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Abstract. We address the problem of reducing the edge lengths of a network within a given budget so that
the sum of weighted distances from each vertex to others is minimized. We call this problem the reverse
total weighted distance problem on networks. We first show that the problem is NP-hard by reducing the
set cover problem to it in polynomial time. Particularly, we develop a linear time algorithm to solve the
problem on a tree. For the problem on cycles, we devise an iterative approach without mentioning the exact
complexity. Additionally, if the cycle has uniform edge lengths, we can prove that the specified approach
runs in O(n3) time as each edge of the cycle can be reduced at most once, where n is the number of vertices
in the underlying cycle.

1. Introduction

While classical combinatorial optimization problems look for an optimal solution based on the input
data, the inverse/reverse optimization setting aims to change parameters of the problem at minimum cost
so that the decision maker obtains his goal. Recently, the inverse/reverse optimization problem has become
an interesting topic in operational research with intensive publications and promising applications. To ease
the readers, we review some existing literatures concerning the inverse and reverse optimization problems
as in the following.

The inverse optimization problem is to modify parameters at minimum cost so that the prespecified
solution becomes optimal with respect to new parameters. This problem was first investigated by Burton
[8] in his work concerning the inverse shortest path problem. As cracks on earth move in the shortest path,
this problem was applied to predict the movement of earthquake. Then, Ahuja and Orlin [3] considered
the inverse linear programming problem. They proved that the inverse linear program can be reduced
to the same type of problem based on the complementary slackness condition. Ahuja and Orlin [4] also
developed a combinatorial algorithm to solve the inverse network flow problem. The inverse minimum
spanning tree problem is solvable efficiently by Hochbaum [15]. Nguyen and Chassein [19] considered
the inverse eccentric vertex problem. They showed the NP-completeness of the problem on cactus graphs
and then developed linear time algorithms to solve the problem on cycles and on trees. Additionally,
the inverse location problem was investigated with complexity result and efficient solution approach; for
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example, [1, 9, 10, 19–21], to mention a few. On a counter part, the reverse optimization problem on a
network aims to modify parameters within a given budget so that the behavior network is improved as
much as possible. The improvement of a network is appropriately defined by the decision maker. For the
sake of reverse location problems on networks, we next review some of existing literatures.

Berman et al. [6, 7] were the first who investigated the reverse 1-median and 1-center on general
networks. However, they proposed just the heuristic approach without paying attention to the exact
procedure and the complexity. Then the reverse 1-center problem on uniform weighted trees was reduced
to minimum cut problems on series-parallel graphs and solved in quadratic time; see Zhang et al. [24, 25].
The authors also claimed that the reverse center location on networks can be approximated by investigating
the problem on a suitable spanning tree on the underlying network. Then, Nguyen [18] developed a
quadratic algorithm for the reverse 1-center problem on weighted trees. The reverse 1-median problem
was proved to be NP-hard on general graphs and then solved in linear time if the network is a cycle; see
Burkard et al. [11]. Moreover, Burkard et al. [12] reduced both of the reverse 2-median problem on trees
and the reverse 1-median problem on graphs with exactly one cycle to the reverse 2-median on a path.
Then, they developed algorithm that solved the reduced problem in O(n log n) time, where n is the input
size of the problem. Wang and Bai [23] investigated the reverse 2-median problem on a cycle and showed
that the problem can be decomposed to the equivalent reverse 3-median problem on a path. Then, they
devised a polynomial time algorithm for the corresponding induced problem. For the reverse undesirable
location problem, Alizadeh and Etemad [2] developed linear time algorithms for the reverse obnoxious
center problem on networks, where the modifying cost is measured under rectilinear norm or Hamming
distance. Also, Etemad and Alizadeh [13] further studied the reverse obnoxious center problem on a tree
T = (V,E) and proposed an O(n2) time algorithm for the problem. Sepasian further considered the reverse
1-maxian problem with keeping the 1-median and developed an O(n log n) algorithm. The complexity
of the corresponding problem can be improved to linear if vertex weights are allowed to be increased.
Interesting readers can refer to a survey of inverse and reverse combinatorial optimization problem with
solution methods of Heuberger [14].

This paper considers the reverse total weighted distance on networks. Here, we reduce the edge lenghs
of the network within a certain budget such that the sum of weighted distances between any two vertices
is minimized. The problem is possibly applied in network design. For example, we are given a network
system, all nodes of the network play both roles, say the server and the client, and edge lengths in the
network measure the time for communicating between two incident vertices. Thus, we require to reduce
the lengths of edges in an efficient way such that the total communication time can be improved as much
as possible. According to the best of our knowledge, this problem has not been studied so far in spite of
its importance. The paper is organized as follows. We introduce the problem in Sect. 2 and prove the
NP-hardness of the problem on general networks. We develop in Sect. 3 an efficient algorithm to solve
the reverse total weighted distance on trees in linear time. Sect. 4 contributes to an algorithmic approach
for the problem on cycles. Although the complexity of the proposed algorithm is not exactly known, we
claim that the algorithm runs in O(n3) time on a cycle with uniform edge lengths, where n is the number of
vertices.

2. Problem Statement and Complexity Result

Given a connected graph G = (V(G),E(G)), each vertex v ∈ V(G) is associated with a nonnegative weight,
say w(v). Moreover, the length of edges in the graph is identified by a positive function ` : E −→ R+, i.e.,
the length of an edge e is written as `(e). The distance between two vertices u and v, denoted by d(u, v), in
V(G) is the length of the shortest path connecting them. We have the following concept.

Definition 2.1. The total weighted distance of the graph G is∑
u∈V(G)

∑
v∈V(G),v,u w(v)d(u, v).

To compute the total weighted distance of G, we first find the distances between each pair of vertices in
G by the algorithm of Floyd-Warshall in O(|V|3) time and then sum up the relevant weighted distances.
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In the reverse total weighted distance problem on G, the length of each edge e can be reduced by an
amount x(e). The smallest possible modified length of an edge e is `(e). We assume that the modified edge
lengths are always nonnegative. Therefore, the modification of an edge e is limited within the upper bound
x̄(e) := `(e)−`(e). Denote by ˜̀ the modified edge lengths, i.e., ˜̀(e) := `(e)−x(e). Let d̃ be the distance measure
with respect to the modified lengths ˜̀. Assume that reducing one unit length of e costs c(e). For a given
budget B, we can formally state the reverse total weighted distance problem on G as follows.

• The modified total weighted distance
∑

u∈V(G)
∑

v∈V(G),v,u w(v)d̃(u, v) is minimized.

• The total cost is limited within certain budget B, i.e.,
∑

e∈E(E) c(e)x(e) ≤ B.

• Modifications are feasible, i.e., 0 ≤ x(e) ≤ x̄(e) for e ∈ E(G).

Let us revisit the problem of improving minisum facilities on networks through edge length modifi-
cations (see Berman et al. [6]). Given a network G and a prespecified vertex v∗, we aim to reduce the
edge lengths of the network within a given budget so that the total modified weighted distances to v∗ is
minimized. In this model, we can consider v∗ as a server and all vertices as clients. On the other hand, if we
consider all vertices of the network as servers which serve itself and other vertices, we get another version,
say the reverse total weighted distance on G.

We first get the following complexity result of the problem.

Theorem 2.2. The reverse total weighted distance problem on networks is NP-hard.

Proof. Let us consider an instance of the Set Cover Problem (SC). Given a setS = {1, . . . ,n} and m nonempty
subsets {P j} j=1,...,m whose union equals to the set S. (SC) is to determine whether there exists k subsets in
{P j} j=1,...,m such that their union is exactly S? This problem is NP-complete; see Garey and Johnson [16].

Decision version of the reverse total weighted distance (RTWD) on networks is stated as follows. Let a
graph G, a budget B, and modification bounds be given. Determine if there exists a modification of edge
lengths within the budget B so that the modified total weighted distance is at most M?

Given an instance (SC), we can construct the instance of (RTWD) in polynomial time as follows.

• The graph G = (V(G),E(G)), with V(G) = V1 ∪ V2 ∪ {s} and E(G) = E1 ∪ E2. Here, we set

V1 := {ui}i=1,...,m and V2 := {v j} j=1,...,n.
E1 := {(s,ui)}i=1,...,m and E2 := {(ui, v j) if j ∈ Pi}.

• The weight of s is 1 and other vertex weights are 0.

• The edge lengths are `(e) := 2 for e ∈ E1 and `(e) := 1 for e ∈ E2.

• Modifcation bounds are x̄(e) := 1 for e ∈ E1 and x̄(e) := 0 for e ∈ E2. Therefore, we know that `(e) = 1
for all e ∈ E.

• We further choose B := k and M := 2n + 2m − k.

In what follows, we prove that the answer to (SC) is ’yes’ if and only if the answer to (RTWD) is ’yes’.
Assuming that there exists k subsets, say Pi1 ,Pi2 , . . . ,Pik , in {P j} j=1,...,m so that their union equals to S.

We reduce the length of edges (s,ui j ) for j = 1, . . . , k by one unit. Then the modifying cost is k. Moreover,
we get the following modified weighted distances.

w(s)d̃(vi, s) = 2 for i = 1, . . . ,n.

w(s)d̃(u j, s) =

2 if j < {i1, . . . , ik},
1 otherwise.

.

w(u j)d̃(vi,u j) = 0 and w(vi)d̃(u j, vi) = 0 for i = 1, . . . ,n and j = 1, . . . ,m.
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Therefore, the total weighted distance of G is 2n + 2(m − k) + k = 2n + 2m − k = M. This implies the answer
to (RTWD) is ’yes’.

Conversely, assume that there exists a reduction of edge lengths with cost less than or equal to k and
the total weighted distance of G is 2n + 2m − k. As the reduction of edge length can not increase the total
weighted distance, we can assume that the cost is exactly k. Hence, we get

m∑
j=1

d̃(u j, s) =

m∑
j=1

d̃(u j, s) − k = 2m − k,

as we reduce the distances in {d(s,P j)} j=1,...,m by k. Since the total distance of G is not greater than 2n + 2m− k,
we obtain

n∑
i=1

d̃(v j, s) ≤ 2n. (1)

As d̃(v j, s) ≥ 2 for j = 1, . . . ,n, we obtain
∑n

i=1 d̃(v j, s) ≥ 2n. Thus, (1) holds with equality, i.e., d̃(v j, s) = 2 for
j = 1, . . . ,n. Let us denote by

J := { j ∈ {1, . . . ,m} : d̃(s,u j) = 1}.

Note that |J| ≤ k as the cost is limited within k. For i = 1, . . . ,n, the shortest path from vi to s is P(vi, s) =
(vi,u j, s) for some j ∈ J. Indeed, if there does not exist j ∈ J such that vi is adjacent to u j, then the modified
weighted distance from vi to s is strictly larger than 2. This contradicts the hypothesis. Therefore, we get
the fact S = ∪ j∈JP j or the answer to (SC) is ’yes’.

The reverse total weighted distance on general graphs is NP-hard. Therefore, it is interesting to investi-
gate some special cases which can be solved in polynomial time in the next coming sections.

3. The Problem on Trees

This section considers the reverse total weighted distance on a tree T = (V(T),E(T)). The total weighted
distance of the tree T is reduced by Λ if∑

u∈V
∑

v∈V,v,u w(v)d̃(u, v) =
∑

u∈V
∑

v∈V,v,u w(v)d(u, v) −Λ,

for some feasible reduction {0 ≤ x(e) ≤ x̄(e) for e in E and
∑

e∈E c(e)x(e) ≤ B}. To minimize the total weighted
distance of T, we have to maximize the reduction Λ.

After deleting an edge e in T, we get two connected components Te
1 and Te

2. Denote by V(?) the set of
vertices in a graph ?. Let us define an associated efficiency of e as

a(e) := |V(Te
1)|

 ∑
v∈V(Te

2)

w(v)

 + |V(Te
2)|

 ∑
v∈V(Te

1)

w(v)

.

We take into account the meaning of the associated efficiency of an edge as in the result below.

Proposition 3.1. If the length of e is reduced by ε, then the total weighted distance of T is reduced by a(e)ε.

Proof. For a vertex v in Te
1, the modified weighted distance from v to u in Te

2 is

w(u)d̃(v,u) = w(u)d(v,u) − w(u)ε.

It means that the weighted distances from all vertices in Te
1 to u is reduced by |V(Te

1)|w(u)ε. Therefore, the
weighted distances from all vertices in Te

1 to all vertices in Te
2 is reduced by |V(Te

1)|
(∑

v∈V(Te
2) w(v)

)
ε. Similarly,

we can compute the reduction of weighted distances from all vertices in Te
2 to all vertices in Te

1 and conclude
that the total weighted distance of T is reduced by a(e)ε.



K.T. Nguyen, N.T. Hung / Filomat 35:4 (2021), 1333–1342 1337

Next we develop an algorithm to find a(e) for all e in T. The key idea of the algorithm is to start with
leaves of T. Then we contract the leaves in order to get an induced tree with new labels on the vertices.

Algorithm 1 Finds a(e) for all e ∈ E(T).
Input: A tree T = (V(T),E(T)) with n vertices.
Compute W :=

∑
v∈V(T) w(v) and let L be the set of all leaves in the tree.

Label La(v) := 1 for each leaf v ∈ L and compute the degree De1(v) of each vertex v ∈ V(T).
while |L| > 1 do

Set Temp := ∅
for v ∈ L do

Take the incident edge e = (v′, v) of v and set a(e) := La(v)(W − w(v)) + (n − La(v))w(v).
Contract the edge e to v′; set De1(v′) := De1(v′)−1; and update La(v′) := La(v)+1, w(v′) := w(v)+w(v′).

if De1(v′) = 1 then
Set Temp := Temp ∪ {v′}.

else
if De1(v′) = 0 then

Break the for loop.
end if

end if
end for
L := Temp

end while
Output: Associated efficiencies a(e) for all e ∈ E.

In each iteration, Algorithm 1 computes the associated efficiency a(e) of the edge e that is incident to
some leaf vertex. As the label La(v) of a vertex v stands for the number of vertices of one subtree induced
by deleting an adjacent edge of v, n − La(v) is the number of vertices of another subtree. The total weight
of one subtree induced by deleting an edge e is also updated in each iteration, the total weight of another
subtree is also easy to obtain from W. Therefore, the associated number of each edge is computed correctly.
As each iteration can be computed in constant time and there exists at most linear time many iterations, the
algorithm runs in linear time.

Example 3.2. Let an instance of a tree T be given in Figure 1 with edge lengths and vertex weights being labeled on
the corresponding edges and vertices. We can apply Algorithm 1 to compute the associated number of each edge in
Table 1.

2

4 1

1

1

8

e2

e3

e1 e4

e5

Figure 1: An instance of a tree T

After identifying all associated efficiency a(e) for e ∈ E, we can formulate the reverse total weighted
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i 1 2 3 4 5

a(ei) 21 25 51 49 21

Table 1: Associated number of each edge in the tree T

distance as follows.

max
∑
e∈E

a(e)x(e)

s.t.
∑
e∈E

c(e)x(e) ≤ B,

0 ≤ x(e) ≤ x̄(e), ∀e ∈ E.

(2)

Problem (2) is a linear knapsack problem, it is therefore solvable in linear time; for example, see Balas
and Zemel [5].

Theorem 3.3. The reverse total weighted distance problem on a tree can be solved in linear time.

4. The Problem on Cycles

We index the cycle C = (V(C),E(C)), with |V(C)| = n, in counter-clockwise direction to get V(C) =
{v1, v2, . . . , vn} and ei = (vi, vi+1) for i = 1, . . . ,n − 1 and en = (vn, v1). From here on, if an index k > n, we
take the corresponding modulo n. For example, the vertex vn+1 coincides v1 and so on. To simplify the

denotation of vertex weight, we set wi := w(vi). Let us denote by `(C) :=
n∑

i=1

`(ei) the length of the cycle C.

Also, we orentiate C to get two types of distances, the distance in the counter-clockwise direction dL and
distance in clockwise direction dR. Then, the distance between two vertices vi and v j can be written as

d(vi, v j) := min
{
dL(vi, v j), dR(vi, v j)

}
.

We call an edge ek = (vk, vk+1) a critical edge w.r.t vi if d(vi, vk) = dR(vi, vk) and d(vi, vk+1) = dL(vi, vk+1). A point

mi, lying either on an edge or a vetex of C, is called the midpoint corresponding to vi iff d(vi,mi) =
`(C)

2
.

We further label e = Emid(mi) an edge that contains the midpoint mi or incident to mi in the case mi is a
vertex. Finding all midpoints mi for i = 1, . . . ,n and labeling them cost linear time based on the searching
for corresponding critical edges.

To ease the readers, we can write the objective function as in the following∑
u∈V(C)

∑
v∈V(C),v,u w(v)d̃(u, v) =

∑
u∈V(C) f̃ (u),

where f̃ (u) :=
∑

v∈V(C) w(v)d̃(u, v). We next consider the reduction of an edge e contribute to the reduction of

each f̃ (u) for u ∈ V(C).
Let us take into account an edge ek = (vk, vk+1) with the new length ˜̀(ek) = `(ek)− ε for a small amount ε.

For a vertex vi, we consider the contribution of this vertex, say δek (vi), to the objective function, i.e.,

f̃ (vi) := f (vi) − δek (vi)ε.

Assuming that Emid(mi) = el = (vl, vl+1), we analyze the following cases.
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1. If el ≡ ek or mi = vk or mi = vk+1, we can compute the contribution of vi to the objective according to the
position of mi. If mi , vk and mi , vk+1, then the reduction of ek does not effect the vertex vi. We can
set the contribution of vi to the objective function δek (vi) := 0. If mi = vk, we obtain d̃(v j, vi) = d(v j, vi)
for j , k and d̃(vk, vi) = d(vk, vi) − wkε. Thus, we can set δek (vi) := wk. Similarly, if mi = vk+1, then
δek (vi) := wk+1.

2. If ` ≥ k + 1 and mi , vk+1, then we know that d̃(v j, vi) = d(v j, vi) for j ≤ k and d̃(v j, vi) = d(v j, vi) − w jε

for j ≥ l + 1. Therefore, δek (vi) :=
∑̀
j=k+1

w j.

3. If l + 1 ≤ k and mi , vk, we can set δek (vi) :=
k∑

j=l+1

w j.

Therefore, reducing the length of ek by ε yields Λ :=
(∑n

i=1 δ
ek (vi)

)
ε, where Λ is the improvement of

objective function (see Section 3). We call ∆(ek) :=
∑n

i=1 δ
ek (vi) the efficiency of reducing the edge ek.

Example 4.1. Considering a cycle C = (V(C),E(C)) in Figure 2, we aim to compute the efficiency of reducing the
edge e3 = (v3, v4).

v1

3 1

v56

3

v4
5

8v3

1

6

v2 2

6

Figure 2: An instance of a cycle C

By elementary computations, one attains

`(C) = 24,m1 ≡ v3,m2 ∈ (v3, v4),m3 ≡ v1,m4 ∈ (v2, v3),m5 ∈ (v2, v3).

The contribution of each vertex w.r.t the reduction of e3 is calculated in Table 2. We finally obtain the efficiency of

i 1 2 3 4 5

δe3 (vi) 1 0 14 1 1

Table 2: The contribution of vertices w.r.t the reduction of e3

reducing e3 as ∆(e3) :=
∑5

i=1 δ
e3 (vi) = 17.

We now consider the smallest reduction of an edge ek such that the corresponding efficiency of reducing
ek changes. Observe that the efficiency δ(ek) changes if one of midpoints of vertices in V changes its position
in the previous case analysis. Let us focus on vertex vi in the following cases.

1. If mi ≡ vk, we know that δek (vi) = wk. The contribution of vi w.r.t ek changes if mi ≡ vk−1, i.e.,
d̃L(vi, vk−1) = d̃R(vi, vk−1). As d̃L(vi, vk−1) = dL(vi, vk−1) and d̃R(vi, vk−1) = dR(vi, vk−1) − ε, we obtain
ε = dR(vi, vk−1) − dL(vi, vk−1) = `(C) − 2d(vi, vk−1). Then, we can recompute δek (vi) = wk−1.

2. If mi ≡ vk+1, by the same argument in the previous case, if we reduce ek by ε = dR(vi, vk−1)−dL(vi, vk−1) =
`(C) − 2d(vi, vk+2) the contribution of vi w.r.t ek is δek (vi) = wk+2.
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3. If l ≥ k + 1, we know that δek (vi) =
∑l

j=k+1 w j. The contribution of vi w.r.t ek changes if mi ≡ vl+1,
i.e., d̃L(vi, vl+1) = d̃R(vi, vl+1). As d̃L(vi, vl+1) = dL(vi, vl+1) − ε and d̃R(vi, vl+1) = dR(vi, vl+1), we obtain
ε = dL(vi, vl+1) − dR(vi, vl+1) = `(C) − 2d(vi, vl+1). Then, δek (vi) =

∑l+1
j=k+1 w j.

4. If l + 1 ≤ k, by the same argument in the previous case, if we reduce ek by ε = `(C) − 2d(vi, vl) the

contribution of vi w.r.t ek is δek (vi) :=
k∑

j=l

w j.

For a vertex vi with mi ∈ (vl, vl+1), we set

Γek (vi) :=


`(C) − 2d(vi, vk−1) if mi ≡ vk,

`(C) − 2d(vi, vk+2) if mi ≡ vk+1,

`(C) − 2d(vi, vl+1) if l ≥ k + 1,
`(C) − 2d(vi, vl) if l + 1 ≤ k.

Lemma 4.2. One of the contributions δek (vi) for i = 1, . . . ,n changes if we reduce the length of ek at least

Γ(ek) := minn
i=1{Γ

ek (vi)}.

As ∆(ek) =
∑n

i=1 δ
ek (vi), then ∆(ek) also changes if one of the contributions δek (vi) for i = 1, . . . ,n changes.

We now develop a combinatorial algorithm for the reverse total weighted distance problem on a cycle
based on a greedy approach. The idea is to compute the efficiency for reducing each edge of the cycle and
reduce the edge corresponding to the largest ratio of efficiency and cost. If the efficiency of the current edge
changes by Lemma 4.2, we update the new efficiencies. Then, we continue with the edge corresponding to
the largest efficiency. The algorithm stop if the budget is fully used. For detail, one observes Algorithm 2.

Algorithm 2 Solves the reverse total weighted distance problem on a cycle
Input: An instance of the problem on a cycle C.
SetA := {e ∈ E : x̄(e) > 0}.
Initialize the reduction of each edge x(e) := 0 for e ∈ E and the reduction of the total weighted distance
Λ := 0.
while B > 0 do

Compute ∆(e) for all e ∈ E.
Take e∗ := ar1maxe∈A{∆(e)/c(e) : e ∈ A}.
Reduce e∗ by tempt(e∗) := minn

i=1{B/c(e),Γe∗ (vi), x̄(e∗)}.
Set x(e∗) := x(e∗) + tempt(e∗) and set x̄(e∗) := x̄(e∗) − tempt(e∗).
if x̄(e∗) = 0 then

SetA := A\{e∗}.
end if
Set Val := Val + ∆(e∗)tempt(e∗) and B := B − c(e)tempt(e∗).

end while
Output: Optimal solution {x(e)}e∈E and maximum reduction Λ.

We illustrate Algorithm 2 by the following example.

Example 4.3. (Example 4.1 cont’d) We consider a cycle C in Example 4.1. Furthermore, the upper bound of edge
length modifications are in Table 3. The budget is B := 7 and the cost coefficients are uniform, i.e., c(e) = 1 for
e ∈ E(C). After settingA = {e1, e2, e3, e4}, x(e) := 0 for all e ∈ E(C) and Λ := 0, we solve the problem in the following
iterations.

Iter. 1. We compute efficiency for reducing each edge inA; see Table 4. After computing all ∆(ei) for i = 1, . . . ,n,
we get e4 := ar1maxe∈A{∆(e)/c(e) : e ∈ A} and tempt(e4) := 1. We also updateA := {e1, e2, e3}, Λ := 30, and B = 6.
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i 1 2 3 4 5

x̄(ei) 3 4 6 1 0

Table 3: Modifying bounds of edges

i 1 2 3 4

∆(ei) 24 7 17 30

Table 4: Efficiency for reducing each edge inA

Iter. 2. We recompute efficiency for reducing each edge in A as ∆(e1) = 20, ∆(e2) = 3, ∆(e3) = 17. We get
e1 := ar1maxe∈A{∆(e)/c(e) : e ∈ A} and tempt(e1) := 1. We also update x̄(e1) = 2, A := {e1, e2, e3}, Λ := 50, and
B = 5.

Iter. 3. We recompute efficiency for reducing each edge in A as ∆(e1) = 24, ∆(e2) = 7, ∆(e3) = 17. We get
e1 := ar1maxe∈A{∆(e)/c(e) : e ∈ A} and tempt(e1) := 2. We also update x̄(e1) := 0, A := {e2, e3}, Λ := 98, and
B := 3.

Iter. 4. We recompute efficiency for reducing each edge in A as ∆(e2) = 4, ∆(e3) = 14. We get e3 :=
ar1maxe∈A{∆(e)/c(e) : e ∈ A} and tempt(e1) := 3. We also update x̄(e1) = 1,A := {e2, e3}, Λ := 140, and B = 0. We
stop the algorithm.

The optimal solution is x(e1) := 3, x(e2) := 3, x(e3) := 0, x(e4) := 1, x(e5) := 0 and the optimal objective is
Λ := 140.

The exact complexity of the iterative as in Algorithm 2 is still unknown to us. However, for the cycle
with uniform edge lengths, i.e., all lentghs in the cycle are equal, we can derive a nice property as follows.

Lemma 4.4. In each iteration of Algorithm 2, we obtain x̄(e∗) < Γe∗ (vi) for all i = 1, . . . ,n.

Proof. Without loss of generality, we can assume that the midpoint mi corresponding to vi is in the edge
(vp−1, vp) and we reduce an edge ek with k ≤ p − 1. According to the four cases, we know that the midpoint
corresponding to vi coincides with a vertex vp if Γe∗ (vi) = `(C) − 2d(vi, vp) for p , i. Moreover, we can write

`(C) − 2d(vi, vp) := `(C) − 2(d(vi,mi) − d(mi, vp)) = 2d(mi, vp).

As the cycle has equal edge lengths, the midpoint mi is either vp−1 or the midpoint of the edge (mp−1,mp).
We then get 2d(mi, vp) ≥ `(ek) > x̄(ek). Therefore, the inequality x̄(e∗) < Γe∗ (vi) holds for i = 1, . . . ,n.

Let us now consider an instance of the reverse total weighted distance problem on cycles with uniform
edge lengths. In each iteration, we recompute the efficiency of each edge of the tree in O(n2) time.
Furthermore, by Lemma 4.4, an edge e can be reduced at most once in Algorithm 2. Therefore, the
total complexity of the algorithm in this special case is O(n3) time.

Theorem 4.5. The reverse total weighted distance problem on a cycle with uniform edge lengths can be solved in
O(n3) time, where n is the number of vertices.

5. Conclusion

We consider the problem on reducing the edge lengths of a network in order to reduce its total weighted
distance as much as possible within a given budget. It is shown that the problem can be applied to enhance
the overall interaction between vertices of a network. For the problem on general graphs, we obtain the
NP-hardness result. Furthermore, we develop efficient combinatorial algorithm that solves the problem
on trees in linear time. For the problem on cycles, we devise a greedy type algorithm. Furthermore, the
algorithm runs in O(n3) time if the underlying cycle has equal edge lengths, where n is the number of
vertices.
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