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Abstract. In this paper, the concept of matrix splitting is introduced to solve a large sparse ill-posed linear
system via Tikhonov’s regularization. In the regularization process, we convert the ill-posed system to a
well-posed system. The convergence of such a well-posed system is discussed by using different types
of matrix splittings. Comparison analysis of both systems are studied by operating certain types of weak
splittings. Further, we have extended the double splitting of [Song J. and Song Y, Calcolo 48(3), 245–260,
2011] to double weak splitting of type II for nonsingular symmetric matrices. In addition to that, some
more comparison results are presented with the help of such weak double splittings of type I and type II.

1. Introduction

In the view of Hadamard [19], the discretization of Fredholm integral equations of the first kind [16] is
formed an ill-posed linear system

Ax = b, (1)

where A ∈ Rm×n, x ∈ Rn and b ∈ Rm. In practice, this type of ill-posed system appears in several branches
of science and engineering such as noisy image restoration [1], computer tomography [15] and inverse
problems within electromagnetic [38]. Ill-posed problems were extensively studied in the context of an
inverse problem [8, 12, 17] and image restorations [6]. In image restoration, the main objective is to establish
a blurred free image that requires the approximate solution of the system (1). For more details one can
refer [1, 6]. To find the approximate solution of the ill-posed system (1), several iterative methods such as
Accelerated Landweber iterative method [20], GMRES and singular preconditioner method [11], conjugate
gradient method are studied in the recent past. However, the utilization of the splittings method along
with regularization is quite a new idea.

In order to solve the system Ax = b, i.e, find the least square solution A†b, we first normalize as
ATAx = ATb. This does not make the problem simple as most of the cases the matrix ATA is singular and
ill-conditioned which is affected highly by round-off errors [14]. Thus we need to make the system Ax = b,
well-posed by introducing a regularization parameter λ(> 0), and the corresponding modified well-posed
system based on Tikhonov’s regularization [47] is given by

(ATA + λI)x = ATb. (2)
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If we consider Bλ = ATA + λI, then the system (2) reduces to the following system

Bλx = ATb. (3)

The above procedure is known as regularization and the parameter λ decides what extent the original
ill-posed system (1) is changed. Further, the value of the regularization parameter λ determines how well
the solution xλ of (3) approximates the exact solution A†b. One can see [12] for discussions on this parameter
choice method. A large number of heuristic parameter choice methods have been proposed in the literature
due to the importance of being able to determine a suitable value of the regularization parameter when the
discrepancy principle cannot be used. For more details one can refer [7, 18, 24, 25, 39].

There are several ways to regularize such type of ill-posed system. Among them, the most classical
regularization is Tikhonov’s regularization introduced by Tikhonov in 1963 [47]. Some iterative methods for
the system (2) in framework of operator theory can be found in [21] and the references therein. The main
motivation to analyze and compare the numerical solution of both system (1) and (3) comes from Barata
and Hussein [3], where the authors have shown that B−1

λ ATb→ A†b as λ→ 0.
On the other hand, the matrix splitting (A decomposition A = U−V is called a splitting of the matrix A)

methods are more significant and numerically stable in dealing with rectangular matrices. In this direction,
Berman and Plemmons [4] first introduced the proper splitting ( A splitting A = U − V is called proper if
the null space of A is equal to the null space of U and the range space of A is equal to range space U). If
A = U−V is a proper splitting of A ∈ Rm×n, then the associated iterative scheme for solving Ax = b, is given
by

xk+1 = U†Vxk + U†b. (4)

It is well known that the iterative scheme defined in (4) converges to A†b, for any initial vector x0 if and
only if the spectral radius of U†V is less than 1. Further, if the system Ax = b is consistent, then the above
iterative process converges to a solution of (1). In [4], it was proved that if A = U − V is a proper splitting
such that U† ≥ 0 (entry-wise) and U†V ≥ 0, then A† ≥ 0 if and only if the spectral radius of U†V is less than
1.

In case of nonsingular coefficient matrix Bλ, if Bλ = Mλ − Nλ is a splitting of Bλ ∈ Rn×n such that Mλ is
invertible, then the associated iterative scheme is given by

xk+1 = M−1
λ Nλxk + M−1

λ ATb. (5)

It is clear that this iterative method converges to B−1
λ ATb (= A†b as λ→ 0) for any initial vector x0 if and only

if the spectral radius of M−1
λ Nλ is less than 1. We call a splitting convergent if the associated iterative scheme

convergent. Several types of splittings and numerous comparative studies can be found in the literature
[26, 29, 30, 32, 45, 51] and the reference therein.

The main objective of this article is to introduce a new regularized nonsingular approach for the
rectangular or singular system and study the convergence of the iterative method (5) associated with
different types of splittings of Bλ. In case of the regularized iterative scheme, we can relax some strong
conditions such as non-negativeness of A, A† to assure the convergence. Besides that, we have introduced
a new matrix splitting, called double weak splitting of type II. Further, a few comparative studies between
the original system (1) and regularized system (3) are provided. The theoretical results provided show that
the regularized iterative scheme convergence faster (in terms of spectral radius).

1.1. Outline
The paper is organized as follows: some useful notations and definitions are discussed in Section 2. In

addition to these we review some basic theories of iterative methods, which will be used throughout this
paper. The main results of this article are elaborated in Section 3. Numerous comparison results related
to the systems (1) and (3) are established. Also, a double weak splitting of type II is newly introduced as
well as few comparison theorems have been proved for the double weak splitting of type II. In Section 4,
we have numerically validated the proposed regularized iterative scheme in comparison to an ill-posed
system. The manuscript is concluded along with a few future research perspectives in Section 5.
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2. Preliminaries

First, we elaborate on some notations and definitions which will be useful throughout the article. The
set of all real rectangular matrices of order m × n is denoted by Rm×n. For matrices A,B ∈ Rm×n, a matrix
B is said to be nonnegative (B ≥ 0) if all entries of B are nonnegative and A ≥ B implies A − B ≥ 0. If L and
M are two complementary subspaces of Rn, then PL,M is the projection on L along M. So, PL,MB = B if and
only if R(B) ⊆ L and BPL,M = B if and only if N(B) ⊇M. Henceforth, R(A) and N(A) denotes the range space
and null space of the matrix A. We denote the transpose of a matrix A by AT. The spectral radius of a matrix
B ∈ Rn×n is denoted as ρ(B) and defined by ρ(B) = max

1≤i≤n
|σi|, where σi’s are the eigenvalues of B. It is well

known that for any square matrix B, ρ(BT) = ρ(B) and ρ(AB) = ρ(BA) for well defined product of matrices
A and B. We recall the Moore-Penrose inverse of a matrix B. The unique matrix X ∈ Rn×m, satisfying
BXB = B, XBX = X, (BX)T = BX and (XB)T = XB, is called the Moore-Penrose inverse of B and denoted by
B†. A few properties of B† which are frequently being used: R(BT) = R(B†); N(BT) = N(B†); B†B = PR(BT)
and BB† = PR(B). Further, a nonsingular matrix B is called monotone if B−1

≥ 0. Similarly, we called a matrix
B ∈ Rm×n is semi-monotone if B† ≥ 0.

Next, we discuss some necessary results based on non-negativeness regularization and matrix splittings.
The very first result is for nonnegative matrices.

Theorem 2.1 (Theorem 2.1.11, [5]). Let B ∈ Rn×n, B ≥ 0, x ≥ 0 (x , 0) and α be a positive scalar. Then the
followings hold.

(i) If αx ≤ Bx, then α ≤ ρ(B).
(ii) For x > 0, if Bx ≤ αx, then ρ(B) ≤ α.

We now collect a few parts of the classical Perron-Frobenius theorem. Perron proved it for positive matrices
and Frobenius gave the extension to irreducible matrices.

Theorem 2.2 (Theorem 2.20, [48]). Let A ∈ Rn×n be a nonnegative matrix. Then

(i) A has a nonnegative real eigenvalue equal to its spectral radius.
(ii) there exists a nonnegative eigenvector for its spectral radius.

Theorem 2.3 (Theorem 2.7, [48]). Let A ∈ Rn×n be a nonnegative matrix. If A is irreducible, then

(i) A has a positive real eigenvalue equal to its spectral radius.
(ii) there exists a positive eigenvector for its spectral radius.

In connection to the spectral radius, the following result is collected from [48].

Theorem 2.4 (Theorem 2.21, [48]). If A,B ∈ Rn×n and A ≥ B ≥ 0, then ρ(A) ≥ ρ(B).

In view of proper splitting, we state the following essential results.

Theorem 2.5 (Theorem 1, [9]). Let A = U − V be a proper splitting of A ∈ Rm×n. Then

(i) A = (I − VU†)U = U(I −U†V),
(ii) I − VU† is nonsingular,

(iii) A† = U†(I − VU†)−1
= (I −U†V)−1U†.

Theorem 2.6 (Theorem 2.2, [34]). Let A = U − V be a proper splitting of A ∈ Rm×n. Then

(i) UU† = AA† and U†U = A†A,
(ii) U† = (I + A†V)−1A† = A†(I + VA†)−1,

(iii) U†VA† = A†VU†.

Next, we recall the definition of weak proper splitting of the first type and the second type.
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Definition 2.7 (Definition 2, [9]). A proper splitting A = U − V of A ∈ Rm×n is called a weak proper splitting of
the first type (respectively, the second type), if U†V ≥ 0 (respectively, VU† ≥ 0).

In case of nonsingular matrices, the splittings defined in Definition 2.7 are called respectively as weak
splitting of the first type and weak splitting of the second type (which were respectively introduced by
Marek & Szyld [29]), and by Woźnicki [52]) and stated in the next definition.

Definition 2.8. A splitting A = U − V of A ∈ Rn×n is called a weak splitting of the first type, if U−1V ≥ 0 and a
weak splitting of the second type, if VU−1

≥ 0.

The next result is a combination of Theorem 2 and Remark 2 of [9].

Theorem 2.9. Let A = U − V be a weak proper splitting of the first type (or second type) of A ∈ Rm×n. Then
A†V (or VA†) ≥ 0 if and only if ρ(U†V) =

ρ(A†V)
1+ρ(A†V) < 1 (respectively, ρ(VU†) =

ρ(VA†)
1+ρ(VA†) < 1).

In a special case of the above result (Theorem 2.9), which was proved in [10] is stated in the next theorem.

Theorem 2.10 (Theorem 3 and Remark 4 of [10]). Let A ∈ Rn×n be nonsingular, and let A = U − V be a weak
splitting of the first type (respectively, the second type). Then A−1V ≥ 0 (respectively, VA−1

≥ 0 ) if and only if
ρ(U−1V) =

ρ(A−1V)
1+ρ(A−1V) < 1 (respectively, ρ(VU−1) =

ρ(VA−1)
1+ρ(VA−1) < 1).

Further, we recall one comparison theorem of [46] for two weak splittings of the second type.

Theorem 2.11 (Theorem 2.11, [46]). Let A = M1 −N1 = M2 −N2 be two convergent weak splittings of the second
type of A ∈ Rn×n. If A−1

≥ 0 and M1 ≤M2, then ρ(N1M−1
1 ) ≤ ρ(N2M−1

2 ).

The notion of double splitting was first introduced by Woźnicki [50] in 1993. Later, several character-
izations of double splitting were investigated by many researchers (one can refer [31], [41], and [42]). In
addition to these, Song and Song [44] introduced the double nonnegative splitting to discuss the iterative
solution of the nonsingular system Ax = b. Further, the comparison results of [44] have been extended by
the authors of [26], [27], and [30]. For convenience, we have renamed the double nonnegative splitting as
the double weak splitting of type I. Hence the Definition 1.3 of [44] is restated as follows.

Definition 2.12. The splitting A = P − R + S is called double weak splitting of type I of a nonsingular matrix
A ∈ Rn×n if P−1R ≥ 0 and −P−1S ≥ 0.

If A = P−R + S be a double weak splitting of type I of a nonsingular matrix A ∈ Rn×n, then the iterative
solution to the system Ax = b, can be easily obtained from the following iterative scheme

xk+1 = P−1Rxk
− P−1Sxk−1 + P−1b.

Further, its block matrix representation is given by(
xk+1

xk

)
=

(
P−1R −P−1S

I 0

) (
xk

xk−1

)
+

(
P−1b

0

)
= Ŵ

(
xk

xk−1

)
+

(
P−1b

0

)
, (6)

where I is an identity matrix of order n and the iteration matrix Ŵ is,

Ŵ =

(
P−1R −P−1S

I 0

)
.

The convergence of the above iterative scheme which was proved by Song and Song [44], is given in the
following theorem.

Theorem 2.13 ([44]). Let A = P − R + S be a double weak splitting of type I of a nonsingular matrix A ∈ Rn×n.
Then the iterative scheme defined in equation (6) converges to A−1b if and only if ρ(Ŵ) < 1.
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Further, an equivalent characterization for a double weak splitting of type I, is stated below.

Theorem 2.14 (Theorem 2.4, [44]). Let A = P−R + S be a double weak splitting of type I of a nonsingular matrix
A ∈ Rn×n. Then the following conditions are equivalent:

(i) ρ(Ŵ) < 1.
(ii) ρ(P−1(R − S)) < 1.

(iii) A−1P ≥ 0.
(iv) A−1P ≥ I.

Followed by the remarkable work of Neumann [37], Jena et al. [22] introduced double proper splitting as
follows.

A decomposition A = P−R+S of A ∈ Rm×n is called double proper splitting if R(A) = R(P) and N(A) = N(P).
Applying the double proper splitting A = P − R + S to the system (1), we get the following iterative

scheme.

xk+1 = P†Rxk
− P†Sxk−1 + P†b, k > 0.

Further, its block matrix form is given by(
xk+1

xk

)
=

(
P†R −P†S

I 0

) (
xk

xk−1

)
+

(
P†b
0

)
. (7)

The authors of [22] have proved that the iterative scheme (7) converges to the unique least square solution
A†b of (1) for any initial vectors x0 and x1 if the spectral radius of the iteration matrix

W =

(
P†R −P†S

I 0

)
(8)

is less than one, i.e., ρ(W) < 1. More on the convergence of the scheme (7) concerning different types of
splittings and its comparison analysis can be found in [22],[33], and [49]. In addition to these, Mishra [33]
introduced the double proper nonnegative splitting which we renamed as the double proper weak splitting
of type I and defined as follows.

Definition 2.15. A decomposition A = P − R + S is called a double proper weak splitting of type I if R(A) = R(P),
N(A) = N(P), P†R ≥ 0 and P†S ≤ 0.

The convergence of double proper weak splitting have proved by Mishra [33] stated below.

Theorem 2.16 (Theorem 4.5, [33]). Let A†P ≥ 0. If A = P − R + S is a double proper weak splitting of type I of
A ∈ Rm×n, then ρ(W) < 1.

At the end of this section, we collect few results based on the existence and the convergence of regularized
system.

Theorem 2.17 (Lemma 4.2, [3]). For all A ∈ Rm×n,

lim
λ→0

(ATA + λI)−1AT = lim
λ→0

B−1
λ AT exists.

Theorem 2.18 (Theorem 4.3, [3]). For all A ∈ Rm×n,

lim
λ→0

(ATA + λI)−1AT = A† = lim
λ→0

B−1
λ AT.
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3. Main Results

This section has three parts. In the first part of this section, we discuss some convergence and comparison
results related to the weak splitting of the first type and the second type. The concept of double weak
splitting of type II is introduced in the second part. In addition, several results based on double weak
splitting of type II has been discussed. In the last part, we study double proper weak splitting of type I and
its comparison with respect to the double weak splitting of type II.

3.1. Convergence and comparison using weak splittings

We first study the convergence of regularized iterative scheme (5) for the well-posed system (3). In view
of Theorem 2.18 and Theorem 2.10, it is clear that the iterative scheme (5) converges to A†b and summarized
in the next result.

Theorem 3.1. Let A ∈ Rm×n. For λ > 0, if Bλ = Mλ −Nλ is a weak splitting of the first type (respectively, second
type) of Bλ ∈ Rn×n with limλ→0 B−1

λ Nλ ≥ 0 (respectively, limλ→0 NλB−1
λ ≥ 0), then the iterative scheme (5) converges

to B−1
λ ATb = A†b as λ→ 0.

Due to the fact that both iterative methods (4) and (5) converge to the same least square solution A†b, it is
better to study and analyze the spectral radius of the respective iteration matrix. Motivated by Theorem
3.11 of [2], we have an affirmative answer to these spectral radii and stated below.

Theorem 3.2. Let A = M−N be a weak proper splitting of the first type of A ∈ Rm×n. Forλ > 0, let Bλ = Mλ−Nλ be
a weak splitting of the first type of Bλ ∈ Rn×n. If A†N ≥ limλ→0 B−1

λ Nλ ≥ 0, then limλ→0 ρ(M−1
λ Nλ) ≤ ρ(M†N) < 1.

Proof. Let A†N ≥ 0 and limλ→0(B−1
λ Nλ) ≥ 0. Then by Theorem 2.9 and 2.10 we obtain ρ(M†N) < 1

and limλ→0 ρ(M−1
λ Nλ) < 1, respectively. By Theorem 2.4, the inequality ρ(A†N) ≥ limλ→0 ρ(B−1

λ Nλ) fol-
lows from the assumption A†N ≥ limλ→0(B−1

λ Nλ). Since σ
1+σ is a strictly increasing function in σ(≥ 0), so

we have ρ(A†N)
1+ρ(A†N) ≥ limλ→0

ρ(B−1
λ Nλ)

1+ρ(B−1
λ Nλ) . In view of Theorem 2.9 and Theorem 2.10, one can conclude that

limλ→0 ρ(M−1
λ Nλ) ≤ ρ(M†N) < 1.

Note that, in the above theorem, we do not assume semi-monotone condition on A as considered in [2]
while comparing two nonnegative splittings. Similarly, we can show the next theorem for a weak splitting
of the second type.

Theorem 3.3. Let A = M − N be a weak proper splitting of the second type of a singular matrix A ∈ Rn×n. For
λ > 0, let Bλ = Mλ − Nλ be a weak splitting of the second type of Bλ ∈ Rn×n. If NA† ≥ limλ→0 NλB−1

λ ≥ 0, then
limλ→0 ρ(M−1

λ Nλ) ≤ ρ(M†N) < 1.

Further, we discuss a few comparison results by considering weak splittings of alternate types.

Theorem 3.4. Let A = M − N be a weak proper splitting of the second type of a singular semi-monotone matrix
A ∈ Rn×n with NA† ≥ 0. For λ > 0, let Bλ = Mλ −Nλ be a weak splitting of the first type of the matrix Bλ ∈ Rn×n

with limλ→0 B−1
λ Nλ ≥ 0. If limλ→0 M−1

λ AT
≥M†, then limλ→0 ρ(M−1

λ Nλ) ≤ ρ(M†N) < 1.

Proof. Using Theorem 2.9 and 2.10, we get ρ(M†N) < 1 and limλ→0 ρ(M−1
λ Nλ) < 1, respectively. By Theorem

2.5, the condition limλ→0(M−1
λ AT) ≥ M† yields the following inequality limλ→0(I −M−1

λ Nλ)B−1
λ AT

≥ A†(I −
NM†). Applying A† = limλ→0 B−1

λ AT (from Theorem 2.18), we obtain

lim
λ→0

(B−1
λ AT

−M−1
λ NλB−1

λ AT) ≥ lim
λ→0

B−1
λ AT(I −NM†). (9)
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Since M−1
λ Nλ ≥ 0, by Theorem 2.2 there exists a nonnegative eigenvector xT such that xTM−1

λ Nλ =

ρ(M−1
λ Nλ)xT. Taking limit λ→ 0 both sides, further it leads

lim
λ→0

xTM−1
λ Nλ = lim

λ→0
ρ(M−1

λ Nλ)xT. (10)

Pre-multiplying equation (9) by xT, we get

lim
λ→0

xTM−1
λ NλB−1

λ AT
≤ lim
λ→0

xTB−1
λ ATNM†. (11)

Equation (10) and (11) yields limλ→0 ρ(M−1
λ Nλ)zT

λ ≤ zT
λNM†, where zT

λ = limλ→0 xTB−1
λ AT. Taking transpose,

we obtain

lim
λ→0

ρ(M−1
λ Nλ)zλ ≤ (NM†)Tzλ. (12)

Now zT
λ = xT limλ→0 B−1

λ AT = xTA† ≥ 0. If zT
λ = 0, then limλ→0 xTB−1

λ AT = 0. Further, 0 = limλ→0 A(B−1
λ )Tx =

limλ→0 ATA(B−1
λ )Tx = limλ→0(ATA + λI)(B−1

λ )Tx = limλ→0(ATA + λI)T(B−1
λ )Tx = limλ→0 BT

λ(B−1
λ )Tx = x, which

is a contradiction. Hence zT
λ > 0. Applying Theorem 2.1 to equation (12), we conclude that

limλ→0 ρ(M−1
λ Nλ) ≤ ρ(NM†)T = ρ(NM†) = ρ(M†N) < 1.

The semi-monotone condition given in the Theorem 3.4 can be relaxed as discussed in the next result.

Theorem 3.5. Let A = M − N be a weak proper splitting of the second type with NA† ≥ 0. For λ > 0, suppose
Bλ = Mλ −Nλ is a weak splitting of the first type of the matrix Bλ with limλ→0 B−1

λ Nλ ≥ 0. If limλ→0 M−1
λ NλA† ≤

A†NM†, then limλ→0 ρ(M−1
λ Nλ) ≤ ρ(M†N) < 1.

The proof will go a similar way as in Theorem 3.4.
Similarly, we can show the following result for the same type of weak splittings.

Lemma 3.6. Let A = M−N be a weak proper splitting of the first type of a singular matrix A ∈ Rn×n with A†N ≥ 0.
For λ > 0, let Bλ = Mλ − Nλ be a weak splitting of the first type of the matrix Bλ with limλ→0 B−1

λ Nλ ≥ 0. If
limλ→0 M−1

λ NλA† ≤ A†M†N, then limλ→0 ρ(M−1
λ Nλ) ≤ ρ(M†N) < 1.

Next, we discuss another comparison theorem for different pair of weak splittings.

Theorem 3.7. Let A = M − N be a weak proper splitting of the first type of A ∈ Rm×n with A†N ≥ 0. For λ > 0,
let Bλ = Mλ − Nλ be a weak splitting of the second type of the matrix Bλ ∈ Rn×n with limλ→0 NλB−1

λ ≥ 0. If
limλ→0 NλM−1

λ ≤M†N, then limλ→0 ρ(M−1
λ Nλ) ≤ ρ(M†N) < 1.

Proof. By Theorem 2.9 and Theorem 2.10, ρ(M†N) < 1 and limλ→0 ρ(M−1
λ Nλ) < 1, respectively. The splitting

of the matrix Bλ = Mλ − Nλ gives Mλ = (I + NλB−1
λ )Bλ. Hence M−1

λ = B−1
λ (I + NλB−1

λ )−1. Applying
Theorem 2.6 (ii) to the proper splitting A = M − N, we get M† = (I + A†N)−1A†. Therefore, the condition
limλ→0 NλM−1

λ ≤M†N implies

lim
λ→0

(NλB−1
λ (I + NλB−1

λ )−1) ≤ (I + A†N)−1A†N. (13)

Since I + A†N ≥ 0 and limλ→0(I + NλB−1
λ ) ≥ 0, so pre-multiplying I + A†N and post-multiplying limλ→0(I +

NλB−1
λ ) to the equation (13), we obtain

lim
λ→0

(I + A†N)NλB−1
λ ≤ lim

λ→0
A†N(I + NλB−1

λ ). (14)

Equation (14) leads to limλ→0 NλB−1
λ ≤ limλ→0 A†N = A†N. By Theorem 2.4, we haveρ(A†N) ≥ limλ→0 ρ(NλB−1

λ ) ≥

0. As γ
γ+1 is a strictly increasing function for every γ ≥ 0, hence ρ(A†N)

1+ρ(A†N) ≥ limλ→0
ρ(NλB−1

λ )
1+ρ(NλB−1

λ ) . Again, by The-

orem 2.9 and Theorem 2.10, we get limλ→0 ρ(M−1
λ Nλ) ≤ ρ(M†N) < 1.
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3.2. Double weak splitting of type II
Motivated by the work of the authors [26], [27], [30] and [44], we have introduced the double weak

splitting of type II for symmetric matrices. In connection to double weak splitting of type II, we have
extended a few results of [44]. Further, some comparison theorems for double weak splitting of type I and
type II have been established in this subsection. First, we define the double weak splitting of type II as
follows.

Definition 3.8. The splitting A = P − R + S is called double weak splitting of type II of a symmetric nonsingular
matrix A ∈ Rn×n if RP−1

≥ 0 and −SP−1
≥ 0.

Suppose A = P − R + S be a double weak splitting of type II of a symmetric nonsingular matrix A ∈ Rn×n.
The iterative scheme of (3) corresponding to such type of splitting is

xk+1 = (RP−1)Txk
− (SP−1)Txk−1 + (P−1)Tb,

and its block matrix representation is given by(
xk+1

xk

)
=

(
(RP−1)T

−(SP−1)T

I 0

) (
xk

xk−1

)
+

(
(P−1)Tb

0

)
= W̃

(
xk

xk−1

)
+

(
(P−1)Tb

0

)
, (15)

where I is an identity matrix of order n and the iteration matrix W̃ is,

W̃ =

(
(RP−1)T

−(SP−1)T

I 0

)
.

Next, we recall the following result from Song and Song [44].

Theorem 3.9 (Theorem 2.2, [44]). Let A = P−R + S be a double weak splitting of type I of the nonsingular matrix
A ∈ Rn×n. Then the double splitting is convergent if and only if ρ(P−1(R − S)) < 1.

In regard to Theorem 3.9, we have the following convergence theorem for double weak splitting of type II.

Theorem 3.10. Let A = P−R + S be a double weak splitting of type II of a symmetric nonsingular matrix A ∈ Rn×n.
Then ρ(W̃) < 1 if and only if ρ((R − S)P−1) = ρ(P−1(R − S)) < 1.

Proof. Let A = P − R + S be a double weak splitting of type II. Then (RP−1)T
≥ 0 and −(SP−1)T

≥ 0. Hence
W̃ ≥ 0. By proceeding similar lines of the proof of Theorem 3.9, we can prove the theorem.

In view of Lemma 2.7 of [46] and Theorem 3.10, we can show the following result.

Theorem 3.11. Let A = P−R+S be a double weak splitting of type II of the symmetric nonsingular matrix A ∈ Rn×n.
Then the following conditions are equivalent:

(i) ρ(W̃) < 1.
(ii) PA−1

≥ 0 (A−1PT
≥ 0).

(iii) PA−1
≥ I (A−1PT

≥ I).
(iv) (R − S)A−1

≥ 0 (A−1(R − S)T
≥ 0).

(v) (R − S)A−1
≥ −I (A−1(R − S)T

≥ −I).
(vi) (I − (R − S)T(P−1)T)−1

≥ 0.
(vii) (I − (R − S)T(P−1)T)−1

≥ I.
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If we consider A = P1 − R1 + S1 = P2 − R2 + S2 be two double weak splittings of a symmetric nonsingular
matrix A ∈ Rn×n, then the respective iteration block matrices are

W̃1 =

(
(R1P−1

1 )T
−(S1P−1

1 )T

I 0

)
and W̃2 =

(
(R2P−1

2 )T
−(S2P−1

2 )T

I 0

)
.

To analyze the spectral radius of both iteration matrices W̃1 and W̃2, we follow analogous to Song and

Song [44]. We first define A =

(
A −I
0 I

)
. Then it is easy to verify A−1 =

(
A−1 A−1

0 I

)
. Further, consider

A = Mi −Ni be two splitting of A ∈ R2n×2n. If we take

Mi =

(
Pi 0
−Si I

)
and Ni =

(
Ri − Si I
−Si 0

)
, (16)

then we can show that

W̃i = (NiM
−1
i )T, for i = 1, 2. (17)

We recall the comparison theorem of [44] which was proved for the double weak splitting of type I.

Theorem 3.12 (Theorem 3.3,[44]). Let A = P1 − R1 + S1 = P2 − R2 + S2 be two convergent and double weak
splittings of type I of the monotone matrix A ∈ Rn×n. If P1 ≤ P2 and S2 ≤ S1, then ρ(Ŵ1) ≤ ρ(Ŵ2) < 1.

Using similar lines of Theorem 3.12, we can show the following result for double weak splitting of type II.

Theorem 3.13. Let A = P1 − R1 + S1 = P2 − R2 + S2 be two convergent double weak splittings of type II of a
symmetric monotone matrix A ∈ Rn×n. If P1 ≤ P2 and S2 ≤ S1, then ρ(W̃1) ≤ ρ(W̃2) < 1.

Theorem 2.11 of [46] motivated us to study the above comparison theorem without considering the
monotone condition and established the following result.

Theorem 3.14. Let A = P1 −R1 + S1 = P2 −R2 + S2 be two double weak splittings of type II of a symmetric matrix
A ∈ Rn×n. If P2A−1

≥ P1A−1
≥ 0 and S2A−1

≤ S1A−1
≤ 0, then ρ(W̃1) ≤ ρ(W̃2) < 1.

Proof. From the conditions P1A−1
≥ 0, P2A−1

≥ 0 and Theorem 3.11, it is trivial that ρ(W̃1) < 1 and ρ(W̃2) < 1.
Since P2A−1

≥ P1A−1
≥ 0 and S2A−1

≤ S1A−1
≤ 0, so we have(

P2A−1 P2A−1

−S2A−1
−S2A−1 + I

)
≥

(
P1A−1 P1A−1

−S1A−1
−S1A−1 + I

)
≥ 0.

Further, we can write as(
P2 0
−S2 I

) (
A−1 A−1

0 I

)
≥

(
P1 0
−S1 I

) (
A−1 A−1

0 I

)
≥ 0.

Hence by equation (16), M2A−1
≥M1A−1

≥ 0. Therefore, by Theorem 2.11, the splittings A = M1 −N1 =

M2 −N2 yield ρ(N1M−1
1 ) ≤ ρ(N2M−1

2 ) < 1. Thus by equation (17), ρ(W̃1) ≤ ρ(W̃2) < 1.

In support of Theorem 3.14, the following example is worked-out.

Example 3.15. Consider

A =

[
10 −4
−4 6

]
=

[
12 0
0 8

]
−

[
2 2
4 2

]
+

[
0 −2
0 0

]
= P1 − R1 + S1

=

[
16 0
0 10

]
−

[
6 2
0 4

]
+

[
0 −2
−4 0

]
= P2 − R2 + S2

be two convergent double weak splitting of type II of the matrix A. One can verify that



A. K. Nandi, J.K. Sahoo / Filomat 35:4 (2021), 1343–1358 1352

P2A−1 =

[
2.1818 1.4545
0.9091 2.2727

]
>

[
1.6364 1.0909
0.7273 1.8182

]
= P1A−1 > 0,

S2A−1 =

[
−0.1818 −0.4545
−0.5455 −0.3636

]
≤

[
−0.1818 −0.4545

0 0

]
= S1A−1

≤ 0, and

0.6667 = ρ(W̃1) < ρ(W̃2) = 0.7729 < 1.

Another comparison theorem for symmetric nonsingular matrices presented below.

Theorem 3.16. Let A = P1−R1 +S1 = P2−R2 +S2 be two convergent double weak splitting of type II of a symmetric
matrix A ∈ Rn×n. If R1P−1

1 ≥ R2P−1
2 and AP−1

1 ≥ AP−1
2 , then ρ(W̃1) ≤ ρ(W̃2) < 1.

Proof. If ρ(W̃1) = 0, then it is trivial. Assume that 0 < ρ(W̃1) < 1. Since W̃1 ≥ 0, so by Theorem 2.2, there
exists an eigenvector x = (x1, x2)T such that W̃1x = ρ(W̃1)x. Which implies

(R1P−1
1 )Tx1 − (S1P−1

1 )Tx2 = ρ(W̃1)x1 and x1 = ρ(W̃1)x2. (18)

Now

(R2P−1
2 )Tx1 − (S2P−1

2 )Tx2 − ρ(W̃1)x1

= (R2P−1
2 )Tx1 −

1

ρ(W̃1)
(S2P−1

2 )Tx1 − (R1P−1
1 )Tx1 +

1

ρ(W̃1)
(S1P−1

1 )Tx1

≥
1

ρ(W̃1)
[(R2P−1

2 )T
− (R1P−1

1 )T + (S1P−1
1 )T
− (S2P−1

2 )T]x1

=
1

ρ(W̃1)
[(P−1

2 )T(RT
2 − ST

2 ) + (P−1
1 )T(ST

1 − RT
1 )]x1

=
1

ρ(W̃1)
[(P−1

2 )T(PT
2 − A) + (P−1

1 )T(A − PT
1 )]x1

=
1

ρ(W̃1)
[(P−1

1 )TA − (P−1
2 )TA]x1 ≥ 0. (19)

Using equations (18) and (19), we obtain

W̃2x − ρ(W̃1)x =

(
(R2P−1

2 )Tx1 − (S2P−1
2 )Tx2 − ρ(W̃1)x1

x1 − ρ(W̃1)x2

)
≥ 0.

Hence by Theorem 2.1, ρ(W̃1) ≤ ρ(W̃2) < 1.

The converse of the Theorem 3.16 need not true in general as shown in the below example.

Example 3.17. Consider the matrices A, P1, R1, S1, P2, R2, and S2 as given in Example 3.15. Clearly
0.6667 = ρ(W̃1) < ρ(W̃2) = 0.7729 < 1 but

R1P−1
1 − R2P−1

2 =

[
−0.2083 0.0500
0.3333 −0.1500

]
� 0,AP−1

1 − AP−1
2 =

[
0.2083 −0.1000
−0.0833 0.1500

]
� 0

On account of Theorem 3.6 [44] and equations (16) and (17), the following comparison theorem similarly
follows.

Theorem 3.18. Let A = P1 − R1 + S1 = P2 − R2 + S2 be two convergent double weak splittings of type II of the
nonsingular symmetric matrix A ∈ Rn×n. If any one of the following conditions
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(i) P2P−1
1 ≥ I and S1P−1

1 ≥ S2P−1
1 ,

(ii) P1P−1
2 ≤ I and S1P−1

2 ≥ S2P−1
2 ,

holds, then ρ(W̃1) ≤ ρ(W̃2) < 1.

Analogous to the Theorem 3.1 of [31], Corollary 4.10 of [33], and the proof of Theorem 3.16, we obtain
the below result for double weak splittings of type II.

Theorem 3.19. Let A1 = P1 − R1 + S1 and A2 = P2 − R2 + S2 be two convergent double weak splitting of type II of
the nonsingular symmetric matrices A1 ∈ Rn×n and A2 ∈ Rn×n, respectively. If R1P−1

1 ≥ R2P−1
2 and A1P−1

1 ≥ A2P−1
2 ,

then ρ(W̃1) ≤ ρ(W̃2) < 1.

Similarly, the following results can be proved by considering a double weak splitting of type I for the
matrices A1 and A2.

Theorem 3.20. Let A1 = P1 −R1 + S1 be a convergent double weak splitting of type II of the nonsingular symmetric
matrix A1 ∈ Rn×n and A2 = P2−R2 +S2 be a convergent double weak splitting of type I of the nonsingular symmetric
matrix A2 ∈ Rn×n. If P−1

2 R2 ≤ (R1P−1
1 )T and P−1

2 A2 ≤ (P−1
1 )TA1, then ρ(W̃1) ≤ ρ(Ŵ2) < 1.

Exchanging the splitting type in Theorem 3.20, we obtain the below result.

Theorem 3.21. Let A1 = P1 − R1 + S1 be a convergent double weak splitting of type I of the nonsingular symmetric
matrix A1 ∈ Rn×n and A2 = P2−R2 +S2 be a convergent double weak splitting of type II of the nonsingular symmetric
matrix A2 ∈ Rn×n. If (R2P−1

2 )T
≤ P−1

1 R1 and (P−1
2 )TA2 ≤ P−1

1 A1, then ρ(Ŵ1) ≤ ρ(W̃2) < 1.

The convergence and some of the comparison results of the double weak splitting of type II can be found
in [40].

3.3. Convergence and comparison using double weak splittings
In this subsection, we introduce a regularized iterative scheme for the well-posed system (3) based on

double weak splittings. In addition, the convergence of the regularized scheme is established. Further, a
few comparison theorems for the systems (1) and (3) are analyzed with the help of double weak splittings.

Let Bλ = Pλ − Rλ + Sλ be a double splitting (introduced by Woźnicki [50]) of the nonsingular matrix
Bλ ∈ Rn×n. If Pλ is invertible, then regularized iterative scheme corresponding to the double splitting
Bλ = Pλ − Rλ + Sλ is given by

xk+1 = P−1
λ Rλxk

− P−1
λ Sλxk−1 + P−1

λ ATb.

Further, its block matrix form is(
xk+1

xk

)
=

(
P−1
λ Rλ −P−1

λ Sλ
I 0

) (
xk

xk−1

)
+

(
P−1
λ ATb

0

)
= Wλ

(
xk

xk−1

)
+

(
P−1
λ ATb

0

)
, (20)

where I is an identity matrix of order n and Wλ =

(
P−1
λ Rλ −P−1

λ Sλ
I 0

)
is the iteration matrix.

Ensuing the idea of Golub et al. [13] and [41], the iterative scheme (20) for the system Bλx = ATb,
converges to B−1

λ ATb (= A†b as λ→ 0) for any initial vectors x0 and x1 if and only if limλ→0 ρ(Wλ) < 1.
In case of convergent double weak splittings of type I or type II and by virtue of Theorem 2.16, the

convergence of (5) follows easily and presented below.

Theorem 3.22. For any matrix A ∈ Rm×n and λ > 0, let Bλ = Pλ − Rλ + Sλ be a double weak splitting of type
I (respectively, type II) with limλ→0 B−1

λ Pλ ≥ 0 (respectively, limλ→0 PλB−1
λ ≥ 0), then the iterative scheme (20)

converges to B−1
λ ATb (= A†b as λ→ 0).
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Under the suitable sufficient condition, the following theorem signifies that the splitting of Bλ will
converge faster (in terms of spectral radius) than the splitting of the original matrix A.

Theorem 3.23. Let A = P−R + S be a double proper weak splitting of type I of A ∈ Rm×n with A†P ≥ 0. For λ > 0,
let Bλ = Pλ−Rλ + Sλ be a double weak splitting of type I with B−1

λ Pλ ≥ 0. If any one of the following conditions holds

(i) P†R ≥ limλ→0 P−1
λ Rλ and limλ→0 P−1

λ Sλ ≥ P†S,
(ii) P†(R − S) ≥ I,

then limλ→0 ρ(Wλ) ≤ ρ(W) < 1.

Proof. By Theorem 2.14 and Theorem 2.16, it is clear that limλ→0 ρ(Wλ) < 1 and ρ(W) < 1. If limλ→0 ρ(Wλ) =
0, then the theorem is trivial. Let us assume that 0 < limλ→0 ρ(Wλ) < 1. Since limλ→0 Wλ > 0, by Theorem
2.2 there exists a vector x(, 0) ∈ R2n such that limλ→0 Wλx = limλ→0 ρ(Wλ)x. This implies

limλ→0 P−1
λ Rλx1 − limλ→0 P−1

λ Sλx2 = limλ→0 ρ(Wλ)x1 and x1 = limλ→0 ρ(Wλ)x2.

Now

Wx − limλ→0 ρ(Wλ)x =

(
P†Rx1 − P†Sx2 − limλ→0 ρ(Wλ)x1

x1 − limλ→0 ρ(Wλ)x2

)
=

(
∆1
0

)
,

where ∆1 = P†Rx1 − P†Sx2 − limλ→0 ρ(Wλ)x1.
Case-I: Let P†R ≥ limλ→0 P−1

λ Rλ and limλ→0 P−1
λ Sλ ≥ P†S. Then

∆1 = P†Rx1 − P†Sx2 − lim
λ→0

ρ(Wλ)x1

= P†Rx1 − lim
λ→0

1
ρ(Wλ)

P†Sx1 − lim
λ→0

P−1
λ Rλx1 + lim

λ→0

1
ρ(Wλ)

P−1
λ Sλx1

= [(P†R − lim
λ→0

P−1
λ Rλ) + lim

λ→0

1
ρ(Wλ)

(P−1
λ Sλ − P†S)]x1

≥ 0.

Hence Wx − limλ→0 ρ(Wλ)x ≥ 0.
Case-II: Let P†(R − S) ≥ I. Then

∆1 = P†Rx1 − P†Sx2 − lim
λ→0

ρ(Wλ)x1

= lim
λ→0

ρ(Wλ)P†Rx2 − P†Sx2 − lim
λ→0

ρ(Wλ)2x2

≥ lim
λ→0

ρ(Wλ)2P†Rx2 − lim
λ→0

ρ(Wλ)2P†Sx2 − lim
λ→0

ρ(Wλ)2x2

= lim
λ→0

ρ(Wλ)2[P†(R − S) − I]x2

≥ 0

In both cases, we obtain Wx − limλ→0 ρ(Wλ)x ≥ 0. Thus by Theorem 2.1, limλ→0 ρ(Wλ) ≤ ρ(W) < 1.

In the next result, we discuss a comparison theorem for considering a double weak splitting of type II
for the regularized matrix Bλ.

Theorem 3.24. Let A = P − R + S be a convergent double proper weak splitting of type I of the singular symmetric
matrix A ∈ Rn×n. For λ > 0, let Bλ = Pλ − Rλ + Sλ be a convergent double weak splitting of type II of the
nonsingular matrix Bλ. If limλ→0(RλP−1

λ )T
≥ P†R, limλ→0(P−1

λ )TBT
λ ≥ P†A, P†R > 0 and −P†S > 0, then

limλ→0 ρ(W̃λ) ≤ ρ(W) < 1.
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Proof. If ρ(W) = 0, then it is trivial. Assume that 0 < ρ(W) < 1. From P†R > 0 and −P†S > 0 and Lemma
3.1 of [41], W is irreducible. By Theorem 2.3 there exists a positive vector x = (x1, x2)T

∈ R2n such that
Wx = ρ(W)x. This leads to

P†Rx1 − P†Sx2 = ρ(W)x1 and x1 = ρ(W)x2. (21)

From equation (21), it is clear that x1 ∈ R(P†) = R(PT). Now the iteration matrix corresponding to the double
weak splitting of type II (Bλ = Pλ − Rλ + Sλ ) is

W̃λ =

(
(RλP−1

λ )T
−(SλP−1

λ )T

I 0

)
.

Using W̃λ and equation(21), we have

lim
λ→0

W̃λx − ρ(W)x =

(
limλ→0(RλP−1

λ )Tx1 − limλ→0(SλP−1
λ )Tx2 − ρ(W)x1

x1 − ρ(W)x2

)
=

(
(limλ→0(RλP−1

λ )T
− P†R)x1 −

1
ρ(W) (limλ→0(SλP−1

λ )T
− P†S)x1

0

)
.

Applying the condition limλ→0(RλP−1
λ )T
≥ P†R and P†A − limλ→0(P−1

λ )TBT
λ ≤ 0 , we obtain

lim
λ→0

W̃λx − ρ(W)x ≤
1

ρ(W)
(lim
λ→0

(RλP−1
λ )T
− P†R)x1 −

1
ρ(W)

(lim
λ→0

(SλP−1
λ )T
− P†S)x1

=
1

ρ(W)
lim
λ→0

[(P−1
λ )T(PT

λ − BT
λ) + P†(A − P)]x1

=
1

ρ(W)
(x1 − lim

λ→0
(P−1
λ )TBT

λx1 + P†Ax1 − x1)

=
1

ρ(W)
(P†A − lim

λ→0
(P−1
λ )TBT

λ)x1 ≤ 0.

Hence by Theorem 2.1, we get limλ→0 ρ(W̃λ) ≤ ρ(W) < 1.

4. Numerical Example

In this section, we discuss the solution of an elliptic partial differential equation by using the proposed
regularized iterative methods. The performance which measures are the number of iterations (IT), residue
and the error bounds. The following stopping criteria is used to terminate the iteration: ‖xk − xk−1‖2 ≤ ε
or the maximum allowed iterations 4000. The symbol (−) signifies the iterative scheme does not converge
within the maximum allowed iteration, whereas O(A) means the order of the matrix A. In Table 1, C(Bλ)
and C(A) represents the condition number of the respective matrices.

Example 4.1. ([43], [28]) Let us assume a two-dimensional Poisson’s equation

∂2u
∂x2 +

∂2u
∂y2 = f (x, y), (x, y) ∈ Ω = (0, 1) × (0, 1)

with Neumann boundary conditions. Applying the central difference scheme to the above problem yields
a linear system Ax = b,where A is singular matrix of order (n + 1)2

× (n + 1)2. The construction of the matrix
A can be found in [28]. By using such A, the matrix Bλ is constructed for λ = 10−4 and λ = 10−8. First, we
consider a convergent splittings of Bλ = Mλ −Nλ corresponds to the iterative scheme (5), which converges
to B−1

λ ATb (= A†b as λ → 0). Secondly, we consider a convergent double splitting of Bλ = Pλ − Rλ + Sλ
corresponding to the iterative method (20), which also converges to B−1

λ ATb (= A†b as λ → 0). Next, we
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denote eλ = ‖B−1
λ ATb − xk‖2 is the error generated from the iterates of the iterative schemes (5) and (20),

and e = ‖A†b − xk‖2. Similarly, the residue is denoted by rλ = ‖Bλxk − ATb‖2 and r = ‖Axk − b‖2. The main
objective of this example is to compare the error and residue generated from original system (1) and the
modified system (3) for different values of λ. So from Table 1, one can observe that when λ = 10−4 and
λ = 10−8, both the iterative scheme converges to A†b, i.e., the errors eλ of the well-posed system are very
close to 0. Also it can be seen that error eλ is all most equal to the actual error e. The residue rλ obtained for
different order of matrices of the well-posed system is better than the residue r of original system Ax = b
(see Table 1). Further, the comparison between two iterative schemes (5) and (20) along with the condition
number is presented in the Table 1. It shows that the condition number of Bλ is small as compared to the
condition number of the ill-posed matrix A.

Table 1: Comparison of two iterative schemes for ε = 10−7

λ O(A) Scheme ITE eλ e rλ r C(Bλ) C(A)

10−4 100 (5) 2885 4.5723e−4 4.5723e−4 2.6686e−5 0.9809 6.5219e5 3.1295e17

(20) 1918 8.8737e−5 8.8737e−5 4.5074e−6 0.9809 6.5219e5 3.1295e17

10−4 600 (5) − 0.0016 0.0016 1.6454e−4 0.9833 6.4637e5 2.1059e16

(20) 2141 2.3132e−4 2.3132e−4 4.3275e−6 0.9832 6.4637e5 2.1059e16

10−4 1600 (5) − 0.0027 0.0027 1.6823e−4 0.9836 6.4606e5 1.2112e16

(20) 3061 2.1542e−4 2.1542e−4 4.3727e−6 0.9835 6.4606e5 1.2112e16

10−4 3600 (5) 2605 0.0026 0.0026 1.4761e−4 0.9839 6.4595e5 1.0797e16

(20) − 2.5100e−4 2.5100e−4 4.5487e−6 0.9838 6.4595e5 1.0797e16

10−8 100 (5) 2883 4.5790e−4 4.5791e−4 2.6686e−5 0.9809 6.5219e9 3.1295e17

(20) 1920 8.8921e−5 8.8924e−5 4.5077e−6 0.9809 6.5219e9 3.1295e17

10−8 600 (5) − 0.0016 0.0016 1.6458e−4 0.9833 6.4637e9 2.1059e16

(20) 2142 2.3234e−4 2.3234e−4 4.3305e−6 0.9832 6.4637e9 2.1059e16

10−8 1600 (5) − 0.0027 0.0027 1.6810e−4 0.9836 6.4606e9 1.2112e16

(20) 3065 2.1665e−4 2.1665e−4 4.3714e−6 0.9835 6.4606e9 1.2112e16

10−8 3600 (5) 2604 0.0026 0.0026 1.4756e−4 0.9839 6.4595e9 1.0797e16

(20) − 2.5269e−4 2.5269e−4 4.5484e−6 0.9838 6.4595e9 1.0797e16

5. Conclusion

The notion of double weak splitting of type II was introduced along with regularized iterative scheme
via Tikhonov’s regularization. In regards to the double weak splitting of type II, a few convergence and
comparison theorems have been proved. The results in Section 3 show that if we consider the regularized
iterative scheme based on the splitting of Bλ with some prescribed conditions, it converges faster (in terms
of spectral radius) than the iterative scheme generated by the splitting of the original matrix A. Further,
some comparison results are established with the help of weak splitting of the first type and second type,
where we do not assume the monotone condition. Several equivalent comparison theorems of various
combinations of weak splittings are also demonstrated. The proposed scheme as an application to a partial
differential differential equation is presented.

For future research perspectives, it is interesting to study the following points.

1. The results derived in subsection 3.2 can be extended to singular symmetric matrices.
2. The three-step alternating iterative schemes derived in [35, 36], confirms that further extension can be

possible by considering the alternating regularized iterative scheme.
3. The same idea can be developed for P-proper splittings [23].
4. As tensors are natural extensions to matrices, one possible research could be to consider the multilinear

system of tensor equations.
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