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Abstract. Recently, pointwise CR-slant warped products introduced by Chen and Uddin in [14] for Kaehler
manifolds. In the context of almost contact metric manifolds, in this paper, we study these submanifolds
in cosymplectic manifolds. We investigate the geometry of such warped product and prove establish a
lower bound relation between the second fundamental form and warping function. The equality case is
also investigated.

1. Introduction

The notation of CR-submanifolds in the setting of Kaehler manifolds was introduced by Bejancu in
[2], which is a generalization of totally real and holomorphic submanifolds of Kaehler manifolds. Then,
CR-submanifolds have been investigated by many researchers in the different types of structures (see
for instance [1, 3, 5]). Another generalization of such submanifolds is called slant submanifold which is
introduced by B.-Y. Chen [7, 8]. Later, F. Etayo [15] defined the notion of pointwise slant submanifold
under the name of quasi-slant submanifold. In [11], B.-Y. Chen and O.J. Garay studied pointwise slant
submanifolds of almost Hermitian manifolds and they proved many nice new results on such submanifolds
and introduce a method of constructions of new examples of such submanifolds.

On the other hand, Bishop and O’Neill [6] defined and studied the concept of warped product manifolds
in order to study the manifolds with negative curvature. The idea of warped product submanifolds has been
introduced by Chen in his series papers [9, 10]. He proved several fundamental results on the existence
of CR-warped products in Kaehler manifolds. Later on, the geometric aspects of these manifolds have
been studied by many researchers (see, for example, [12], [13], [20], [21], [25], [26], [27], [28], [30], [31],
[36], [37], [38] and the reference therein). Specially, Sahin studied nonexistence of warped product semi-
slant submanifolds in Kaehler manifolds [23], while he proved in [24] some results on warped product
pointwise semi-slant submanifolds of Kaehler manifolds. Recently, Chen and Uddin introduced the notion
of pointwise CR-slant warped products in Kaehler manifolds [14]. In the present paper we extend the result
of [14] in cosymplectic manifolds.

The paper is organised as follows: we recall some basic formulas and definitions in Section 2, which
are useful to the next section. In Section 3, we recall the definition of warped product and pointwise
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CR-slant warped products and provide some useful results. The last section is devoted to establish a sharp
inequality for the squared norm of the second fundamental form for pointwise CR-slant warped products
in cosymplectic manifolds. Also, the equality is also discussed in details.

2. Preliminaries

Let M̃ be a (2n + 1) dimensional C∞ manifold, then M̃ is said to be an almost contact metric manifold if it
equips with the structure tensors (ϕ, ξ, η, 1) such that ϕ is a tensor field of type (1, 1), ξ a vector field, η is a
1−form and 1 is a Riemannian metric on M̃ satisfying the following properties [4]

ϕ2X = −X + η(X)ξ, ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1, (1)

1(ϕX, ϕY) = 1(X,Y) − η(X)η(Y), 1(X, ξ) = η(X) (2)

for all vector fields X,Y tangent to M̃. An almost contact metric manifold M̃ is said to be cosymplectic if [18]

(∇̃Xϕ)Y = 0, (3)

for all X,Y tangent to M̃.
Furthermore, on a cosymplectic manifold, we have

∇̃Xξ = 0, (4)

for any X,Y tangent to M̃, where ∇̃ denotes the Levi-Civita connection on M̃ corresponding to the Rieman-
nian metric 1. It known that the covariant derivative ϕ of the tensor field is defined by

(∇̃Xϕ)Y = ∇̃XϕY − ϕ∇̃XY. (5)

Let M be an m-dimensional submanifold of an almost contact metric manifold M̃ with the same Rieman-
nian metric 1 induced on M̃. Denote by Γ(TM) the Lie algebra of vector fields in M and Γ(T⊥M) be the set
of all vector fields normal to M. Consider ∇ and ∇⊥ as the Levi-Civita connections on the tangent bundle
TM and the normal bundle T⊥M, respectively. Then the Gauss and Weingarten formulas are respectively
given by

∇̃XY = ∇XY + h(X,Y), (6)

∇̃XU = −AUX + ∇⊥XU (7)

for each X,Y ∈ Γ(TM) and U ∈ Γ(T⊥M), such that h : TM×TM→ T⊥M is the second fundamental form of M
in M̃ and AU is the shape operator of M corresponding to the normal vector U. Moreover, the relationship
between them is given by

1(h(X,Y),U) = 1(AUX,Y) (8)

for any X,Y ∈ Γ(TM) and U ∈ Γ(T⊥M).

A submanifold for which the second fundamental form h is identically zero is said to be a totally geodesic
submanifold, while it is called a totally umbilical submanifold if its second fundamental form h is given by

h(X,Y) = 1(X,Y)H,

for each X,Y ∈ Γ(TM), where

H =
1
m

m∑
i=1

h(ei, ei),
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is the mean curvature vector, such that (ei), 1 ≤ i ≤ m denotes a local orthonormal frame of the tangent
space TM.
The squared norm of the second fundamental form h is defined by

‖h‖2 =

m∑
i, j=1

1(h(ei, e j), h(ei, e j)), (9)

and

hr
i j = 1(h(ei, e j), er)) i, j = 1, 2...,m, r = m + 1, ..., 2n + 1. (10)

For a differentiable function f on an m-dimensional manifold M, the gradient ~∇ f of f is defined as

1(~∇ f ,X) = X( f ), (11)

for any X tangent to M.
For X ∈ Γ(TM), we can set

ϕX = TX + FX, (12)

where TX and FX are the tangential and normal components of ϕX, respectively. Also, for any U ∈ Γ(T⊥M),
we may write

ϕU = tU + f U, (13)

where tU and f U are the tangential and normal components of ϕU, respectively. Furthermore, using (1)
and (12), we get that

1(TX,Y) = −1(X,TY), (14)

for any X,Y ∈ Γ(TM).
A submanifold M of an almost contact metric manifold M̃ tangent to the structure vector field ξ is called

an invariant if F is identically zero, that is ϕX ∈ Γ(TM), for any X ∈ Γ(TM), while M is called an anti-invariant
if T is identically zero, that is ϕX ∈ Γ(T⊥M), for any X ∈ Γ(TM).

In addition to invariant and anti-invariant submanifolds, there are many different classes of submani-
folds of M̃, some of them are defined as below:

Definition 2.1. [25] A submanifold M tangent to the structure vector field ξ of a an almost contact metric manifold
M̃ is said to be a contact CR-submanifold if there exists a pair of orthogonal differentiable distributions (DT ,D⊥)
satisfying the following conditions:

(i) TM = DT ⊕D⊥ ⊕ 〈ξ〉, where 〈ξ〉 is the 1-dimensional distribution spanned by ξp at p ∈M.
(ii) The distributionDT is invariant under ϕ, i.e., ϕ(DT p) = DT p for all p ∈M.

(iii) The distributionD⊥ is anti-invariant under ϕ, i.e., ϕ(D⊥p ) ⊂ T⊥p (M) for all p ∈M.

Definition 2.2. [17] A submanifold M of a an almost contact metric manifold M̃ is said to be slant if for each p ∈M
and a nonzero vector X tangent to M at p such that X is not proportional to 〈ξ〉 the Wirtinger angle θ(X) ∈ [0, π/2]
between ϕX and TpM is constant, i.e, it is independent of the choice of a non-zero vector X ∈ TpM and the choice of
the point p ∈M.

Obviously if θ = 0, then M becomes an invariant and if θ = π/2, then M becomes an anti-invariant
submanifold. A slant submanifold is said to be proper slant if it is neither invariant nor anti-invariant.
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Definition 2.3. [22], [19] A submanifold M of an almost contact metric manifold M̃ is said to be pointwise slant, if
for each point p ∈M, the Wirtinger angle θ(X) between ϕX and TpM is independent of the choice of a non-zero vector
X ∈ TpM. The Wirtinger angle gives rise to a real-valued function θ : TM − {0} → R which is called the Wirtinger
function or slant function of the pointwise slant submanifold.

We note that a pointwise slant submanifold of M̃ is called slant, if its Wirtinger functionθ is globally constant
and also, it is called a proper pointwise slant if it is neither invariant nor anti-invariant nor θ is constant on
M. ([8] and [24])

It was proved in [34] that a submanifold M tangent to the strutter vector field ξ is a pointwise slant
submanifold of an almost contact metric manifold M̃ if and only if

T2X = (cos2 θ)(−X + η(X)ξ), (15)

for the slant function θ defined on M.
The following relations are natural results of (15)

1(TX,TY) = (cos2 θ)(1(X,Y) − η(Y)η(X)), (16)

1(FX,FY) = (sin2θ)(1(X,Y) − η(Y)η(X)), (17)

for any X,Y ∈ Γ(TM).
Another useful relation for pointwise slant submanifolds of M̃ comes from (1) and (15) given in [34] as

follows

tFX = (sin2 θ)(−X + η(X)ξ), f FX = −FTX, (18)

for any X ∈ Γ(TM).

Definition 2.4. Let M be a submanifold of a cosymplectic manifold M̃. Then, M is said to be a pointwise CR-slant
submanifold if there exist three integrable distributionsDT ,D⊥ andDθ such that

TM = DT ⊕D⊥ ⊕Dθ
⊕ 〈ξ〉,

whereDT is invariant distribution,D⊥ is anti-invariant distribution,Dθ is a pointwise slant distribution, and 〈ξ〉
is the 1-dimensional distribution spanned by ξp at p ∈M.

3. Pointwise CR-slant warped product submanifolds

In [6], Bishop and O’Neill defined the warped product manifolds as followes: Let M1 and M2 be two
Riemannian manifolds with their Riemannian metrics 11 and 12, respectively, then their warped product
manifold is denoted by M = M1 × f M2 with product structure

1(X,Y) = 11(π∗X, π∗Y) + ( f ◦ π)212(σ∗X, σ∗Y)

for any X,Y ∈ Γ(TM), where π : M→ M1 and σ : M→ M2 are the projections and f : M1 → (0, ∞), a scalar
function on M1 and ∗ denotes the symbol for tangent maps. The function f is called the warping function of
warped product. If the warping function f is constant, then the manifold M is said to be trivial or simply a
Riemannian product manifold.

If X ∈ Γ(TM1) and Z ∈ Γ(TM2), then from Lemma 7.3 of [6], we have

∇XZ = ∇ZX = X(ln f )Z, (19)

where ∇ is Levi-Civita connection on M. On a warped product manifold M = M1× f M2, we have, M1 is
totally geodesic in M, and M2 is totally umbilical in M.
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Definition 3.1. [14] A pointwise CR-slant submanifold M = (MT ×M⊥)× f Mθ, where MT,M⊥, and Mθ are the
integrable submanifolds of DT ,D⊥ and Dθ, respectively, is called pointwise CR-slant warped product submanifold
if it is equipped with the warped product metric

1 = 1MT×M⊥ + f 21Mθ ,

where 1MT×M⊥ is the metric on (MT×M⊥), 1Mθ is the metric on Mθ, and f is a positive function depending only on
(MT ×M⊥).

It is known that if the slant function θ ofDθ is constant, then M is called a CR-slant warped product [35]
and if the warping function f is non constant, then M = MT×M⊥× f Mθ is called a proper pointwise CR-slant
warped product submanifold .

Remark 3.2. If M = (MT×M⊥)× f Mθ be a pointwise CR-slant warped product submanifold in M̃, then the tangent
and the normal bundles of M are respectively decomposed as

TM = DT ⊕D⊥ ⊕Dθ
⊕ 〈ξ〉, (20)

T⊥M = ϕD⊥ ⊕ FDθ
⊕ ν, (21)

where ν is the ϕ-invariant subbundle of the normal bundle T⊥M.

Definition 3.3. [14] A pointwise CR-slant warped product M = (MT ×M⊥) × f Mθ is said to be weaklyDθ-totally
geodesic if 1(h(Dθ,Dθ), ϕD⊥) = {0}.

Definition 3.4. [14] A pointwise CR-slant warped product M = (MT ×M⊥) × f Mθ is said to be D1
⊕ D

2-mixed
totally geodesic if h(D1,D2) = {0}, such thatD1 andD2 are distributions belong to {DT ,D⊥,Dθ

}

In this section, we discuss the geometry of the pointwise CR-slant warped product of the form
M = (MT × M⊥) × f Mθ in a cosymplectic manifold M̃, such that MT, M⊥ and Mθ are invariant, anti-
invariant, and proper pintwise slant submanifolds of M̃, respectively. It is known that from [16] when the
structure vector field ξ is tangent to the submanifold Mθ, then the warped product is trivial. Thus, we will
not study this case for non existence of warped products. So, we consider ξ is tangent to (MT ×M⊥), in this
case either ξ is tangent to MT or M⊥ and we will discuss both cases.

First, we give the following useful results.

Lemma 3.5. Let M = (MT ×M⊥)× f Mθ be a pointwise CR-slant warped product of a cosymplectic manifold M̃ such
that ξ is tangent to (MT ×M⊥). Then, we have the following:

ξ(ln f ) = 0, (22)

1(h(X,Y),FZ) = 0, (23)

1(h(X,Z), ϕU) = 0, (24)

1(h(X,U),FZ) = 0, (25)

where X,Y ∈ Γ(DT ), U ∈ Γ(D⊥) and Z ∈ Γ(Dθ).
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Proof. First assertion was proved in [16], while the second assertion is directly and it can be obtained by
using (6) and (19) with the orthogonality of vector fields. For the third part, if we consider any X,Y ∈ Γ(DT ),
U ∈ Γ(D⊥) and Z,∈ Γ(Dθ), by Gauss formula, we obtain

1(h(X,Z), ϕU) = −1(ϕ∇̃ZX,U).

Again from (6) with the cosymplectic character, we find

1(h(X,Z), ϕU) = −1(∇ZϕX,U).

So, by (19), we obtain

1(h(X,Z), ϕU) = −ϕX(ln f )1(Z,U).

Thus, the orthogonality of vector fields gives (24). The last part also can be obtained by the similar
technique.

Lemma 3.6. Let M = (MT ×M⊥) × f Mθ be a pointwise CR-slant warped product submanifold of a cosymplectic
manifold M̃ such that ξ is tangent to (MT ×M⊥). Then, the following is satisfied:

1(h(U,Z), ϕV) = 1(h(U,V),FZ), (26)

1(h(X,Z),FW) = −ϕX(ln f )1(Z,W) − X(ln f )1(Z,TW), (27)

1(h(Z,W), ϕU) = U(ln f )1(Z,TW) + 1(h(U,Z),FW), (28)

for any X ∈ Γ(DT ), U,V ∈ Γ(D⊥) and Z,W ∈ Γ(Dθ).

Proof. For any X ∈ Γ(DT ), U,V ∈ Γ(D⊥) and Z,W ∈ Γ(Dθ), from (8), we can write

1(h(U,Z), ϕV) = 1(AϕVU,Z).

Now, using (7), we get

1(h(U,Z), ϕV) = −1(∇̃UϕV,Z),

Az M̃ is cosymplectic, by (5), we can write

1(h(U,Z), ϕV) = 1(∇̃UV, ϕZ).

Therefore, from (6) and (12), we arrive at

1(h(U,Z), ϕV) = 1(h(U,V),FZ) + 1(∇UV,TZ).

Thus, by the orthogonality of vector fields we prove (26). Next, we want to prove (27). Using (6) and (12),
we have

1(h(X,Z),FW) = −1(ϕ∇̃ZX,W) − 1(∇̃ZX,TW).

Since, M̃ has cosymplectic structure, then from (5) and (6), we derive

1(h(X,Z),FW) = −1(∇ZϕX,W) − 1(∇ZX,TW).

Thus, (27) follows from the above relation together with (19). For the last assertion, by (6), we have

1(h(Z,W), ϕU) = −1(ϕ∇̃ZW,U) = −1(∇̃ZϕW,U).
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From (12), we find

1(h(Z,W), ϕU) = 1(∇̃ZU,TW) − 1(∇̃ZFW,U).

Then using (2), (6) and (19), we derive

1(h(Z,W), ϕU) = U(ln f )1(Z,TW) − 1(ϕ∇̃ZFW, ϕ U) − η(∇̃ZFW)η(U).

But, if we applying (2), then we get

1(h(Z,W), ϕU) = U(ln f )1(Z,TW) − 1(ϕ∇̃ZFW, ϕU). (29)

Furthermore, From (13), we have

1(ϕ∇̃ZFW, ϕU) = 1(∇̃ZtFW, ϕU) + 1(∇̃Z f FW, ϕU)

Using (18), we obtain

1(ϕ∇̃ZFW, ϕU) = −(sin2 θ)1(∇̃ZW, ϕU) − 2(sinθ)(cosθ)(Zθ)1(W, ϕU) + (sin2 θ)1(∇̃Zη(W)ξ, ϕU)

− 2(sinθ)(cosθ)(Zθ)1(η(W)ξ, ϕU) − 1(∇̃ZFTW, ϕU).

Hence, from (2), (6) and the orthogonality of vector fields, the above relation takes the form

1(ϕ∇̃ZFW, ϕU) = −(sin2 θ)1(h(Z,W), ϕU) + 1(∇̃ZϕFTW,U).

Using (13) and (18), we can write

1(ϕ∇̃ZFW, ϕU) = −(sin2 θ)1(h(Z,W), ϕ U) − (sin2 θ)1(∇̃ZTW,U) − (sin 2θ)(Zθ)1(TW,U)

+ (sin2 θ)1(∇̃Zη(TW)ξ,U) − (sin 2θ)(Zθ)1(η(TW)ξ,U) − 1(∇̃ZFT2W,U).

From (2), (6), (15), and the orthogonality of vector field, we derive

1(ϕ∇̃ZFW, ϕU) = −(sin2 θ)1(h(Z,W), ϕU) + (sin2 θ)1(∇ZU,TW) + (cos2 θ)1(∇̃ZFW,U).

Thus, by (7),(8) and (19), the above reduced to

1(ϕ∇̃ZFW, ϕU) = −(sin2 θ)1(h(Z,W), ϕU) + U(ln f )(sin2 θ)1(Z,TW) − (cos2 θ)1(h(Z,U)FW).

Therefore, (29) becomes

1(h(Z,W), ϕU) = U(ln f )1(Z,TW) + (sin2 θ)1(h(Z,W), ϕU) −U(ln f )(sin2 θ)1(Z,TW) + (cos2)1(h(Z,U)FW),

which is the required result. Hence, the lemma is proved completely.

Theorem 3.7. Let M = (MT ×M⊥) × f Mθ be a pointwise CR-slant warped product submanifold of a cosymplectic
manifold M̃. Then M is locally trivial if M is both DT ⊕ Dθ and D⊥ ⊕ Dθ-mixed totally geodesic such that ξ is
tangent to (MT ×M⊥).

Proof. Let M be aDT ⊕Dθ-mixed totally geodesic. Then, for any X,Y ∈ Γ(DT ), and Z,W ∈ Γ(Dθ), from (27)
we have

ϕX(ln f )1(Z,W) + X(ln f )1(Z,TW) = 0. (30)

Replacing X by ϕX in (30) by using (1) and (22), we obtain

−X(ln f )1(Z,W) + ϕX(ln f )1(Z,TW) = 0.
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Now, replacing W by TW in the above with using (2) and (15), we find

−X(ln f )1(Z,TW) − ϕX(ln f )(cos2 θ)1(Z,W) = 0, (31)

Adding equations (30) and (31), we reduce to

ϕX(sin2 θ)(ln f )1(Z,W) = 0.

Therefore, we deduce that the warping function f is constant. Thus, M is locally trivial. Also, if M is a
D
⊥
⊕D

θ-mixed totally geodesic, then for any U,V ∈ Γ(D⊥) and Z,W ∈ Γ(Dθ), by (28) we have

1(h(Z,W), ϕU) −U(ln f )1(Z,TW) = 0. (32)

Applying the polarization identity in (32), we can write

1(h(Z,W), ϕU) + U(ln f )1(Z,TW) = 0. (33)

Subtracting (32) and (33), we derive

U(ln f )1(Z,TW) = 0.

If we put W = TW in the last equation with using (2) and (15),we find

U(ln f )(cos2 θ)1(Z,W) = 0.

So, it follows that f is constant. Hence, M is locally trivial.

4. Inequality for pointwise CR-slant warped products

Let M = (MT × M⊥) × f Mθ be a m-dimensional pointwise CR-slant warped product submanifold of
a (2n + 1)-dimensional cosymplectic manifold M̃ such that the structure vector field ξ tangent to (MT ×

M⊥), where MT, M⊥ and Mθ are invariant, anti-invariant, and proper pintwise slant submanifolds of M̃,
respectively. Let us consider the dim MT = 2p + 1, dim M⊥ = q and dim Mθ = 2r and their corresponding
tangent bundles are denoted by DT , D⊥, and Dθ, respectively. We set the orthonormal frames of them as
follows:

D
T
⊕ 〈ξ〉 = Span{e1, e2, · · · , ep, ep+1 = ϕe1, · · · , e2p = ϕep, e2p+1 = ξ}, D⊥ = Span{e2p+2 = ê1, · · · , e2p+q+1 = êq},

and

D
θ = Span{e2p+q+2 = e∗1, · · · , e2p+q+r+1 = e∗r, e2p+q+r+2 = e∗r+1 = secθTe∗1, · · · em = e2p+q+2r+1 = e∗2r = secθTe∗r}.

Then the orthonormal frames of the normal subbundles ϕD⊥ , FDθ and ν, respectively are given by

ϕD⊥ = Span{em+1 = ẽ1 = ϕê1, · · · , em+q = ẽq = ϕêq}

FDθ = Span{em+q+1 = ẽq+1 = cscθFe∗1, · · · em+q+r = ẽq+r = cscθFe∗r, em+q+r+1 = ẽq+r+1 = cscθ secθFTe∗1,
· · · , em+q+2r = ẽq+2r = cscθ secθFTe∗r}, ν = Span{em+q+2r+1 = ẽq+2r+1, · · · , e2n+1−m = ẽ2n−2p−2r−q},

where ν is the φ-invariant normal subbundle in T⊥M.
The following theorem is the contact version of the main theorem given in [14] and this theorem

generalise some others results.
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Theorem 4.1. Let M = (MT ×M⊥) × f Mθ be a weakly Dθ
−totally geodesic pointwise CR-slant warped product

submanifold of a cosymplectic manifold M̃, such that the structure vector field ξ tangent to (MT ×M⊥). Then the
squared norm of the second fundamental form of M satisfies

‖h‖2 ≥ 4r
[

cot2 θ‖∇⊥(ln f )‖2 + (csc2 θ + cot2 θ )‖∇T(ln f )‖2
]
, (34)

where r = 1
2 dim Mθ, ∇T(ln f ) and ∇⊥(ln f ) are the gradient components of the function ln f along MT and M⊥,

respectively. The equality sign in (34) holds identically if and only if the following are satisfied

(i) MT and M⊥ are totally geodesic submanifolds of M̃.
(ii) Mθ is a totally umbilical submanifold in M̃.

Proof. From (9), we have

‖h‖2 =

2n+1∑
k=m+1

m∑
i, j=1

1(h(ei, e j), ek)2.

Using the frame fields ofDT ⊕ 〈ξ〉,D⊥,Dθ, ϕD⊥, FDθ and ν, we can write

‖h‖2 =

2n−2p−2r−q∑
k=1

2p+1∑
i, j=1

1(h(ei, e j), ẽk)2 + 2
2n−2p−2r−q∑

k=1

2p+1∑
i=1

q∑
j=1

1(h(ei, ê j), ẽk)2 +

2n−2p−2r−q∑
k=1

q∑
i, j=1

1(h(êi, ê j), ẽk)2

+ 2
2n−2p−2r−q∑

k=1

q∑
i=1

2s∑
j=1

1(h(êi, e∗j), ẽk)2 +

2n−2p−2r−q∑
k=1

2s∑
i, j=1

1(h(e∗i , e
∗

j), ẽk)2 + 2
2n−2p−2r−q∑

k=1

2p+1∑
i=1

2r∑
j=1

1(h(ei, e∗j), ẽk)2.

Applying the constructed frame fields, the above expression can be decomposed as

‖h‖2 =

q∑
k=1

2p+1∑
i, j=1

1(h(ei, e j), φêk)2 + (csc2 θ)
r∑

k=1

2p+1∑
i, j=1

[
1(h(ei, e j),Fek

∗)2 + (sec2 θ)1(h(ei, e j),FTek
∗)2
]

(35)

+

2n−2p−2r−q∑
k=q+2r+1

2p+1∑
i, j=1

1(h(ei, e j), ẽk)2 + 2
q∑

k=1

2p+1∑
i=1

q∑
j=1

1(h(ei, ê j), φêk)2 + 2(csc2 θ)
r∑

k=1

2p+1∑
i=1

q∑
j=1

[
1(h(ei, ê j),Fek

∗)2

+ (sec2 θ)1(h(ei, ê j),FTek
∗)2
]

+

2n−2p−2r−q∑
k=q+2r+1

2p+1∑
i, j=1

q∑
j=1

1(h(ei, ê j), ẽk)2 +

q∑
k=1

q∑
i, j=1

1(h(êi, ê j), φêk)2

+ (csc2 θ)
r∑

k=1

q∑
i, j=1

[
1(h(êi, ê j),Fek

∗)2 + (sec2 θ)1(h(êi, ê j),FTek
∗)2
]

+

2n−2p−2r−q∑
k=q+2r+1

q∑
i, j=1

1(h(êi, ê j), ẽk)2

+ 2
q∑

k=1

q∑
i=1

2r∑
j=1

1(h(êi, e∗j), φêk)2 + 2(csc2 θ)
r∑

k=1

q∑
i=1

2r∑
j=1

[
1(h(êi, e∗j),Fek

∗)2 + (sec2 θ)1(h(êi, e∗j),FTek
∗)2
]

+ 2
2n−2p−2r−q∑

k=q+2r+1

q∑
i=1

2r∑
j=1

1(h(êi, e∗j), ẽk)2 +

q∑
k=1

2r∑
i, j=1

1(h(e∗i , e
∗

j), φêk)2 + (csc2 θ)
r∑

k=1

2r∑
i, j=1

[
1(h(e∗i , e

∗

j),Fek
∗)2

+ (sec2 θ)1(h(e∗i , e
∗

j),FTek
∗)2
]

+

2n−2p−2r−q∑
k=q+2r+1

2r∑
i, j=1

1(h(e∗i , e
∗

j), ẽk)2 + 2
q∑

k=1

2p+1∑
i=1

2r∑
j=1

1(h(ei, e j
∗), φêk)2

+ 2(csc2 θ)
q∑

k=1

2p+1∑
i=1

2r∑
j=1

[
1(h(ei, e j

∗),Fek
∗)2 + (sec2 θ)1(h(ei, e j

∗),FTek
∗)2
]

+ 2
2n−2p−2r−q∑

k=q+2r+1

2p+1∑
i=1

2r∑
j=1

1(h(ei, e j
∗), ẽk)2.
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We will leave the positive third, sixth, ninth, twelfth, fifteenth and eighteenth ν-component terms in (35).
The second, fifth, thirteenth and sixteenth terms vanish identically by using Lemma (3.5) and for a weakly
D
θ
−totally geodesic warped product. Also, we could not find the relations for warped products of the first,

fourth, seventh, and fourteenth in (35). Hence, we can leave these positive terms. On the other hand, from
Lemma (3.6) with the constructed frame fields, the above expression can be simplified as

‖h‖2 ≥ 2(csc2 θ)
r∑

k=1

q∑
i=1

2r∑
j=1

{
[−ei(ln f )1(e∗j,Te∗k)]2 + (sec2 θ) [−ei(ln f )1(e∗j,T

2e∗k)]2
}

+ 2(csc2 θ)
r∑

k=1

2p+1∑
i=1

2r∑
j=1

{
[−ϕei(ln f )1(e∗j, e

∗

k) − ei(ln f )1(e∗j,Te∗k)]2

+ (sec2 θ) [−ϕei(ln f )1(e∗j,Te∗k) − ei(ln f )1(e∗j,T
2e∗k)]2

}
which gives

‖h‖2 ≥ 4r(cot2 θ)
q∑

i=1

(ei(ln f ))2 + 4r(csc2 θ)
2p+1∑
i=1

[
(ϕei(ln f ))2 + (ei(ln f ))2

]
+ 4r(cot2 θ)

2p+1∑
i=1

[
(ϕei(ln f ))2 + (ei(ln f ))2

]
.

Then, from the gradient definition, we get the required inequality (i). To prove the equality case of (34), we
proceed as follows: from the leaving and vanishing terms in the right hand side of (35), we have

h(DT ,DT ) = 0, h(D⊥,D⊥) = 0, h(Dθ,Dθ) = 0 h(DT ,D⊥) = 0. (36)

As MT is totally geodesic in M [6, 8], by this fact with the first condition in (36), we conclude that MT is
totally geodesic submanifold of M̃. By a similar argument, we get M⊥ is also totally geodesic submanifold
of M̃. Thus, we prove assertion (i).
On the other hand, we have

h(DT ,Dθ) ⊂ FDθ, h(D⊥,Dθ) ⊂ FDθ. (37)

And also as Mθ is totally umbilical in M [6, 8], applying this fact with (37), we observe that Mθ is a totally
umbilical in M̃. So, assertion (ii) follows. Hence, the theorem is proved completely.
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