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Gaussian Pell and Gaussian Pell-Lucas Quaternions
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Abstract. The main aim of this work is to introduce the Gaussian Pell quaternion QGpn and Gaussian
Pell-Lucas quaternion QGqn, where the components of QGpn and QGqn are Pell numbers pn and Pell-Lucas
numbers qn, respectively. Firstly, we obtain the recurrence relations and Binet formulas for QGpn and QGqn.
We use Binet formulas to prove Cassini’s identity for these quaternions. Furthermore, we give some basic
identities for QGpn and QGqn such as some summation formulas, the terms with negative indices and the
generating functions for these complex quaternions.

1. PRELIMINARIES AND INTRODUCTION

The quaternions, which are a members of a noncommutative division algebra, were first invented by W.
R. Hamilton in 1843 as an extension of the set of complex numbers. The set of real quaternions is denoted
by H. A quaternion k is represented in the form:

k = k0e0 + k1e1 + k2e2 + k3e3 = (k0, k1, k2, k3),

where k0, k1, k2 and k3 are real numbers and e0, e1, e2, and e3 are the fundamental quaternionic units such that

e2
0 = 1, e0ei = eie0 = ei, i = 1, 2, 3, e2

1 = e2
2 = e2

3 = e1e2e3 = −1. (1)

Quaternions find uses in pure and applied mathematics, quantum physics, the special theory of relativity
and analysis, see for example [1], [8], [9], [15], [16]. In the literature, it can be found many researchers
working on the structure of Fibonacci sequences and their generalizations see [2], [3], [6], [10], [17], [21],
[25], [26], [27], [28]. Due to [27], the generalized Gaussian Fibonacci sequence G fn(p, q; a, b) is defined by in
the following way:

G fn+1 = pG fn + qG fn−1,G f0 = a,G f1 = b (2)

where a and b are initial values. If we take p = 2, q = 1, a = i, b = 1 in the equation (2) then we get the
Gaussian Pell sequence

{Gpn} = {i, 1, 2 + i, 5 + 2i, · · · }.
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In the equation (2) if we substitute p = 2, q = 1, a = 1 − i, b = 1 + i then we obtain the Gaussian Pell-Lucas
sequence

{Gqn} = {1 − i, 1 + i, 3 + i, 7 + 3i, · · · }.

Also we have Gpn = pn + ipn−1 and Gqn = qn + iqn−1, where pn and qn are nth Pell and Pell-Lucas numbers,
respectively.

In [11], Djordjevic and Srivastava introduced the generalized incomplete Fibonacci polynomials and the
generalized incomplete Lucas polynomials in a systematic way and also they investigated their structures.
In [12], Djordjevic and Srivastava defined incomplete generalized Jacobsthal and Jacobsthal-Lucas num-
bers and derived their generating functions. In [13], Djordjevic and Srivastava established two different
sequences of numbers, which are generalizations of the classical Fibonacci numbers, and obtained many
important combinatorial properties of these general sequences of numbers. In [14], Srivastava, Tuglu and
Cetin defined new families of the q-Fibonacci and q-Lucas polynomials providing the q-analogues of the
incomplete Fibonacci and Lucas numbers, respectively. They proved some properties of these q-polynomial
families such as recurrence relations, summation formulas and generating functions. In [22], Raina and
Srivastava constructed a new class of numbers involving the familiar Lucas sequences and they deduced
a number of results for this class of numbers such as hypergeometric representations, recurrence relations,
generating functions and summation formulas.

Horadam [3] introduced the quaternions with the nth Fibonacci and Lucas numbers coefficients as
follows:

Qn = fne0 + fn+1en+1 + fn+2en+2 + fn+3e3

Kn = lne0 + ln+1e1 + ln+2e2 + ln+3e3

respectively, where fn and ln are the usual nth Fibonacci and Lucas numbers.
Quaternions whose coeficients consist of Fibonacci-like numbers have been studying by many re-

searchers, recently, see [3], [5], [7], [19], [20], [23], [24]. In [23], Halici dealt with the Fibonacci quaternions
and obtained their some combinatorial properties. In [4], Horadam studied on the Pell and Pell-Lucas
sequences and he presented some identities for them as follows:

pn+1pn−1 − p2
n = (−1)n (Cassini-like formula)

pn(pn+1 − pn−1) = p2n

prpn+1 − pr−1pn = pn+r

p2
n + p2

n+1 = p2n+1

p2n+1p2n = 2p2
2n+1 − 2p2

2n − (−1)n

(−1)npapb = pn+apn+b − pnpn+a+b

p−n = (−1)n+1pn.

It was firstly suggested by Horadam in [5] the idea to consider Pell quaternions. In [7], Cimen and Ipek
introduced the Pell and Pell-Lucas quaternions, respectively, as follows:

Qpn = pne0 + pn+1e1 + pn+2e2 + pn+3e3, (3)

Qqn = qne0 + qn+1e1 + qn+2e2 + qn+3e3. (4)

They then investigated the structures of Pell and Pell-Lucas quaternions by the methods which depend
more on the properties of Pell and Pell-Lucas numbers in [7].

In this paper, we introduce Gaussian Pell and Gaussian Pell-Lucas quaternions and derive their some
combinatorial properties such as Binet formulas, Cassini identities, negatively subscripted terms and the
generating functions.
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2. GAUSSIAN PELL AND GAUSSIAN PELL-LUCAS QUATERNIONS

Any complex quaternion Ψ is defined in the following form

Ψ = Ψ0e0 + Ψ1e1 + Ψ2e2 + Ψ3e3,

where each Ψi, i = 0, 1, 2, 3 is complex numbers and e0, e1, e2, e3 are defined as in (1). The set of all complex
quaternions is denoted by HC. We can rewrite the complex quaternion Ψ as

Ψ = k + ik′, i2 = −1

where k and k′ are real quaternions.
Halici [24] introduced the complex Fibonacci quaternions and gave their some properties. In the similar
way, we can define Gaussian Pell and Gaussian Pell-Lucas quaternions as follows:

QGpn = Gpne0 + Gpn+1e1 + Gpn+2e2 + Gpn+3e3 (5)

QGqn = Gqne0 + Gqn+1e1 + Gqn+2e2 + Gqn+3e3 (6)

where Gpn and Gqn stand for nth Gaussian Pell and Gaussian Pell-Lucas numbers. Since Gpn = pn + ipn−1,
we get QGpn = Qpn + iQpn−1, where Qpn and Qpn−1 are nth and (n-1) th Pell quaternions as in (3). Similarly,
because of Gqn = qn + iqn−1, we have QGqn = Qqn + iQqn−1 , where Qqn and Qqn−1 are nth and (n-1) th
Pell-Lucas quaternions as in (4).

Basic operations on Gaussian Pell quaternions such as addition, substraction, multiplication are defined
just as in real quaternions. The quaternion conjugate of QGpn is defined as

QGp∗n = Gpne0 − Gpn+1e1 − Gpn+2e2 − Gpn+3e3.

The complex conjugate of QGpn is given by

QGpn = Gpne0 + Gpn+1e1 + Gpn+2e2 + Gpn+3e3.

For any complex quaternion Ψ = Ψ0e0 + Ψ1e1 + Ψ2e2 + Ψ3e3, the quaternion norm of Ψ is defined by
‖Ψ‖ = Ψ2

0 +Ψ2
1 +Ψ2

2 +Ψ2
3. Since each component of Ψ is a complex number, then the norm of Ψ is a complex

number. Thus, we give the norms of the Gaussian Pell quaternion QGpn and the Gaussian Pell-Lucas
quaternion QGqn in the following form:

NQGpn = QGpnQGp∗n = Gp2
n + Gp2

n+1 + Gp2
n+2 + Gp2

n+3

and

NQGqn = QGqnQGq∗n = Gq2
n + Gq2

n+1 + Gq2
n+2 + Gq2

n+3,

respectively.

Proposition 2.1. For the Gaussian Pell quaternion QGpn and the Gaussian Pell-Lucas quaternion QGqn, we have
the following identities;

NQGpn = 12(1 + i)p2n+2.

NQGqn = 24(1 + i)p2n+2.

Proof. From the definition of the norm of a Gaussian Pell quaternion, we can write

NQGpn =QGpnQGp∗n = Gp2
n + Gp2

n+1 + Gp2
n+2 + Gp2

n+3

=(pn + ipn−1)2 + (pn+1 + ipn)2 + (pn+2 + ipn+1)2 + (pn+3 + ipn+2)2

=p2
n+3 − p2

n−1 + 2i(pn(pn−1 + pn+1) + pn+2(pn+1 + pn+3)).
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Since pn−1 + pn+1 = 2qn and 2pnqn = p2n, then we have NQGpn = p2
n+3 − p2

n−1 + 12ip2n+2. Moreover, from Page
148 of Koshy [29] , we get p2

n+3 − p2
n−1 = 12p2n+2. Therefore, we get NQGpn = 12(1 + i)p2n+2.

As for the norm of NQGqn , since the well-known identities qn+1 + qn−1 = 4pn, 2pnqn = p2n, pn+2 + pn−2 = 6pn
and q2

n+3 − q2
n−1 = 24p2n+2, then we obtain

NQGqn =Gq2
n + Gq2

n+1 + Gq2
n+2 + Gq2

n+3

=q2
n+3 − q2

n−1 + 2i(qn(qn−1 + qn+1) + qn+2(qn+1 + qn+3))
= = 24(1 + i)p2n+2.

Hence the proof is completed.

The inverse of any complex quaternion Ψ is given by Ψ−1 = Ψ∗

NΨ
,NΨ , 0, see [18]. The next corollary is

clearly seen by the definition of Gaussian Pell quaternion.

Corollary 2.2. For the QGpn, QGp∗n and QGpn, we have the following identities;

QGpn + QGp∗n = 2Gpne0.

QGpn + QGpn = 2Qpn.

QGp2
n + QGpnQGp∗n = 2QGpnGpn.

In the following lemma, we give the second-order linear recurrence relations for Gaussian Pell and
Gaussian Pell-Lucas quaternions.

Lemma 2.3. Let n be a positive integer. Then we have the following identities:

QGpn + 2QGpn+1 = QGpn+2, (7)

QGqn + 2QGqn+1 = QGqn+2, (8)

QGpn −QGpn+1e1 −QGpn+2e2 −QGpn+3e3 = 12Gqn+3.

Proof. Using the equation QGpn = Qpn + iQpn−1 and the relation Qpn = 2Qpn−1 + Qpn−2 given in Proposition
2 of [7] , we conclude that

QGpn + 2QGpn+1 = Qpn + iQpn−1 + 2(Qpn+1 + iQpn)
= (Qpn + 2Qpn+1) + i(Qpn−1 + 2Qpn)
= Qpn+2 + iQpn+1 = QGpn+2.

The second-order recurrence relation for Gaussian Pell-Lucas quaternions is obtained in the similar way.
To prove the last assertion, we need the relations pn+1 + pn−1 = 2qn and qn+2 + qn−2 = 6qn given in [29]. Thus
we get

QGpn −QGpn+1e1 −QGpn+2e2 −QGpn+3e3 = Gpn + Gpn+2 + Gpn+4 + Gpn+6

= 2Gqn+1 + 2Gqn+5

= 12Gqn+3.

We hence complete the proof.

The next corollary immediately follows from the definitions (5) and (6) and the identities qn+1 = pn+1 +pn,
qn = pn+1 − pn, pn+1 + pn−1 = 2qn and 2pn + qn = qn+1 given in [29].
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Corollary 2.4. Let n be a positive integer. Then we have

QGpn + QGpn+1 = QGqn+1, (9)

QGpn+1 −QGpn = QGqn,

QGpn+1 + QGpn−1 = 2QGqn,

2QGpn + QGqn = QGqn+1,

Taking into the relations (7) and (8) account, we deduce the explicit formulas for Gausssian Pell and
Gaussian Pell-Lucas quaternions. From [29], Binet formulas for the Pell and Pell-Lucas numbers are

pn =
αn
− βn

α − β
and qn =

αn + βn

2

respectively, where α = 1 +
√

2 and β = 1 −
√

2. Here we note that α + β = 2, α − β = 2
√

2 and αβ = −1.
Before we prove Binet formulas for Gaussian Pell and Gaussian Pell-Lucas quaternions we will give the

following useful lemma.

Lemma 2.5. For n ≥ 1 we have

αQGpn + QGpn−1 = αnA

βQGpn + QGpn−1 = βnB,

where A =
∑3

s=0(αs + iαs−1)es and B =
∑3

s=0(βs + iβs−1)es.

Proof. Let n ≥ 1. For the Gaussian Pell quaternions αQGpn and QGpn−1, we obtain

αQGpn + QGpn−1 =

3∑
s=0

(αGpn+s + Gpn−1+s)es (10)

If we take into account αGpn+s + Gpn−1+s, thus from the relation Gpn = pn + ipn−1 and by the identity
αn = αpn + pn−1 we have

αGpn+s + Gpn−1+s =α(pn+s + ipn−1+s) + (pn−1+s + ipn−2+s)
=(αpn+s + pn−1+s) + i(αpn−1+s + pn−2+s)

=αn+s + iαn+s−1

=αn(αs + iαs−1).

Therefore, we get

αQGpn + QGpn−1 = αnA, (11)

where A =
∑3

s=0(αs +iαs−1)es. In a similar way to the equation (10), by considering the identity βn = βpn +pn−1,
we get

βQGpn + QGpn−1 = βnB, (12)

where B =
∑3

s=0(βs + iβs−1)es

Now we are in a position to give the Binet formula for Gaussian Pell and Gaussian Pell-Lucas quaternions.
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Theorem 2.6 (Binet Formula). For any positive integer n, the Binet formula for the Gaussian Pell quaternion QGpn
is

QGpn =
αnA − βnB
α − β

(13)

and for the Gaussian Pell-Lucas quaternion QGqn is

QGqn =
αnA + βnB

2
, (14)

where A =
∑3

s=0(αs + iαs−1)es and B =
∑3

s=0(βs + iβs−1)es.

Proof. By substracting the equation (12) from the equation (11), we obtain

QGpn =
αnA − βnB
α − β

.

By adding the equation (11) to the equation (12), we have

αnA + βnB = (α + β)QGpn + 2QGpn−1.

Taking into account α + β = 2 and the identity QGpn + QGpn−1 = QGqn from the equation (9), we get

QGqn =
αnA + βnB

2
.

Theorem 2.7 (Cassini identities). For any positive integer n, the following identities are hold:

QGpn+1QGpn−1 −QGp2
n = (−1)n (α2 + 2)AB + β2BA

(α − β)2 ,

and

QGqn+1QGqn−1 −QGq2
n = (−1)n (α2 + 2)AB + β2BA

4
,

where A =
∑3

s=0(αs + iαs−1)es and B =
∑3

s=0(βs + iβs−1)es.

Proof. The proof follows immediately from the Theorem 2.6.

The following corollary analogous to Theorem 8 in [7] is obtained by using Binet formulas for Gaussian
Pell and Gaussian Pell-Lucas quaternions.

Corollary 2.8. For n ≥ 0, the following equality hold:

QGq2
n − 2QGp2

n = (−1)nAB,

where A =
∑3

s=0(αs + iαs−1)es and B =
∑3

s=0(βs + iβs−1)es.

We will give the next lemma analogous to the identity pm+n = pmpn+1 + pm−1pn given in [4].

Lemma 2.9. For m,n ≥ 0, we have

Gpm+n = pmGpn+1 + pm−1Gpn.
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Proof. By the definition of Gaussian Pell number and the identity pm+n = pmpn+1 + pm−1pn, we get

Gpm+n = pm+n + ipm+n−1

= pmpn+1 + pm−1pn + i(pmpn + pm−1pn−1)
= pm(pn+1 + ipn) + pm−1(pn + ipn−1)
= pmGpn+1 + pm−1Gpn.

As a result of Lemma 2.9, we can restate Gpn as Gpn = pn−1Gp2 + pn−2Gp1 by putting n − 1 and 1 instead
of m and n, respectively. By using the identity p−n = (−1)n+1pn and Gpn = pn−1Gp2 + pn−2Gp1, we define the
negatively subscripted terms for Gpn as

Gp−n = (−1)n(pn+1Gp2 − pn+2Gp1)

Before obtaining the negatively subscripted terms of Gaussian Pell quaternions, we will give the fol-
lowing theorem.

Theorem 2.10. For m,n ≥ 0, we have the following identity:

QGpm+n = pmQGpn+1 + pm−1QGpn.

Proof. Using Lemma 2.9 and the definition of Gaussian Pell quaternions, then we get

QGpm+n =Gpm+ne0 + Gpm+n+1e1 + Gpm+n+2e2 + Gpm+n+3e3

=(pmGpn+1 + pm−1Gpn)e0 + (pmGpn+2 + pm−1Gpn+1)e1+

(pmGpn+3 + pm−1Gpn+2)e2 + (pmGpn+4 + pm−1Gpn+3)e3

=pm(Gpn+1e0 + Gpn+2e1 + Gpn+3e2 + Gpn+4e3)+
pm−1(Gpne0 + Gpn+1e1 + Gpn+2e2 + Gpn+3e3)

=pmQGpn+1 + pm−1QGpn.

If we take m→ n − 1 and n→ 1, then we deduce alternative formula for QGpn as follows:

QGpn = pn−1QGp2 + pn−2QGp1. (15)

In the same way, we write another formula for QGqn as

QGqn = pn−1QGq2 + pn−2QGq1. (16)

Therefore, from equation (15) and the identity p−n = (−1)n+1pn we can define Gaussian Pell quaternion
with negative indices in the following way:

QGp−n = (−1)n(pn+1QGp2 − pn+2QGp1).

Similarly, by means of the equation (16) one can obtain Gaussian Pell-Lucas quaternion with negative
indices

QGq−n = (−1)n(pn+1QGq2 − pn+2QGp1).

Theorem 2.11. For n ≥ 0, we have the following summation formulas:
n∑

i=0

(
n
i

)
2iQGpi = QGp2n,

n∑
i=0

(
n
i

)
(−1)iQGpi = (

α − β

2
)(n−3)[B − (−1)nA].
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Proof. From the Binet Formula of QGpn, we get

n∑
i=0

(
n
i

)
2iQGpi =

n∑
i=0

(
n
i

)
2i(
αiA − βiB
α − β

)

=
A

α − β

n∑
i=0

(
n
i

)
(2α)i

−
B

α − β

n∑
i=0

(
n
i

)
(2β)i

=
A

α − β
[(1 + 2α)n] −

B
α − β

[(1 + 2β)n]

=
Aα2n

− Bβ2n

α − β
= QGp2n,

and

n∑
i=0

(
n
i

)
(−1)iQGpi =

n∑
i=0

(
n
i

)
(−1)i(

αiA − βiB
α − β

)

=
A

α − β

n∑
i=0

(
n
i

)
(−α)i

−
B

α − β

n∑
i=0

(
n
i

)
(−β)i

=
A

α − β
[(1 − α)n] −

B
α − β

[(1 − β)n]

= (
α − β

2
)(n−3)[B − (−1)nA],

where A = QGp1 − βQGp0 and B = QGp1 − αQGp0 from the equations (13) and (14).

The proof of the next corollary is easily seen by using the equations (7) and (9), the relation QGpn =
Qpn + iQpn−1 and Theorem 6 in [7] and Theorem 5 in [25].

Corollary 2.12. For the Gaussian Pell quaternion QGpn, the following identities hold:

n∑
i=1

QGpi =
1
2

[QGqn+1 −QGq1].

n∑
i=1

QGp2i =
1
2

[QGp2n+1 −QGp1].

n∑
i=1

QGp2i−1 =
1
2

[QGp2n −QGp1].

Since Gaussian Pell and Gaussian Pell-Lucas quaternions also satisfy second-order linear recurrence
relation, then we can derive the generating functions for these quaternions. Thus we can give the following
theorem.

Theorem 2.13. The generating function for the nth Gaussian Pell quaternion QGpn is

G(x, t) =
(1 − 2t)QGp0 + QGp1t

1 − 2t − t2 ,

and the generating function for the nth Gaussian Pell-Lucas quaternion QGqn is

H(x, t) =
(1 − 2t)QGq0 + QGq1t

1 − 2t − t2 .
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Proof. Let G(x, t) =
∑
∞

n=0 QGpn(x)tn = QGp0 + QGp1t + QGp2t2 + QGp3t3 + · · ·+ QGpntn + · · · be the generating
function for the nth Gaussian Pell quaternion QGpn. Then we derive

tG(x, t) = QGp0t + QGp1t2 + QGp2t3 + QGp3t4 + · · · + QGpntn+1 + · · ·

and

t2G(x, t) = QGp0t2 + QGp1t3 + QGp2t4 + QGp3t5 + · · · + QGpntn+2 + · · · .

After simple computations, we get G(x, t) =
(1−2t)QGp0+QGp1t

1−2t−t2 due to the fact that QGpn = 2QGpn−1 + QGpn−2.
In as similar manner, we obtain the generating function of Gaussian Pell-Lucas quaternions.
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