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Abstract. The aim of the article is to point out a one-to-one correspondence between soft topological
spaces over a universe U with respect to a parameter set E and topological ones on the Cartesian product
E × U. From this point of view, all soft topological terms, soft operations, soft functions and properties of
soft topological spaces are actually topological concepts. Because the set valued mappings and set valued
analysis have great application potential, it is necessary to look for their meaningful use with respect to
standard topological methods and set valued analysis procedures.

1. Introduction

There are several papers that document certain problems relating to the fundamentals of soft set theory
and soft topological spaces. In [17] the authors claim that soft topology is exactly a special subcase of
general topology. Also in [14] it is stated that a soft topology is nothing but a topology on the Cartesian
product.

Based on a one-to-one correspondence between soft topology and general topology (see below), we
show that each soft topological concept has its own topological equivalent. Some soft terms (for example
soft compactness, soft paracompactness, soft Lindelöfness, soft nomality, soft connectedness, soft hypercon-
nectedness, soft topological sum [1, 5, 6, 20]) correspond to known commonly used and studied topological
terms. Others (for example soft separation axioms [2, 3, 4, 5, 6, 7, 11, 12, 16, 18, 19, 20]) correspond to
topological terms that bring new challenges to research. In principle, any soft concept can be studied by
standard topological methods.

In this article, we will deal exclusively with soft concepts that have known topological equivalents. This
means there is no need to prove them and they are the consequences of known results of general topology.
Other soft notions (for example soft separation axioms), which correspond to the new topological ones will
be mentioned only marginally in this article (see the end of Section 3).

In the following sections we present a definition of soft topological space as a topological space on the
product of two sets. The whole issue of soft topology and soft topological terms will be simplified and in
particular the known topological methods can be used more effectively.

We give only a selection of the most important terms of soft topology, which we will convert to methods
of general topology and it is only for further examination how other soft topology concepts, procedures and
proofs can be transformed into methods of general topology. We show that the use of topological methods
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Email address: milan.matejdes@truni.sk (Milan Matejdes)



M. Matejdes / Filomat 35:5 (2021), 1693–1705 1694

fully supersede and simplify the cumbersome approaches and proofs that are often used in the theory of
soft topological spaces.

In the first part we present a one-to-one correspondence between binary relations and set valued
mappings, in the next part between soft topological spaces and topological spaces on the product of two
sets. We also deal with fundamental soft terms such as soft mappings, soft continuity, soft homeomorphism,
soft homogeneity and some operations on soft topological spaces that correspond to the topological sum
and the product of topologies.

2. Relations and Set Valued Mappings

Any subset S of the Cartesian product E × U is a binary relation from a set E to a set U. Let S(e) = {u ∈
U : (e,u) ∈ S} and Ue = {e} ×U, e ∈ E . By R(E,U) we denote the set of all binary relations from E to U.

The operations of sum S ∪ T, ∪t∈TSt, intersection S ∩ T, ∩t∈TSt, complement Sc and difference S \ T of
relations are defined in the obvious way as in set theory.

By F : E→ 2U we denote a set valued mapping (multifunction) from E to power set 2U of U. The set of
all set valued mappings from E to 2U is denoted by F(E,U) and the set of all constant set valued mappings
F : E → 2U for which F(e) = A ⊂ U for any e ∈ E is denoted by C(E,U). A set valued mapping F for which
F(e) = {u} and it is empty valued otherwise is denoted by Fu

e (Pv
e , Qw

f ).
If F,G are two set valued mappings, then F ⊂ G (F = G) means F(e) ⊂ G(e) (F(e) = G(e)) for any e ∈ E.

The intersection (union) of family {Gt : t ∈ T} of set valued mappings is defined as a set valued mapping
H : E→ 2U for which H(e) = ∩t∈TGt(e) (H(e) = ∪t∈TGt(e)) for any e ∈ E and it is denoted by ∩t∈TGt (∪t∈TGt).
The complement Fc of F is defined as a set valued mapping for which Fc(e) = U \ F(e) for all e ∈ E.

A graph of G ∈ F(E,U) is a set Gr(G) = {(e,u) ∈ E × U : u ∈ G(e)} and it is a subset of E × U,
hence Gr(G) ∈ R(E,U). So, any set valued mapping G determines a relation from R(E,U) denoted by
RG = {(e,u) ∈ E ×U : u ∈ G(e)} = Gr(G).

On the other hand, any relation S ∈ R(E,U) determines a set valued mapping FS from E to 2U where
FS(e) = S(e). So there is a one-to-one correspondence between R(E,U) and F(E,U) and the following lemma
deals with the obvious facts of mutually inverse operators R and F.

Lemma 2.1. If S,Q ∈ R(E,U) and G,H ∈ F(E,U), then:

(1) S 7→ FS ∈ F(E,U), FS(e) = S(e),

(2) G 7→ RG = Gr(G) ∈ R(E,U), RG(e) = G(e),

(3) FRG = G, RFS = S, RG = S⇔ G = FS,

(4) S(e) = Q(e) for any e ∈ E⇔ S = Q⇔ FS = FQ,

(5) S(e) ⊂ Q(e) for any e ∈ E⇔ S ⊂ Q⇔ FS ⊂ FQ,

(6) H(e) = G(e) for any e ∈ E⇔ H = G⇔ RH = RG,

(7) H(e) ⊂ G(e) for any e ∈ E⇔ H ⊂ G⇔ RH ⊂ RG ,

(8) RFu
e = {(e,u)} ⇔ Fu

e = F{(e,u)},

(9) S = ∪e∈E{e} × S(e), RG = ∪e∈E{e} × G(e),

(10) RHc = (RH)c, d FSc = (FS)c.
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3. Soft Topology and Topology on E × U

In the following we will show that many terms of soft topology can be derived and investigated by
means of general topology. In the literature (see references) a definition of a soft set is introduced by a set
valued mapping. The next definition introduces the basic operations on the set of all soft sets with respect
to a fixed set of parameters E. In the literature a soft set is usually denoted by (F,E) or FE. Since E is fixed,
we prefer a notation F where F is a set valued mapping.

Definition 3.1. ([1-7], [11-21]) Let E,U be two nonempty sets.

(1) If F : E→ 2U is a set valued mapping, then F is called a soft set over U with respect to E. A soft set F
for which F(e) = ∅ (F(e) = U) for any e ∈ E is called the null soft set (the full soft set) and Fu

e is called a
soft point.

(2) A soft set F is a soft subset of G (F is contained in G or G contains F), if F(e) ⊂ G(e) for any e ∈ E.
The complement of soft set F is defined as a soft set Fc where Fc(e) = U \ F(e) for all e ∈ E. The
intersection (union) of a family of soft sets {Gt : t ∈ T} is defined as a soft set G where G(e) = ∩t∈TGt(e)
(G(e) = ∪t∈TGt(e)) for all e ∈ E.

(3) The family of all soft sets over U with respect to E is denoted by SS(E,U). It is clear SS(E,U)=F(E,U).
The family of all soft points is denoted by SP(E,U).

As we said above there is no difference between a set valued mapping and a relation. So, a soft set can
be defined equivalently by the following way.

Definition 3.2. ([14]) Let E,U be two nonempty sets. A soft set over U with respect to E is any subset A of
E ×U. The sets ∅ and E ×U (both subsets of E ×U) represent the null soft set F∅ and the full soft set FE×U,
respectively.

In the next definition we denote a soft topological space as a triplet (E,U, τ). This notation is more
natural than that of (U, τ,E), because first the sets are given and then the structure on them.

Definition 3.3. ([1-7], [11-21]) Let E,U be two nonempty sets.

(1) A soft topological space over U with respect to E is a triplet (E,U, τ), where τ ⊂ SS(E,U) is closed
under finite intersection, arbitrary union of soft sets and contains the null soft set and the absolute
soft set. A soft set from τ is called a soft open set and its complement is called a soft closed set.

(2) If H is a soft set, then a soft closure (a soft interior) of H denoted by scl(H) (sint(H)) is defined as the
intersection (union) of all soft closed (soft open) sets containing H (contained in H).

(3) A soft topological space (E,U, τ) is called enriched (see [3, 4]), if for any e ∈ E a soft set F for which
F(e) = U and F( f ) = ∅ for f , e is soft open.

In the following we will denote by (X, τ) a topological space where τ is a topology on X and by (A, τA) a
topological subspace of (X, τ) where A ⊂ X and τA is a relative topology. If (X, τ1) and (Y, τ2) are topological
spaces, then (X×Y, τ1×τ2) is a topological space equipped with the product topology (the Cartesian product)
of τ1 and τ2. By (E ×U, τ) we denote a topological space where τ is a topology on E ×U. If A is a subset of
E ×U, by cl(A) (int(A)) we denote a closure (an interior) of A in the topological space (E ×U, τ).

Since a soft topology is represented by a family of set valued mappings which have a binary relation
representation, any soft topological space can be transformed to a corresponding topological space by the
following theorem.

Theorem 3.4. ([14]) There is a one-to-one correspondence between the family of all soft topological spaces over U
with respect to E and the family of all topological spaces (E ×U, τ) as follows:
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(1) If (E,U, τ) is a soft topological space, then (E × U, Rτ) is a topological space where Rτ = {RG : G ∈ τ}, i.e.,
G ∈ τ⇔ RG ∈ Rτ.

(2) If (E × U, τ) is a topological space, then (E,U,Fτ) is a soft topological space where Fτ = {FG : G ∈ τ}, i.e.,
G ∈ τ⇔ FG ∈ Fτ.

Definition 3.5. A topological space (E × U,Rτ) from Theorem 3.4 item (1) is called the corresponding
topological space to (E,U, τ) or (E × U,Rτ) is given by (E,U, τ). A soft topological space (E,U,Fτ) from
Theorem 3.4 item (2) is called the corresponding soft topological space to (E ×U, τ) or (E,U,Fτ) is given by
(E × U, τ). We say (E,U, τ) is given by a topological space (E × U, θ) (one is given by the other or they are
mutually correspondence) if τ = Fθ and θ = Rτ. Similarly we say that a soft set G and a relation A are
mutually correspondence if G = FA and RG = A.

Theorem 3.6. Let (E,U, τ) be a soft topological space. If H,G,Gt ∈ S(E,U) and A,B,St ∈ R(E,U), t ∈ T, then (in
the items (4), (5) cl, int is the closure, the interior operator in the corresponding topological space, respectively)

(1) a soft set H is soft open (soft closed) if and only if a set RH is open (closed) in (E ×U,Rτ),

(2) FA∩B = FA ∩ FB, FA∪B = FA ∪ FB, F∩t∈TSt = ∩t∈TFSt , F∪t∈TSt = ∪t∈TFSt ,

(3) RH∩G = RH ∩ RG, RH∪G = RH ∪ RG, R∩t∈TGt = ∩t∈TRGt , R∪t∈TGt = ∪t∈TRGt ,

(4) scl(H) = Fcl(RH), sint(H) = Fint(RH), scl(FA) = Fcl(A), sint(FA) = Fint(A),

(5) cl(A) = Rscl(FA), int(A) = Rsint(FA), cl(RH) = Rscl(H), int(RH) = Rsint(H),

(6) scl(H ∪ G) = scl(H) ∪ scl(G), sint(H ∩ G) = sint(H) ∩ sint(G).

Proof. The item (1) is clear, since H ∈ τ if and only if RH ∈ Rτ (Hc
∈ τ if and only if RHc ∈ Rτ), by Theorem

3.4.

From items (2) and (3) we will prove R∩t∈TGt = ∩t∈TRGt . The rest equations are similar. For any e ∈ E, by
Lemma 2.1 (4), we have

R∩t∈TGt (e) = (∩t∈TGt)(e) = ∩t∈TGt(e) = ∩t∈TRGt (e) = (∩t∈TRGt )(e), so R∩t∈TGt = ∩t∈TRGt .

From item (4) we will prove only the second equation. Since sint(H) = ∪{Ht ∈ τ : Ht ⊂ H}, by item (3),
Rsint(H) = R∪{Ht∈τ:Ht⊂H} = ∪{RHt ∈ Rτ : RHt ⊂ RH} = int(RH). That means sint(H) = Fint(RH).

The item (5) follows from (4).

From item (6) we will prove only the second equation.

By (4), (3), (2), sint(H ∩ G) = Fint(RH∩G) = Fint(RH∩RG) = Fint(RH)∩int(RG) = Fint(RH) ∩ Fint(RG) = sint(H) ∩ sint(G).

Definition 3.7. Let (E,U, τ) be a soft topological space and (E × U,Rτ) be the corresponding topological
space.

(1) For any e ∈ E, u ∈ U, a system τe = {F(e) : F ∈ τ}, τu = {{e : u ∈ F(e)} : F ∈ τ} defines a topological space
denoted by (U, τe), (E, τu), respectively.

(2) By (Ue, τUe ) we denote a subspace of (E ×U,Rτ) with a subspace topology τUe = {Ue ∩ G : G ∈ Rτ}.

The previous facts allow us to provide an alternative definition of soft topological space.

Definition 3.8. A topological space (E×U, τ) where τ is a topology on E×U is called a soft topological one.

In the following, however, we will continue to denote a soft topological space by (E,U, τ) and the
corresponding topological space by (E ×U,Rτ).



M. Matejdes / Filomat 35:5 (2021), 1693–1705 1697

Remark 3.9. Let (E,U, τ) be a soft topological space and (E×U,Rτ) be the corresponding topological space.
Since τe = {F(e) : F ∈ τ} and τUe = {Ue∩F : F ∈ Rτ} = {{e}×F(e) :F ∈ Rτ}, a subspace (Ue, τUe ) of (E×U,Rτ) and
a topological space (U, τe) are homeomorphic with a homeomorphism f : Ue → U given by f ((e,u)) = u.

The next theorem follows from the one-to-one correspondence between soft topological spaces and
topological spaces and from the definitions of soft normal, soft compact, soft Lindeöf and soft disconnected
topological space, respectively (see for example [4, 6, 21]).

Theorem 3.10. A soft topological space (E,U, τ) is soft normal (soft compact, soft Lindelöf, soft disconnected) if and
only if its corresponding topological space (E×U,Rτ) is a normal (compact, Lindelöf, disconnected) topological space.

Proof. Normality and soft normality: By Theorem 3.6 (1), H,G are disjoint soft closed if and only if RH,RG
are disjoint closed in (E × U,Rτ) and H1,G1 are soft open and disjoint containing H,G , respectively, if and
only if RH1 ,RG1 are open and disjoint in (E ×U,Rτ) containing RH,RG, respectively, by Lemma 2.1 (7).

Lindelöfness and soft Lindelöfness: There is a one-to-one correspondence between the family of soft
open covers {Gt ∈ τ : t ∈ T} of (E,U, τ) and the family of open covers {RGt ∈ Rτ : t ∈ T} of (E × U,Rτ). So
(E,U, τ) is soft compact (soft Lindelöf) if and only if (E ×U,Rτ) is compact (Lindelöf).

Disconnectedness and soft disconnectedness: The union of two disjoint soft open sets H,G is equal to
the full soft set if and only if the union of disjoint open sets RH,RG is equal to E ×U.

Many authors mention that a soft topology is not topological notion (not topology). But as we have
shown, it can be identified with a topology on E × U. The previous theorem shows that terms of soft
theory are actually terms of general topology. For example, a soft topological subspace can be introduced
by the following way: Let (E,U, τ) be a soft topological space and Y ⊂ U. Then the collection τE×Y =
{(E × Y)∩RH :H ∈ τ} is a subspace topology on E × Y and a soft topological space given by (E × Y, τE×Y) is a
soft topological subspace of (E,U, τ), denoted by (E,Y, τY). Similarly, we can reformulate each soft concept
into an equivalent concept of general topology (known or new). We will briefly mention the issue of soft
separation axioms which is diversified and quite problematic (see exhaustive work [2]). No matter how
we introduce some soft separation axiom, we have the opportunity to study it within a general topology.
Recall a few definitions well known from general topology. Two subsets A, B of a topological space are

- topologically distinguishable if they have not the same system of neighbourhoods (at least one of them
has a neighbourhood that is not a neighbourhood of the other),

- mutually topologically distinguishable if each set has a neighbourhood that is not a neighbourhood of
the other,

- topologically disjoint if there exists a neighbourhood of one set that is disjoint from the other set,
- separated if each set has a neighbourhoods that is disjoint from the other set (if each is disjoint from

the other’s closure),
- separated by neighbourhoods if they have disjoint neighbourhoods.
All conditions for separation of sets may also be applied to points (or to a point and a set) by using

singleton sets. For example, two points x and y will be considered separated if and only if their singleton
sets {x} and {y} are separated.

In the context of topology, the soft separation axioms can be defined in a soft topological space as follows.
Two soft subsets A, B of soft topological space (E,U, τ) are soft topologically distinguishable, soft mutually
topologically distinguishable, soft topologically disjoint, soft separated, soft separated by neighbourhoods if
the corresponding subsets RA, RB are topologically distinguishable, mutually topologically distinguishable,
topologically disjoint, separated, separated by neighbourhoods in (E ×U,Rτ), respectively.

In general topology, the separation axioms separate two different points or a closed set and a point or
two disjoint closed sets. On the other hand in soft topological space the whole problem of diversity of
soft separation axioms is caused by a wide range of selection and specification of soft sets A,B. Denote
fu = E × {u}where u ∈ U, Z[e] = {e} × Z where e ∈ E and ∅ , Z ⊂ U.

By selecting an appropriate soft separation axiom above and the following commonly used pairs of soft
sets A = F fu and B = F fv , u , v (see for example [6], [16]) or A = FZ1[e] and B = FZ2[ f ], Z1[e] ∩ Z2[ f ] = ∅ (see
for example [12]), we can defined ten soft separation axioms.
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For example (see [16]) a soft topological space (E,U, τ) is soft T0-space (soft T1-space, soft T2-space) if and
only if for any distinct points u, v ∈ U, fu and fv are topologically distinguishable (mutually topologically
distinguishable, separated by neighbourhoods) in (E × U,Rτ) equivalently for any distinct points u, v ∈ U,
F fu and F fv are soft topologically distinguishable (soft mutually topologically distinguishable, soft separated
by neighbourhoods) in (E,U, τ). Moreover, (see [6]) a soft topological space (E,U, τ) is p-soft T0-space (p-soft
T1-space, p-soft T2-space) if and only if for any distinct points u, v ∈ U, fu and fv are topologically disjoint
(separated, separated by neighbourhoods) in (E × U,Rτ) equivalently for any distinct points u, v ∈ U, F fu
and F fv are soft topologically disjoint (soft separated, soft separated by neighbourhoods) in (E,U, τ).

Similar characterization holds for the pair A = FZ1[e] and B = FZ2[ f ], Z1[e] ∩ Z2[ f ] = ∅ (see [12]). Some
selected problems related to soft separation axioms were solved in [15]. Moreover we can separate by an
appropriate soft separation axiom a soft point Fu

e and a soft set F fv for u , v (Fu
e and a soft set FZ[ f ] for e , f ,

Fu
e and a soft set FZ[e] for u < Z). There are many other combinations and it is a challenge for further research

to introduce a systematic and uniform approach to the soft separation axioms (see Conclusion).
For more details we recommend [2] describing different types of soft separation axioms as well as the

causes of diversity including the development of the definitions of soft points, the ways of defining the
distinct soft points and the different forms of belong and non-belong relations.

4. Topological Sum and Homogeneous Topological Spaces

In this section we recall some topological notions and facts concerning a topological sum and a homo-
geneous space which will be used in Section 6, 7 and 8.

Let {(Xi, τi), i ∈ I} be collection of topological spaces. A topological sum denoted by ⊕i∈I(Xi, τi) is a
topological space (⊕i∈IXi,⊕i∈Iτi), where ⊕i∈IXi is a disjoint union of Xi (⊕i∈IXi = ∪i∈I{i} × Xi) and ⊕i∈Iτi is a
topology defined as the finest topology on ⊕i∈IXi for which all canonical injections ϕi are continuous, where
ϕi : Xi → ⊕i∈IXi is defined by ϕi(x) = (i, x) for x ∈ Xi.

Definition 4.1. ([9, 10]) A topological space (X, τ) is homogeneous if for any points x, y there is a homeo-
morphism f : X→ X for which f (x) = y.

The next theorem presents the basic properties of topological sum (see [8]) and it can be useful for
further investigation of enriched soft ([4]) and soft homogeneous topological spaces ([1]).

Theorem 4.2. Let {(Xi, τi), i ∈ I} be collection of topological spaces and A ⊂ ⊕i∈IXi. Then:

(1) a set A is open (closed) in ⊕i∈I(Xi, τi) if and only if ϕ−1
i (A) is open (closed) in (Xi, τi) for any i ∈ I,

(2) If Xi , ∅ for all i ∈ I, then ⊕i∈I(Xi, τi) is compact if and only if (Xi, τi) is compact for any i ∈ I and I is finite,

(3) a canonical injection ϕi is a continuous, open and closed map for any i ∈ I,

(4) a map f : ⊕i∈I(Xi, τi)→ (Y, σ) is continuous if and only if f ◦ ϕi : (Xi, τi)→ (Y, σ) is continuous for any i ∈ I.

(5) If a topological space (X, τ) can be represented as the union of family {Xs}s∈S of pairwise disjoint open subsets,
then τ = ⊕s∈SτXs and a map f : (X, τ)→ (Y, σ) is continuous if and only if fs : (Xs, τXs )→ (Y, σ) is continuous
for any s ∈ S, where fs is a restriction of f to Xs and τXs is a subspace topology.

(6) If each (Xi, τi) is homeomorphic to a fixed topological space (Z, θ), then the disjoint union ⊕i∈I(Xi, τi) is
homeomorphic to a product space (I × Z, τdis × θ), where τdis is the discrete topology on I.

(7) ([9]) Let (X, τ) be a topological space which contains a nonempty open set G such that (G, τG) is indiscrete.
Then (X, τ) is homogeneous if and only if (X, τ) is homeomorphic to a topological sum of indiscrete topological
subspaces of (X, τ) all of which are homeomorphic to one another.

(8) ([10]) A finite topological space is homogeneous if and only if it is homeomorphic to the Cartesian product of a
finite discrete topological space and a finite indiscrete topological one.
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5. Soft Mappings

In soft theory (see for example [1, 3, 4, 6, 13]) a soft mapping fpu between two families of soft sets
SS(E1,U1) and SS(E2,U2) is usually defined by two mappings u : E1 → E2 and p : U1 → U2. If A ∈ SS(E1,U1),
B ∈ SS(E2,U2), then the image fpu(A) of A, the inverse image f−1

pu (B) of B under fpu is defined as a soft set
from SS(E2,U2), SS(E1,U1) given by

fpu(A) : e2 7→ ∪e1∈u−1(e2)p(A(e1)) for e2 ∈ E2, f−1
pu (B) : e1 7→ p−1(B(u(e1))) for e1 ∈ E1, respectively.

A soft mapping fpu : SP(E1,U1)→ SP(E2,U2) (a restriction of fpu to SP(E1,U1)) is the corresponding soft
mapping to the Cartesian product [u × p] of u and p (see Theorem 5.3 below).

Definition 5.1. Let u : E1 → E2, p : U1 → U2. A Cartesian product [u × p] of u and p is a function from
E1 ×U1 to E2 ×U2 for which [u × p]((e1,u1)) = (u(e1), p(u1)). The image of A ⊂ E1 ×U1, the inverse image of
B ⊂ E2 ×U2 is denoted by [u × p](A), [u × p]−1(B), respectively.

Lemma 5.2. A function [u × p] is injective (surjective, bijective) if and only if u and p are injective (surjective,
bijective) and if Ai ⊂ Ei, Bi ⊂ Ui, i = 1, 2, then

[u × p]−1(A2 × B2) = u−1(A2) × p−1(B2), [u × p](A1 × B1) = u(A1) × p(B1).

Theorem 5.3. Let u : E1 → E2, p : U1 → U2, A,Fu1
e1
∈ SS(E1,U1), B,Fu2

e2
∈ SS(E2,U2) and fpu : SP(E1,U1) →

SP(E2,U2) (a restriction of fpu to SP(E1,U1)). Then

fpu(A) = F[u×p](RA), fpu(Fu1
e1

) = F{(u(e1),p(u1))} = Fp(u1)
u(e1) , f−1

pu (B) = F[u×p]−1(RB), f−1
pu (Fu2

e2
) = Fu−1({e2})×p−1({u2}).

Proof. We will prove that the values of fpu(A) and F[u×p](RA) at any e2 ∈ E2 are equal. By Lemma 2.1 (9) and
Lemma 5.2, [u× p](RA) = [u× p](∪e1∈E1 {e1} ×A(e1)) = ∪e1∈E1 [u× p]({e1} ×A(e1)) = ∪e1∈E1 {u(e1)} × p(A(e1)). That
means, by Lemma 2.1 (1), F[u×p](RA)(e2) = ([u × p](RA))(e2) = ∪e1∈u−1(e2)p(A(e1)) = fpu(A)(e2).

The equation f−1
pu (B) = F[u×p]−1(RB) is similar and the equations for the soft points are the consequences of

previous proven equations.

Recall that fpu is a special mapping. Generally, if every soft point Fu1
e1

in SP(E1,U1) is uniquely associated
with a soft point h(Fu1

e1
) in SP(E2,U2), then we say that a soft mapping h : SP(E1,U1) → SP(E2,U2) is given

(compare with [21]).
In the following definition we introduce a one-to-one correspondence between a mapping 1 : E1×U1 →

E2 × U2 (a soft mapping h : SP(E1,U1) → SP(E2,U2)) and a soft mapping Φ1 : SP(E1,U1) → SP(E2,U2) (a
mapping Ψh : E1 ×U1 → E2 ×U2).

Definition 5.4. Let 1 : E1 ×U1 → E2 ×U2. Then a soft mapping Φ1 : SP(E1,U1)→ SP(E2,U2) is defined by
Φ1(Fu1

e1
) = Fu2

e2
⇔ 1((e1,u1)) = (e2,u2), equivalently, Φ1(Fu1

e1
) = F{1((e1,u1))}.

On the other hand, if h : SP(E1,U1) → SP(E2,U2) is a soft mapping, then for A ∈ SS(E1,U1), B ∈ SS(E2,U2),
we define the image of A, the inverse image of B under h by

h(A) = ∪{h(Fu1
e1

) : Fu1
e1

is a soft subset of A}, h−1(B) = ∪{Fu1
e1

: h(Fu1
e1

) is a soft subset of B},
respectively, and a function Ψh : E1 ×U1 → E2 ×U2 is defined by

Ψh((e1,u1)) = (e2,u2)⇔ h(Fu1
e1

) = Fu2
e2

.
A soft mapping Φ1, fpu, h and a mapping 1, [u× p], Ψh are said to be mutually correspondence, respectively.
A soft mapping f1 and a mapping f2 are mutually correspondence if Ψ f1 = f2 and Φ f2 = f1.

Since ΨΦ1 ((e1,u1)) = (e2,u2) ⇔ Φ1(Fu1
e1

) = Fu2
e2
⇔ 1((e1,u1)) = (e2,u2), ΨΦ1 = 1 and since ΦΨh (Fu1

e1
) = Fu2

e2
⇔

Ψh((e1,u1)) = (e2,u2)⇔ h(Fu1
e1

) = Fu2
e2

, ΦΨh = h.
The next theorem says Φ1(A) (Φ−1

1 (B)) is a soft set for which its corresponding relation is equal to the
image (the inverse image) of the corresponding relation RA (RB ) of A (B) under 1 : E1 ×U1 → E2 ×U2 and
Ψh(C) (Ψ−1

h (D)) is a relation for which its corresponding soft set is equal to the image (the inverse image) of
the corresponding soft set FC (FD ) of C (D) under h :SP(E1,U1)→ SP(E2,U2).
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Theorem 5.5. Let 1 : E1 × U1 → E2 × U2, h : SP(E1,U1) → SP(E2,U2). If A ∈ SS(E1,U1), B ∈ SS(E2,U2) and
C ⊂ E1 ×U1, D ⊂ E2 ×U2, then

Φ1(A) = F1(RA) Φ−1
1 (B) = F1−1(RB) Ψh(RA) = Rh(A) Ψ−1

h (RB) = Rh−1(B)

Φ1(FC) = F1(C) Φ−1
1 (FD) = F1−1(D) Ψh(C) = Rh(FC) Ψ−1

h (D) = Rh−1(FD)

consequently, Φ−1
1 (Fu2

e2
) = F1−1({(e2,u2)}) and Ψ−1

h ({(e2,u2)}) = Rh−1(Fu2
e2

).

Proof. Let {Fu1,t
e1,t

: t ∈ T} be an indexed family of soft points which union is equal to A, so A = ∪t∈TFu1,t
e1,t

. Clearly
Fu1,t

e1,t
is a soft subset of A if and only if (e1,t,u1,t) ∈ RA. Then

Φ1(A) = Φ1(∪t∈TFu1,t
e1,t

) = ∪t∈TΦ1(F
u1,t
e1,t

) = ∪t∈TF{1((e1,t,u1,t))} = F∪t∈T{1((e1,t,u1,t))} = F1(RA).
Similarly we can prove the rest equations.

By Lemma 2.1 (3), we have the next lemma.

Lemma 5.6. If 1 : E1 ×U1 → E2 ×U2, then:
(1) Φ1(A) = F1(RA) ⇔ RΦ1(A) = 1(RA),
(2) Φ−1

1 (B) = F1−1(RB) ⇔ RΦ−1
1 (B) = 1−1(RB),

(3) Φ1(Fu1
e1

) = F{1((e1,u1))} ⇔ RΦ1(F
u1
e1

) = {1((e1,u1))},

(4) Φ−1
1 (Fu2

e2
)=F1−1({(e2,u2)})⇔RΦ−1

1 (Fu2
e2

)=1
−1({(e2,u2)}).

Lemma 5.7. If (E1,U1, τ), (E2,U2, θ) are soft topological spaces and 1 : E1 ×U1 → E2 ×U2, then:
(1) Φ1(A) ∈ θ⇔ 1(RA) ∈ Rθ, A ∈ τ,
(2) Φ1(FA) ∈ θ⇔ 1(A) ∈ Rθ, A ∈ Rτ,
(3) Φ−1

1 (B) ∈ τ⇔ 1−1(RB) ∈ Rτ, B ∈ θ,
(4) Φ−1

1 (FB)) ∈ τ⇔ 1−1(B) ∈ Rτ, B ∈ Rθ.

Proof. We will prove item (1), the others are similar. By Theorem 5.5, Φ1(A) = F1(RA). By Theorem 3.4 (1)
and Lemma 2.1 (3), Φ1(A) ∈ θ if and only if RΦ1(A) = 1(RA) ∈ Rθ.

Analogous two lemmas to those above are also true for a soft mapping h : SP(E1,U1)→ SP(E2,U2) and
the corresponding mapping Ψh : E1 ×U1 → E2 ×U2.

6. Soft Continuity and Soft Homogeneity

Definition 6.1. Let (E1,U1, τ), (E2,U2, θ) be soft topological spaces and 1 : E1 ×U1 → E2 ×U2. Then the soft
mapping Φ1 : SP(E1,U1)→ SP(E2,U2)

(1) is soft continuous if Φ−1
1 (B) ∈ τ for any B ∈ θ,

(2) is soft open if Φ1(A) ∈ θ for any A ∈ τ,

(3) is a soft homeomorphism if it is soft continuous and soft open bijection.

(4) (E1,U1, τ) and (E2,U2, θ) are ×-soft homeomorphic if there are u : E1 → E2 and p : U1 → U2 such that
fpu : SP(E1,U1)→ SP(E2,U2) is a soft homeomorphism.

(5) (E1,U1, τ) and (E2,U2, θ) are soft homeomorphic if there is 1 : E1 × U1 → E2 × U2 such that Φ1 :
SP(E1,U1)→ SP(E2,U2) is a soft homeomorphism.

Definition 6.2. A soft topological space (E,U, τ) is said to be soft homogeneous (×-soft homogeneous, see
[1] ) if for any soft points Pv

e ,Qw
f there is a soft homeomorphism Φ1 ( fpu) from SP(E,U) to SP(E,U) such that

Φ1(Pv
e ) = Qw

f ( fpu(Pv
e ) = Qw

f .
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The following theorem confirms that the soft continuity properties of soft mappings can be characterized
by the corresponding topological continuity properties of the corresponding functions and its proof follows
from Lemma 5.7.

Theorem 6.3. Let (E1,U1, τ), (E2,U2, θ) be soft topological spaces. Then

(1) Φ1, fpu : SP(E1,U1) → SP(E2,U2) is soft continuous (soft open, a soft homeomorphism) if and only if 1,
[u × p] : (E1 ×U1,Rτ)→ (E2 ×U2,Rθ) is continuous (open, a homeomorphism),

(2) (E1,U1, τ) and (E2,U2, θ) are soft homeomorphic if and only if (E1×U1,Rτ) and (E2×U2,Rθ) are homeomorphic.

(3) (E1,U1, τ) and (E2,U2, θ) are ×-soft homeomorphic if and only if there are u : E1 → E2 and p : U1 → U2 such
that [u × p] : (E1 ×U1,Rτ)→ (E2 ×U2,Rθ) is a homeomorphism.

(4) A soft topological space (E1,U1, τ) is ×-soft homogeneous if and only if for any points (e, v), ( f ,w) ∈ E1 × U1
there are u : E1 → E1 and p : U1 → U1 such that [u× p] : (E1 ×U1,Rτ)→ (E1 ×U1,Rτ) is a homeomorphism
and [u × p]((e, v)) = ( f ,w).

(5) A soft topological space is soft homogeneous if and only if its corresponding topological space is homogenous.

Remark 6.4. Note an ×-soft homeomorphism (×-soft homogeneity), in the literature it is referred as a soft
homeomorphism (a soft homogeneity) with respect to fpu, is a special case of soft homeomorphism (soft
homogeneity), see Example 6.5 and Example 7.6.

For a priori given soft function h, we define the terms of Definition 6.1 (items (1), (2), (3), (5)) analogously.
Namely, h is soft continuous (soft open) if the inverse image (the image) of any soft open set is soft open.
In the context of the previous theorem a soft function is soft continuous (soft open) if and only if its
corresponding function is continuous (open).

Example 6.5. Let E1 = {a, b}, U1 = {u, v}, E2 = {c, d}, U2 = {s, t}, A = {(a,u), (b, v)}, B = {(d, s), (d, t)} and
τ = {F∅,FE1×U1 ,FA} and θ = {F∅,FE2×U2 ,FB}. Define a function 1 : E1 × U1 → E2 × U2 by the following way:
1((a,u)) = (d, s), 1((b,u)) = (c, s), 1((b, v)) = (d, t) and 1((a, v)) = (c, t). Φ1 is a soft homeomorphism but there is
no soft homeomorphism fpu since [u × p]−1({d} ×U2) = u−1({d}) × p−1(U2) , A (because A is not a Cartesian
product, by Lemma 5.2).

Theorem 6.6. Let (E1, τ1), (U1, θ1), (E2, τ2), (U2, θ2) be topological spaces. If u : E1 → E2, p : U1 → U2, then
[u × p] : (E1 ×U1, τ1 × θ1)→ (E2 ×U2, τ2 × θ2)

(1) is continuous if and only if p : (U1, θ1)→ (U2, θ2) and u : (E1, τ1)→ (E2, τ2) are continuous,

(2) is open if and only if p : (U1, θ1)→ (U2, θ2) and u : (E1, τ1)→ (E2, τ2) are open.

(3) A topological space (E1 × U1, τ1 × θ1) is homogenous if and only if (E1, τ1) and (U1, θ1) are homogenous if
and only if for any (e1,u1), (e2,u2) ∈ E1 × U1 there are u : E1 → E1 and p : U1 → U1 such that [u × p] is a
homeomorphism from (E1 ×U1, τ1 × θ1) to (E1 ×U1, τ1 × θ1) and [u × p]((e1,u1)) = (e2,u2).

Proof. The items (1), (2) are well known topological results (see [8]).
Item (3): Let (E1 ×U1, τ1 × θ1) be homogenous and u1, v1 ∈ U1, e1 ∈ E1. Then there is a homomorphism

f : (E1 ×U1, τ1 × θ1)→ (E1 ×U1, τ1 × θ1) such that f ((e1,u1)) = (e1, v1). Since {e1} ×U1 is homeomorphic to
U1 where p : (e1, x) 7→ x is the required homeomorphism, p ◦ f ◦ p−1 is a homeomorphism from (U1, θ1) to
(U1, θ1) and p ◦ f ◦ p−1(u1) = p( f ((e1,u1))) = p((e1, v1)) = v1. That means (U1, θ1) is homogenous. Similarly
we can prove that (E1, τ1) is homogenous.

Let (E1, τ1), (U1, θ1) be homogenous spaces and (e1,u1), (e2,u2)∈E1×U1. Then there is a homeomorphism
u from (E1, τ1) to (E1, τ1) and a homeomorphism p from (U1, θ1) to (U1, θ1) such that u(e1) = e2 and p(u1) = u2.
Then [u×p] : (E1×U1, τ1×θ1)→ (E1×U1, τ1×θ1) is a homeomorphism (see Lemma 5.2) and [u×p]((e1,u1)) =
(u(e1), p(u1)) = (e2,u2). The last implication is obvious.
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The next corollary is a consequence of Theorem 6.3 and Theorem 6.6 which reflects the fact that the
whole approach to soft topology is based on topological methods including the study of soft continuity and
operations on soft topological spaces.

Corollary 6.7. Let (E1, τ1), (U1, θ1), (E2, τ2), (U2, θ2) be topological spaces and (E1,U1, µ), (E2,U2, σ) be soft
topological spaces given by (E1 ×U1, τ1 × θ1), (E2 ×U2, τ2 × θ2), respectively.

If u : E1 → E2, p : U1 → U2, then a soft mapping fpu : SP(E1,U1)→ SP(E2,U2)

(1) is soft continuous if and only if p : (U1, θ1)→ (U2, θ2) and u : (E1, τ1)→ (E2, τ2) are continuous,

(2) is soft open if and only if p : (U1, θ1)→ (U2, θ2) and u : (E1, τ1)→ (E2, τ2) are open.

(3) (E1,U1, µ) is soft homogenous if and only if (E1, τ1) and (U1, θ1) are homogenous if and only if (E1,U1, µ) is
×-soft homogenous.

7. Soft Stable Topological Spaces

Definition 7.1. ([3]) A soft topological space (E,U, τ) is called stable if τ ⊂ C(E,U).

The next theorem characterizes a stable soft topological space and in its light all assertions numbered
from 3.15 to 3.22 in [1] are obvious.

Theorem 7.2. A soft topological space (E,U, τ) is stable if and only if its corresponding topological space is given
by (E × U, τind × θ), where τind is the indiscrete topology on E and (U, θ) is a topological space (we say (E,U, τ) is
generated by (U, θ)).

Proof. Let (E,U, τ) be a stable soft topological space. Then H ∈ τ ⊂ C(E,U) if and only if RH = E ×A, where
A = H(e) for any e ∈ E. Then θ = {A : RH = E×A,H ∈ τ} is a topology on U if and only if τ is a soft topology.
That means (E ×U, τind × θ) is the corresponding topological space.

Since a stable soft topological space and a function fpu are specific cases, many soft properties of stable
soft topological spaces and soft continuity of fpu are strictly connected to the properties of function p. The
next theorem covers the following theorems and corollaries of [1] numbered as 5.19–5.24 and 5.31–5.33.

Theorem 7.3. Suppose (E1,U1, τ1), (E2,U2, τ2) are stable soft topological spaces generated by (U1, θ1), (U2, θ2),
respectively, and p : (U1, θ1)→ (U2, θ2).
Then fpu : SP(E1,U1)→ SP(E2,U2) is:

(1) soft continuous if and only if p is continuous,

(2) soft open if and only if p is open, provided u is surjective,

(3) a soft homeomorphism if and only if p is a homeomorphism, provided u is bijective.

Proof. Since any function (surjection, bijection) u from an indiscrete space to an indiscrete space is continuous
(open, a homeomorphism) and the corresponding soft mapping to fpu is equal to [u × p], a proof follows
from Corollary 6.7.

Theorem 7.4. If (E,U, τ) is a stable soft topological space generated by a topological space (U, θ), then the following
conditions are equivalent.

(1) (E,U, τ) is ×-soft homogeneous,

(2) (E,U, τ) is soft homogeneous,

(3) (U, θ) is homogenous.
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Proof. Since any indiscrete topological space is homogeneous and the corresponding soft mapping to fpu is
equal to [u × p], a proof follows from Theorem 6.3, Theorem 6.6 (3) and Theorem 7.2.

Remark 7.5. By Theorem 4.2, the soft topological spaces in Examples 5.3–5.5 of [1] are trivially soft homo-
geneous and ×-soft homogeneity follows from vertical, horizontal and diagonal symmetry.

Example 7.6. Let E = {e1, e2}, U = {u1,u2,u3}, Ai j = (ei,u j) (i = 1, 2, j = 1, 2, 3), A = {A11,A12,A21}, B =
{A22,A23,A13}. Then a topological space (E ×U, θ) where θ = {∅,E ×U,A,B} is homogeneous (by Theorem
4.2 (7)) and the corresponding soft topological space (E,U, τ) where τ = Fθ = {F∅,FE×U,FA,FB} is soft
homogeneous (by Theorem 6.3 (5)) but it is not×-homogeneous, since both topological spaces (U, τe1 ), (U, τe2 )
are not homogenous, by Theorem 5.14 of [1]. The soft topological space (E,U, τ) is soft homeomorphic to
a soft topological space over three point set with respect to two point set which corresponding topological
space is homeomorphic to a topological sum, by Theorem 4.2 (7), (to the Cartesian product of a discrete
space and an indiscrete space, by Theorem 4.2 (8)).

8. Soft Enriched Topological Spaces

Let {(U, θe) : e ∈ E} be an indexed family of topological spaces, Ue = {e} × U. Since Ue1 ∩ Ue2 = ∅ for
e1 , e2 and ⊕e∈EU = ∪e∈EUe = E ×U, ⊕e∈Eθe is a topology on E ×U with the basis B = {{ϕe(G) : G ∈ θe} : e ∈
E} = {{{e} × G : G ∈ θe} : e ∈ E} where ϕe : U → E ×U is the canonical injection given by ϕe(u) = (e,u). This
allows us to define a soft topological space generated by an indexed family of topological spaces ([1]).

Definition 8.1. A soft topological space generated by an indexed family {(U, θe) : e ∈ E} of topological
spaces is given by the topological space (E×U,⊕e∈Eθe) and it is denoted by (E,U,F⊕e∈Eθe ), where F⊕e∈Eθe is the
corresponding soft topology to ⊕e∈Eθe, i.e., F ∈ F⊕e∈Eθe if and only if F(e) ∈ θe for any e ∈ E (see [1]).

The next theorem follows directly from definition of an extended soft topology (see Proposition 3 and
Remark 3 of [4]) and from Theorem 4.2 (5).

Theorem 8.2. A soft topological space (E,U, τ) is extended if and only if (E,U, τ) is enriched if and only if its
corresponding topological space is equal to (E ×U,⊕e∈Eτe).

Remark 8.3. Note some operations that generate soft topologies known from [1, 20].

(1) For a topological space (U,Σ) (see [20]), two soft topologies T (Σ and T̂ (Σ) were introduced. The soft
topologyT (Σ), T̂ (Σ) is given by τdis×Σ, τind×Σ, where τdis, τind is the discrete, the indiscrete topology
on E, respectively (see Theorem 4.2 (6) and Theorem 7.2).

(2) For a topological space (U,J), an indexed family of topological spaces {(U,Je) : e ∈ E} (see [1]), a soft
topology τ(J), ⊕e∈EJe was introduced, respectively. The soft topology τ(J), ⊕e∈EJe is given by τdis ×J,
the topological sum of {(U,Je) : e ∈ E}, respectively.

In the end we mention a theorem dealing with a soft continuity of soft mapping defined on an extended
soft topological space. It generalizes Theorem 4 of [4] that only talks about a soft continuity of fpu.

Theorem 8.4. Let (E1,U1, τ) be an enriched (extended) soft topological space, (E2,U2, θ) be a soft topological space
and 1 be a function from E1 ×U1 to E2 ×U2. Then the next conditions are equivalent.

(1) Φ1 : SP(E1,U1)→ SP(E2,U2) is soft continuous,

(2) for any e1 ∈ E1, 1 : {e1} ×U1→ (E2 ×U2,Rθ) is continuous where {e1} ×U1 is the subspace of (E1 ×U1,Rτ),

(3) for any e1 ∈ E1, 1 ◦ ϕe1 : (U1, τe1 )→ (E2 ×U2,Rθ) is continuous.

Proof. Since (E1,U1, τ) is enriched, the corresponding topological space (E1 ×U1,Rτ) can be represented as
a union of family {{e1} ×U1 : e1 ∈ E1} of pairwise disjoint open subsets of (E1 ×U1,Rτ) and a proof follows
from Theorem 4.2 (5) and (4) and Theorem 6.3.
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9. Conclusion

From what has been shown in the article, the whole issue of soft theory and its applications can be
developed as part of general topology. We suggest identifying a soft set with a subset of the Cartesian
product. For example, in the set valued analysis if F ∈ F(E,U), it is commonly used a notation F ⊂ E × U
that means a set valued mapping F : E→ 2U is identified with its graph and a set valued mapping Fu

e (a soft
point) is identified with {(e,u)}. Each soft topological term has a corresponding topological term and vice
versa, which should be taken into account in further research and applications. From this point of view,
it is more convenient to define a soft topology as a topology on the Cartesian product and to use known
methods of general topology. The correspondence from the view of categorical theory would be desirable
for further research.

As for the separation axioms, the fundamental problem is to define the soft point. For a nonempty
familyM ⊂ SS(E,U) = F(E,U) (without the null soft set) it would be appropriate to introduce a topology on
RM = {RM : M ∈ M} by using appropriate hypertopology where the underlying set is RM. So a soft point
is an element of RM (a graph of set valued mapping from M). More precisely, over a topological space
(E ×U, τ), a hyperspace is a topological space whose points are the elements from RM with some topology.
For example RM can be considered as the hyperspace equipped with the lower Vietoris, the upper Vietoris,
the Vietoris topology, respectively.

Below we summarize the correspondence between topological and soft topological objects.

topological object 7→ soft topological object soft topological object 7→ topological object
{(e,u)} 7→ Fu

e = F{(e,u)} Fu
e 7→ {(e,u)} = RFu

e

A 7→ FA A 7→ RA

τ 7→ Fτ τ 7→ Rτ

(E ×U, τ) 7→ (E,U,Fτ) (E,U, τ) 7→ (E ×U,Rτ)
1 7→ Φ1 h 7→ Ψh

1(A) 7→ Φ1(FA) = F1(A) h(A) 7→ Ψh(RA) = Rh(A)

1−1(B) 7→ Φ−1
1 (FB) = F1−1(B) h−1(B) 7→ Ψ−1

h (RB) = Rh−1(B)

[u × p] 7→ fpu fpu 7→ [u × p]
[u × p](A) 7→ fpu(FA) = F[u×p](A) fpu(A) 7→ [u × p](RA)

[u × p]−1(B) 7→ f−1
pu (FB) = F[u×p]−1(B) f−1

pu (B) 7→ [u × p]−1(RB)
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