for improving its performance by replacing tn+1. For
example, Chambolle and Dossal [6] turned out tn+1 to be n+a

a for a > 2, Liang and Schönlieb [12] interpolated

tn+1 into a general form as tn+1 =
p+
√

q+rt2
n

2 where p, q > 0 and 0 < r ≤ 4 and proved weak convergence
theorem of FISTA.

A new accelerated proximal gradient algorithm (nAGA) [25], was defined by{
yn = xn + θn(xn − xn−1),

xn+1 = Tn[(1 − αn)yn + αnTnyn],
(14)

where {θn}, {αn} are sequences in (0, 1) and
‖xn − xn−1‖2

θn
→ 0. They proved a convergence theorem of nAGA

and applied this method for solving the non-smooth convex minimization problem with sparsity-inducing
regularizers for the multitask learning framework.
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Motivated by those works mentioned above, in this paper, an iterative method for sloving (5) is proposed
by employing the concepts of S-iteration process together with the inertial step for a countable family
of nonexpansive mappings. This paper is organized as follows: The basic concept and mathematical
background will be given in Section 2. A weak convergence theorem will be proved in Section 3. Moreover,
in Section 4, we apply the proposed method for solving image restoration problems.

2. Preliminaries and lemmas

Let H be a real Hilbert space with norm ‖·‖ and inner product 〈·|·〉. A mapping T : H → H is said to
be L-Lipschtiz operator if there exists L > 0 such that

∥∥∥Tx − Ty
∥∥∥ ≤ L

∥∥∥x − y
∥∥∥ for any x, y ∈ H. An L-Lipschitz

operator is called nonexpansive operator if L = 1. A mapping A : H→ 2H is called monotone operator if

〈x − y|u − v〉 ≥ 0, (15)

for any (x,u), (y, v) ∈ 1raA, where 1raA = {(x, y) ∈ H × H : x ∈ H, y ∈ Ax} is the graph of A. A monotone
operator A is called maximal monotone operator if the graph 1raA is not properly contained in the graph of
any other monotone operator. It is known that A is maximal monotone operator if and only if R(I +λA) = H
for every λ > 0.

Let A : H→ 2H be a maximal monotone operator and c > 0. The resolvent of A is defined by JcA = (I+cA)−1

where I is an identity operator. If A = ∂ f for some f ∈ Γ0(H), Γ0(H) is denoted by the set of proper lower
semicontinuous convex functions from H to (−∞,+∞], then JcA = proxc f where prox f is proximity operator
[3] of f given by

prox f (x) = ar1miny∈H( f (y) +
1
2

∥∥∥x − y
∥∥∥2

). (16)

If f = ‖·‖1, then proxc f can be represented by

proxc‖·‖1 = s1n(x)max{‖x‖1 − c, 0}, (17)

see chapter 24 in [3] for detial.
Let {Tn} and T be families of nonexpansive operators such that ∅ , F(T ) ⊂

⋂
∞

n=1 F(Tn), where F(T ) is
the set of all common fixed points of T ∈ T . Then, {Tn} is said to satisfy NST-condition(I) with T [15, 20] if
for each bounded sequence {xn},

lim
n→∞
‖xn − Tnxn‖ = 0 implies lim

n→∞
‖xn − Txn‖ = 0 for all T ∈ T . (18)

If T is singleton, i.e. T = {T}, then {Tn} is said to satisfy NST-condition(I) with T.

Theorem 2.1. [5, Theorem 3.2] Let H be a Hilbert space. Let A : H → 2H be a maximal monotone operator and
B : H → H be an L-Lipschitz operator. Let c ∈ (0, 2

L ) and {cn} ⊂ (0, 2
L ) such that cn → c. Define Tn = JcnA(I − cnB).

Then, {Tn} satisfies the NST-condition(I) with Tc where Tc = JcA(I − cB).

Lemma 2.2. [21] Let {an}, {bn} and {δn} be sequences of nonnegative numbers such that

an+1 ≤ (1 + δn)an + bn,∀n ∈N. (19)

If
∑
∞

n=1 δn < ∞ and
∑
∞

n=1 bn < ∞, then limn→∞ an exists.

Lemma 2.3 (Opial lemma). Let H be a Hilbert space and {xn} be a sequence in H such that there exists a nonempty
subset Ω of H satisfying the following conditions:

• for all y ∈ Ω, limn→∞

∥∥∥xn − y
∥∥∥ exists,

• Any weak-cluster point of {xn} belongs to Ω.

Then, there exists x̄ ∈ Ω such that xn ⇀ x̄.
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3. Main results

In this section, we propose an iterative method, called Inertial S-iteration forward-backward algorithm
(ISFBA), for finding a solution of (5) and prove a weak convergence theorem. First of all, we rewrite
problem (5) into a general problem, called a zero of sum of two operators problem, by finding x̄ such that

x̄ ∈ zer(A + B), (20)

where A,B : H → 2H are two set-valued operators and zer(A + B) := {x : 0 ∈ Ax + Bx}. In this case, we
assume that A : H→ 2H is a maximal monotone operator and B : H→ H is an L-Lipschitz operator. Hence,
we prove, in general, a weak convergence theorem for a countable family of nonexpansive operators by
assuming NST-condition(I) as follows.

Theorem 3.1. Let H be a Hilbert space, {Tn} be a family of nonexpansive operators and T be a nonexpansive operator
such that {Tn} satisfies NST-condition(I) with T. Suppose that ∅ , F(T) ⊂ ∩∞n=1F(Tn). Let {xn} be a sequence in H
generated by

x0, x1 ∈ H,
yn = xn + θn(xn − xn−1),
zn = (1 − βn)yn + βnTnyn,

xn+1 = (1 − αn)Tnyn + αnTnzn,

(21)

where 0 < q < αn ≤ 1, 0 < s < βn < r < 1, 0 ≤ θn ≤ 1 and
∑
∞

n=1 θn < ∞. Then, {xn} converges weakly to a point in
F(T).

Proof. Let x∗ ∈ F(T) and let {xn} be a sequence in H generated by (21). Then,∥∥∥yn − x∗
∥∥∥ ≤ ‖xn − x∗‖ + θn ‖xn − xn−1‖ (22)

and

‖zn − x∗‖ ≤ (1 − βn)
∥∥∥yn − x∗

∥∥∥ + βn

∥∥∥Tnyn − x∗
∥∥∥ ≤ ∥∥∥yn − x∗

∥∥∥ . (23)

Thus,

‖xn+1 − x∗‖ ≤ (1 − αn)
∥∥∥Tnyn − x∗

∥∥∥ + αn ‖Tnzn − x∗‖

≤ (1 − αn)
∥∥∥yn − x∗

∥∥∥ + αn ‖zn − x∗‖

≤

∥∥∥yn − x∗
∥∥∥

≤ ‖xn − x∗‖ + θn ‖xn − xn−1‖

(24)

Since ‖x3 − x∗‖ ≤ (1 + 2θn)K where K = max{‖x2 − x∗‖ , ‖x1 − x∗‖} and by induction, we can obtain that

‖xn+1 − x∗‖ ≤ K
n∏

j=1

(1 + 2θ j). (25)

Since
∑
∞

n=1 θn < ∞ and by limit comparison test, we get {xn} bounded. Hence,
∑
∞

n=1 θn ‖xn − xn−1‖ < ∞. By
using Lemma 2.2 in (24), we obtain that limn→∞ ‖xn − x∗‖ exists. Thus, {xn} is bounded which implies that
{yn} is also bounded. From (21), we have∥∥∥yn − x∗

∥∥∥2
= ‖xn − x∗ + θn(xn − xn−1)‖2

= ‖xn − x∗‖2 + θ2
n ‖xn − xn−1‖

2 + 2θn〈xn − x∗|xn − xn−1〉

≤ ‖xn − x∗‖2 + θ2
n ‖xn − xn−1‖

2 + 2θn ‖xn − x∗‖ ‖xn − xn−1‖ .

(26)
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Then,

‖zn − x∗‖2 =
∥∥∥(1 − βn)(yn − x∗) + βn(Tnyn − x∗)

∥∥∥2

= (1 − βn)
∥∥∥yn − x∗

∥∥∥2
+ βn

∥∥∥Tnyn − x∗
∥∥∥2
− βn(1 − βn)

∥∥∥yn − Tnyn

∥∥∥2

≤

∥∥∥yn − x∗
∥∥∥2
− βn(1 − βn)

∥∥∥yn − Tnyn

∥∥∥2
,

(27)

and

‖xn+1 − x∗‖2 = (1 − αn)
∥∥∥Tnyn − x∗

∥∥∥2
+ αn ‖Tnzn − x∗‖2 − αn(1 − αn)

∥∥∥Tnyn − Tnzn

∥∥∥2

≤ (1 − αn)
∥∥∥Tnyn − x∗

∥∥∥2
+ αn ‖Tnzn − x∗‖2

≤

∥∥∥yn − x∗
∥∥∥2
− αnβn(1 − βn)

∥∥∥yn − Tnyn

∥∥∥2

≤ ‖xn − x∗‖2 + θ2
n ‖xn − xn−1‖

2 + 2θn ‖xn − x∗‖ ‖xn − xn−1‖ − αnβn(1 − βn)
∥∥∥yn − Tnyn

∥∥∥2
.

(28)

Since limn→∞ ‖xn − x∗‖ exists, it follows that
∥∥∥yn − Tnyn

∥∥∥ → 0. Since {yn} is bounded and {Tn} satisfies
NST-conditon(I) with T, we get

∥∥∥yn − Tyn

∥∥∥→ 0. From

‖xn − Txn‖ ≤
∥∥∥xn − yn

∥∥∥ +
∥∥∥yn − Tyn

∥∥∥ +
∥∥∥Tyn − Txn

∥∥∥
≤ 2

∥∥∥xn − yn

∥∥∥ +
∥∥∥yn − Tyn

∥∥∥
≤ 2θn ‖xn − xn−1‖ +

∥∥∥yn − Tyn

∥∥∥ , (29)

we obtain ‖xn − Txn‖ → 0. Let w be a weak cluster point of {xn}. Then w ∈ F(T) by demicloseness of I − T at
0. Hence, by using Opial lemma, we conclude that there exists x̄ ∈ F(T) such that xn ⇀ x̄.

Corollary 3.2. Let H be a Hilbert space. Let A : H → 2H be maximal monotone operator and B : H → H be an
L-Lipschitz operator. Let c ∈ (0, 2

L ) and {cn} ⊂ (0, 2
L ) such that cn → c. Define Tn = JcnA(I− cnB) and T = JcA(I− cB).

Suppose that ∅ , F(T) ⊂ ∩∞n=1F(Tn). Let {xn} be a sequence in H generated by (21). Then, {xn} converges weakly to a
point in zer(A + B).

Proof. Using Proposition 26.1(iv)(a) in [3], we obtain F(T) = zer(A + B) and {Tn} and T are nonexpansive
operators for all n. Then, the proof is completed by Theorem 3.1 and Theorem 2.1.

Corollary 3.3 (ISFBA). Let H be a Hilbert space. Let 1 ∈ Γ0(H) and f : H → R be convex and differentiable with
an L-Lipschitz continuous gradient, let c ∈ (0, 2

L ) and {cn} ⊂ (0, 2
L ) such that cn → c. Define Tn = proxcn1(I − cn∇ f )

and T = proxc1(I− c∇ f ). Suppose that F(T) , ∅. Let {xn} be a sequence in H generated by (21). Then, {xn} converges
weakly to a point in ar1min( f + 1).

Proof. Setting A := ∂1 and B := ∇ f , then A is maximal monotone operator. We know that F(T) = ∩∞n=1F(Tn) =
ar1min( f + 1) = zer(A + B). By Corollary 3.2, we obtain the required result.

The following inspired from [4, 6], [12] and [13], by combining FISTA and S-iteration process.

Corollary 3.4 (FISTA-S). Let H be a Hilbert space. Let 1 ∈ Γ0(H) and f : H→ R be convex and differentiable with
an L-Lipschitz continuous gradient, let c ∈ (0, 2

L ) and {cn} ⊂ (0, 2
L ) such that cn → c. Define Tn = proxcn1(I − cn∇ f )

and T = proxc1(I − c∇ f ). Suppose that F(T) , ∅. Let t1 = 1 and tn+1 =
1+
√

1+4t2
n

2 . Let N be a large positive number
and {γn} a summable positive real sequence. Define a sequence θn by

θn =

 tn−1
tn+1
, if 1 ≤ n ≤ N

γn, otherwise.
(30)

Then a sequence {xn} generated by (21) converges weakly to a point in ar1min( f + 1).

Proof. Since
∑
∞

n=1 γn < ∞, we get
∑
∞

i=1 θn < ∞. Thus, the proof is completed by Theorem 3.1.

Remark 3.5. Corollary 3.4 can be proved under the sequence θn defined as in (30) and the condition of θn in Theorem
(3.1), however, the proof with θn given by (13) remains open question.
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4. Applications to image restoration problems

In this section, we apply our proposed algorithms (ISFBA and FISTA-S) to solve image restoration
problems. Moreover, we compare convergence behavior and efficiency of our algorithms with the classical
algorithm namely, forward-backward algorithm (FBA) and the popular algorithms namely, FISTA, nAGA,
introduced by Beck and Teboulle [4], Verma and Shukla [25], respectively. We set f (x) = 1

2 ‖Ax − b‖22,
1(x) = λ ‖x‖1 and assume that zer(∇ f + ∂1) , ∅ in Corollary 3.3. Then, we apply the proposed iterative
methods, ISFBA and FISTA-S, to solve image restoration problems. All numerical experimental results
are performed on Intel Core-i7 gen 8th with 8.00 GB RAM, windows 10, under MATLAB computing
environment.

Let x be an original image, b be an observed image and A be a blurring operator. Then (5) can be
rewritten as:

min
x
‖Ax − b‖22 + λ ‖x‖1 , (31)

where a regularization parameter λwas choosen to be 5×10−5. In this example, we consider two gray-scale
images, Cameraman and Lena with size of 256 × 256, as the original images, and apply ISFBA (Corollary
3.3), FISTA-S (Theorem 3.4) to evaluate image bluring with Gaussian blur of size 9 × 9 and σ = 4. The
orignal image and observed image are ginven in Figure 1.

In this example, we use the structural similarity index (SSIM) [27] and the peak signal-to-noise ratio
(PSNR) [22], as a means of decision performance at xn which are defined as follows

SSIM(xn, x) =
(2µxnµx + C1)(2σxnx + C2)

(µ2
xn

+ µ2
x + C1)(σ2

xn
+ σ2

x + C1)
, (32)

where {µxn , σxn } and {µx, σx} denote the mean intensity and standard deviation set of the deblerring image
xn and the original image x, respectively. σxnx denote their cross correlation. C1 and C2 are small constants
value to avoid instability problem when the denominator is too close to zero.

PSNR(xn) = 10 log10

(
2552

MSE

)
, (33)

where MSE = 1
2562 ‖xn − x‖2. A higher PSNR indicates that the deblurring image is of higher quality, that

is, PSNR(xn) increases when the deblurring image xn tend to the original image x. In order to estimate a
solution of (31) by using ISFBA, FISTA-S, nAGA, FBA and FISTA, all controllers are setting in Table 1 and
then, we obtain the results of

Figure 1: Original images: cameraman(left), lena(right), and their observed images with PSNR 21.3673 dB and 23.8492 dB, respectively.

iteration 200, 1000, 2000 and 3000, respectively, in Figure 4 and illustration of behavior of PSNR and of
SSIM in Figure 2 and Figure 3, respectively. The quality of image produced by FBA (Mann iteration without
inertial step) needs a large number of iterations to reach quality of image produced by ISFBA (S-iteration
with inertial step). However, these iterations give a low quality (low PSNR value) and need a large number
of interations in computing process compared with FISTA-S, nAGA and FISTA. The images produced by
FISTA-S are of a better quality and lower iterations than those created by FISTA, nAGA.
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Method Setting

ISFBA (21)
αn = βn = 0.5, cn = 1.55n

L(n+1) , c = 1
L

and θn =
1
2n

FISTA-S (Corollary 3.4) αn = βn = 0.5, cn = 1.55n
L(n+1) , c = 1

L ,

γn =
1
2n and θn defined as in (30)

nAGA (14) αn = 0.5, cn = 1.55n
L(n+1) , c = 1

L
and θn defined as in (13)

FBA (12) αn = 0.5, γ = 1
L

Table 1: Algorithms and their setting controls
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Figure 2: Comparision of efficiency of our algorithms with others using PSNR of cameraman (above) and lena (bottom)
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Figure 3: Comparision of efficiency of our algorithms with others using SSIM of cameraman (above) and lena (bottom)



L. Bussaban et al. / Filomat 35:3 (2021), 771–782 781

Figure 4: x200, x1000, x2000, x3000 of cameraman and lena estimated by ISFBA, FISTA-S, nAGA, FBA and FISTA, respectively (from left
to right)
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