Filomat 35:7 (2021), 2141–2149 https://doi.org/10.2298/FIL2107141A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Perturbation Results in the Fredholm Theory and *M*-Essential Spectra of Some Matrix Operators

Boulbeba Abdelmoumen^a, Sadok Chakroun^a, Mnif Maher^a

^a Département de Mathématiques, Faculté des Sciences de Sfax, B. P. 1171, 3000, Sfax, Tunisie.

Abstract. In this paper, we will use some new properties of non-compactness measure, in order to establish a description of the M-essential spectrum for some matrix operators on Banach spaces.

1. Introduction

In this paper we shall study the *M*-essential spectra of a general class of operators defined by a 2×2 block operator matrix acting in a product of Banach spaces $X \times X$

$$L_0 = \left(\begin{array}{cc} A & B \\ C & D \end{array}\right),$$

where the operators occurring in the representation of L_0 are unbounded. *A* acts on the Banach space *X* and has the domain $\mathcal{D}(A)$, *D* is defined on $\mathcal{D}(D)$ and acts on *X*. The intertwining operators *B*, *C* are defined respectively on $\mathcal{D}(B)$, $\mathcal{D}(C)$ and act on *X*. Below, we shall assume that $\mathcal{D}(A) \subset \mathcal{D}(C)$ and $\mathcal{D}(B) \subset \mathcal{D}(D)$. Then the matrix L_0 defines a linear operator in *X* with domain $\mathcal{D}(A) \times \mathcal{D}(B)$.

Note that in general L_0 is not closed or closable, even if its entries are closed. But the authors in [4], give some sufficient conditions under which L_0 is closable and describe its closure which we shall denote L. Remark that in the work [7], M. Faierman, R. Mennicken and M. Möller give a method for dealing with the spectral theory for pencils of the form $L_0 - \mu M$, where M is a bounded operator.

To study the Wolf essential spectrum of the operator matrix *L* in Banach spaces, the authors in [4] (resp. in [12]) used the compactness condition for the operator $(\lambda - A)^{-1}$ (resp. $C(\lambda - A)^{-1}$ and $((\lambda - A)^{-1}B)^*$). Recently, in [1] the author describes the Fredholm essential spectra of *L* with the help of the measures of weak-noncompactness, where *X* is a Banach space which possess the Dunford-Pettis property. In this paper, we prove some localization results on the *M*-essential spectra of the matrix operator *L* via the concept of some quantities. The purpose of this work is to pursue the analysis started in [1, 4, 12].

Our paper is organized as follows : In Section 2, we recall some notations and definitions. In Section 3, we prove some results needed in the rest of the paper. In Section 4, we investigate the *M*-essential spectra of a general class of operators defined by a 2×2 block operator matrix by means of some quantities.

Keywords. Measures of noncompactness in Banach spaces, Fredholm operators, Essential spectra, Matrix operators

²⁰¹⁰ Mathematics Subject Classification. Primary 47H08, 47A53, 47A55, 47A56

Received: 26 May 2020; Revised: 23 January 2021; Accepted: 12 March 2021

Communicated by Snežana Č Živković-Zlatanović

Email addresses: Boulbeba.Abdelmoumen@ipeis.rnu.tn (Boulbeba Abdelmoumen), sadok.chakroun@gmail.com (Sadok Chakroun), maher.mnif@gmail.com (Mnif Maher)

2. Notations and definitions

Let *X* and *Y* be two infinite-dimensional Banach spaces. We denote by C(X, Y) (resp., $\mathcal{L}(X, Y)$) the set of all closed densely defined linear operators (resp., the space of all bounded linear operators) acting from *X* into *Y*. The subspace of all compact operators of $\mathcal{L}(X, Y)$ is denoted $\mathcal{K}(X, Y)$. If X = Y, the sets C(X, Y), $\mathcal{L}(X, Y)$, $\mathcal{K}(X, Y)$ are replaced respectively C(X), $\mathcal{L}(X)$, $\mathcal{K}(X)$. For $T \in C(X)$ we use the following notations: $\mathcal{D}(T)$ is the domain, $\mathcal{N}(T)$ is the kernel and $\mathcal{R}(T)$ is the range of *T*. The nullity, n(T), of *T* is defined as the dimension of $\mathcal{N}(T)$ and the deficiency, d(T), of *T* is defined as the codimension of $\mathcal{R}(T)$ in *X*. We use $\sigma(T)$ and $\rho(T)$ to denote the spectrum and the resolvent set of *T*. We denote by $\Phi_+(X)$ and $\Phi_-(X)$ the classes of upper semi-Fredholm and lower semi-Fredholm. $\Phi(X) := \Phi_+(X) \cap \Phi_-(X)$ is the set of Fredholm operators in C(X). If $T \in \Phi_+(X) \cup \Phi_-(X)$, the number i(T) := n(T) - d(T) is called the index of *T*.

Recall that, for $T \in C(X)$, $X_T := \mathcal{D}(T)$ endowed with the graph norm $\|.\|_T$ is a Banach space and we have $T \in \mathcal{L}(X_T, X)$. We denote by \widehat{T} the restriction of T to $\mathcal{D}(T)$. Let J be a linear operator on X such that $X_T \subset \mathcal{D}(J)$. We say that J is T-bounded if its restriction to X_T , \widehat{J} belongs to $\mathcal{L}(X_T, X)$.

Notice that $T \in \Phi(X)$ (resp., $\Phi_+(X)$) if and only if $\widehat{T} \in \Phi(X_T, X)$ (resp., $\Phi_+(X_T, X)$).

Definition 2.1. Let X and Y be two Banach spaces.

1. Let $T \in \mathcal{L}(X, Y)$. *T* is said to have a left-Fredholm inverse (resp., a right-Fredholm inverse) if there exists $T_l \in \mathcal{L}(Y, X)$ (resp., $T_r \in \mathcal{L}(Y, X)$) and $K \in \mathcal{K}(X)$ such that $T_lT = I_X - K$ (resp., $I_Y - TT_r \in \mathcal{K}(Y)$). The operator T_l (resp., T_r) is called left-Fredholm (resp., right-Fredholm) inverse of *T*. The operator *T* is said to have a Fredholm inverse if there exists a map which is both a left and a right Fredholm inverse of *T*.

2. Let $T \in C(X)$. T is said to have a left-Fredholm inverse (resp., right-Fredholm inverse, Fredholm inverse) if \overline{T} has a left-Fredholm inverse (resp., right-Fredholm inverse, Fredholm inverse).

The sets of operators having left and right-Fredholm inverses are respectively defined by:

 $\Phi_l(X) := \{T \in C(X) \text{ such that } T \text{ has a left Fredholm inverse}\},\ \Phi_r(X) := \{T \in C(X) \text{ such that } T \text{ has a right Fredholm inverse}\}.$

Let $S \in \mathcal{L}(X)$ and $T \in C(X)$. A complex number λ is in $\Phi_{lS}(T)$, $\Phi_{rS}(T)$ or $\Phi_{S}(T)$ if $\lambda S - T$ is in $\Phi_{l}(X)$, $\Phi_{r}(X)$ or $\Phi(X)$ respectively. We define the *S*-resolvent set (resp., the *S*-spectrum) of *T* by: $\rho_{S}(T) := \{\lambda \in \mathbb{C}, \lambda S - T \text{ has a bounded inverse}\}$ (resp., $\sigma_{S}(T) = \mathbb{C} \setminus \rho_{S}(T)$).

In this paper, for $S \in \mathcal{L}(X)$, we are concerned with the following *S*-essential spectra:

 $\begin{aligned} \sigma_{eF,S}(T) &:= \{\lambda \in \mathbb{C} \text{ such that } \lambda S - T \notin \Phi(X)\},\\ \sigma_{eW,S}(T) &:= \mathbb{C} \setminus \{\lambda \in \Phi_S(T) \text{ such that } i(\lambda S - T) = 0\},\\ \sigma_{eB,S}(T) &:= \mathbb{C} \setminus \{\lambda \in \mathbb{C} \text{ such that all scalars near } \lambda \text{ are in } \rho_S(T) \text{ and that } i(\lambda S - T) = 0\}.\\ \sigma_{le,S}(T) &:= \{\lambda \in \mathbb{C} \text{ such that } \lambda S - T \notin \Phi_l(X)\},\\ \sigma_{re,S}(T) &:= \{\lambda \in \mathbb{C} \text{ such that } \lambda S - T \notin \Phi_r(X)\}.\end{aligned}$

 $\sigma_{eF,S}(.)$ is the Fredholm *S*-essential spectrum. $\sigma_{eW,S}(.)$ is the Wolf *S*-essential spectrum. $\sigma_{eB,S}(.)$ is the Browder *S*-essential spectrum and $\sigma_{le}(.)$ (resp., $\sigma_{re}(.)$) is the left (resp., right) *S*-essential spectrum. Note that if S = I, we recover the usual definition of the essential spectra of $T \in C(X)$.

We write $\overline{\mathbb{D}}(0, r)$ for the closure of the disc $\mathbb{D}(0, r)$. We use $C[r_1, r_2] := \overline{\mathbb{D}}(0, r_2) \setminus \mathbb{D}(0, r_1)$, for $r_1 \le r_2$ and we denote by C(0, r) the circle with center 0 and radius r.

3. Some localization results on the S-essential spectra of a bounded operator

3.1. Perturbation results

Our purpose is to give some results concerning the class of Fredholm operators via the concept of some quantities. We write M_X for the family of all nonempty and bounded subset of X. Here, we deal with a

specific measure: the Kuratowski measure of noncompactness defined as follows (see [6])

 $\gamma_X(A) = \inf\{\varepsilon > 0 : A \text{ may be covered by finitely many subsets of X of diameter } \leq \varepsilon\}.$

For $T \in \mathcal{L}(X, Y)$, we define the two non-negative quantities associated with *T* by:

$$\left\{ \begin{array}{l} \alpha(T) = \sup\left\{ \frac{\gamma_Y(T(A))}{\gamma_X(A)}; \ A \in M_X, \ \gamma(A) > 0 \right\} \\ \text{and} \\ \beta(T) = \inf\left\{ \frac{\gamma_Y(T(A))}{\gamma_X(A)}; \ A \in M_X, \ \gamma(A) > 0 \right\}. \end{array} \right.$$

If no confusion can arise, then we write simply $\gamma(A)$ (resp., $\gamma(T(A))$) instead of $\gamma_X(A)$ (resp., $\gamma_Y(T(A))$). We start this section by the following:

Theorem 3.1. Let $A \in C(X)$ and T be an A-bounded operator.

(*i*) Let *B* be a bounded operator in $\Phi(X_A)$, $S \in \mathcal{L}(X_A)$ and assume that there exists A_l a left-Fredholm inverse of *A*.

If $\alpha(A_l\widehat{T}) < \beta(SB_r)$, then $\widehat{TB} + \widehat{AS} \in \Phi_+(X_A, X)$ and $i(\widehat{TB} + \widehat{AS}) = i(S) + i(A)$. If moreover $S \in \Phi(X_A)$, then $\widehat{TB} + \widehat{AS} \in \Phi_l(X_A, X)$.

(*ii*) Let $B, S \in \Phi(X)$ and assume that there exists A_r a right-Fredholm inverse of A.

If $\alpha(\widehat{T}A_r) < \beta(B_lS)$, then $B\widehat{T} + S\widehat{A} \in \Phi_r(X_A, X)$ and $i(B\widehat{T} + S\widehat{A}) = i(S) + i(A)$.

Proof. (*i*) According to [3, Theorem 2.2], $A_l\widehat{T} + SB_r \in \Phi_+(X_A)$ and $i(A_l\widehat{T} + SB_r) = i(S) - i(B)$. Furthermore $A_l(\widehat{T}B + \widehat{A}S)B_r = A_l\widehat{T} + SB_r + K$, where *K* is compact in $\mathcal{L}(X_A)$. Since $A_l\widehat{T} + SB_r + K \in \Phi_+(X_A)$ and $B \in \Phi(X_A)$, then $\widehat{T}B + \widehat{A}S \in \Phi_+(X_A, X)$. Furthermore, we have $i(A_l(\widehat{T}B + \widehat{A}S)B_r) = i(A_l\widehat{T} + SB_r) = i(S) - i(B)$, which implies that $i(\widehat{T}B + \widehat{A}S) = i(S) + i(A)$. Suppose moreover that $S \in \Phi(X_A)$, then $i(A_l\widehat{T} + SB_r) < +\infty$. Thus $A_l\widehat{T} + SB_r + K \in \Phi(X_A)$ and therefore $\widehat{T}B + \widehat{A}S \in \Phi_l(X_A, X)$.

(*ii*) Arguing as in the proof of (*i*) and the fact that $B, S \in \Phi(X)$, yield $B_l(B\widehat{T} + S\widehat{A})A_r = \widehat{T}A_r + B_lS + K \in \Phi(X)$, where $K \in \mathcal{K}(X)$ and $i(\widehat{T}A_r + B_lS) = i(S) - i(B)$. Thus, $(B\widehat{T} + S\widehat{A})A_r \in \Phi(X)$ and therefore $B\widehat{T} + S\widehat{A} \in \Phi_r(X_A, X)$. Furthermore, we have $i(B\widehat{T} + S\widehat{A}) = i(S) + i(A)$.

In the following corollary we prove some localization results of the *S*-essential spectra of a bounded operator *T*. For this, define $\alpha_0(T)$ (resp, $\beta_0(T)$) to be the limit of the sequence $\alpha(T^n)^{\frac{1}{n}}$ (resp, $\beta(T^n)^{\frac{1}{n}}$). For the existence of these limits see [10, Lemma 2.1]. According to [3, Proposition 2.1], we remark that $\alpha_0(T) \le \alpha(T)$ and $\beta(T) \le \beta_0(T)$. We denote by:

$$\widetilde{\alpha}(T) = \begin{cases} \alpha_0(T) & \text{if } ST = TS, \\ \alpha(T) & \text{if } ST \neq TS. \end{cases} \quad \widetilde{\beta}(T) = \begin{cases} \beta_0(T) & \text{if } ST = TS, \\ \beta(T) & \text{if } ST \neq TS. \end{cases}$$

Corollary 3.2. Let $S, T \in \mathcal{L}(X)$ such that $\beta_0(S) > 0$. Then one has the following.

- (*i*) Suppose that $S \in \Phi(X)$, then $\sigma_{eF,S}(T) \subset \overline{\mathbb{D}}(0, \frac{\widetilde{\alpha}(T)}{\beta_0(S)})$.
- (ii) Suppose that $S \in \Phi(X)$ with i(S) = 0, then $\sigma_{eW,S}(T) \subset \overline{\mathbb{D}}(0, \frac{\alpha(T)}{\beta_0(S)})$. If moreover i(T) = 0, then $\sigma_{eW,S}(T) \subset C([\frac{\widetilde{\beta}(T)}{\alpha_0(S)}, \frac{\widetilde{\alpha}(T)}{\beta_0(S)}])$.

(iii) Suppose that $T \notin \Phi_{-}(X)$, then $\mathbb{D}(0, \frac{\overline{\beta}(T)}{\alpha_{0}(S)}) \subset \sigma_{eF,S}(T)$.

(iv) Suppose that
$$T \in \Phi_{-}(X)$$
, then $\sigma_{eF,S}(T) \subset C([\frac{\overline{\beta}(T)}{\alpha_0(S)}, \frac{\overline{\alpha}(T)}{\beta_0(S)}])$.

Proof. Suppose that TS = ST. Let $n \in \mathbb{N}^*$ and assume that $\beta(\lambda^n S^n) > \alpha(T^n)$. Then according to Theorem [3, Theorem 2.2], $\lambda S - T \in \Phi(X)$ and i(tS - T) = i(S). Hence, if $|\lambda| > \frac{\widetilde{\alpha}(T)}{\beta_0(S)}$, then $\lambda \notin \sigma_{eF,S}(T)$ proving (*i*). If furthermore i(S) = 0, then $\lambda \notin \sigma_{eW,S}(T)$, which proves the first statement of (*ii*). Notice that if $\beta(T) = 0$, then $\widetilde{\beta}(T) = 0$ and the results are all trivial. Suppose that $\beta(T) > 0$. For $\alpha_0(\lambda S) < \beta_0(T)$, there exists $n \in \mathbb{N}^*$ such that $\alpha((\lambda S)^n) < \beta(T^n)$, then by Theorem [3, Theorem 2.2] we get $\lambda S - T \in \Phi_+(X)$ and $i(\lambda S - T) = i(T)$. Hence, we get easily (*ii*) – (*iv*).

3.2. Example: Unilateral backward weighted shift operators

Let $t = (t_n)_{n \in \mathbb{N}}$ and $s = (s_n)_{n \in \mathbb{N}}$ be two bounded complex sequences. Consider the unilateral backward weighted shift operator T(t, p) defined on $X = l^r(\mathbb{N}, \mathbb{C})$, $r \ge 1$, by: $T(t, p)(x_0, x_1, ...) = (t_p x_p, t_{p+1} x_{p+1}, ...)$. In [2, 9] the authors prove some localization results on the essential spectra of T(t, p). In this example, we describe the *S*-essential spectra of T(t, p) where *S* is defined on *X* by: $S(s, q)(x_0, x_1, ...) = (s_q x_q, s_{q+1} x_{q+1}, ...)$. Recall that (see [2, Proposition 3.8])

$$\alpha(T(t,p)) = t_+ := \limsup_{n \to \infty} |t_n| \text{ and } \beta(T(t,p)) = t_- := \liminf_{n \to \infty} |t_n|.$$

Hence, if 0 is a cluster point for the sequence $(|t_n|)_n$, then $\beta(T(t, p)) = 0$. If not, then T(t, p) is a Fredholm operator with index p. More precisely $n(T(t, p)) = p + card(F_0)$ and $d(T(t, p)) = card(F_0)$, where $F_0 := \{n \ge p \text{ such that } t_n = 0\}$.

In what follows we investigate more precisely the *S*-essential spectra of T(t, p), where $S, T \in \Phi(X)$ with i(S) = q and $i(T) = p \neq 0$.

Proposition 3.3. (*i*) $\sigma_{eF,S}(T) \subset C([\frac{t_-}{s_+}, \frac{t_+}{s_-}]).$

- (ii) If i(S) = 0, then $\sigma_{eW,S}(T) \subset \overline{\mathbb{D}}(0, \frac{t_+}{s_-})$.
- (*iii*) Suppose that $\lim_{n \to +\infty} |t_n| = a$ and $\lim_{n \to +\infty} |s_n| = b$. Then $\sigma_{eF,S}(T) = C(0, \frac{a}{h})$.

Proof. (*i*) and (*ii*) are a direct consequence of Corollary 3.2.

(*iii*) We have $\alpha(T) = \beta(T) = a$ and $\alpha(S) = \beta(S) = b$. According to (*i*), $\sigma_{eF,S}(T) = C(0, \frac{a}{b})$.

4. The *M*-essential spectra of some matrix operator

Let L_0 be a matrix operator and M be a bounded matrix operator acting on the Banach space $X \times X$ and which are formally defined as follows :

$$L_0 = \left(\begin{array}{cc} A & B \\ C & D \end{array} \right), \ M = \left(\begin{array}{cc} M_1 & M_2 \\ M_3 & M_4 \end{array} \right),$$

where M_2 and M_3 are compact operators. The operators A, B, C and D acts on X and has the domain $\mathcal{D}(A)$, $\mathcal{D}(B)$, $\mathcal{D}(C)$ and $\mathcal{D}(D)$ respectively. In this section we will study some properties of the M-essential spectra of L the closure of L_0 . For this, we require the following assumptions verified:

2144

(*H*₁) $A \in C(X)$ with nonempty M_1 -resolvent set $\rho_{M_1}(A)$.

(*H*₂) The operator $B \in C(X)$ and for some (hence for all) $\mu \in \rho_{M_1}(A)$, the operator $(A - \mu M_1)^{-1}B$ is closable. We denote by $G(\mu) := \overline{(A - \mu M_1)^{-1}(B - \mu M_2)}$.

(*H*₃) The operator *C* satisfies $\mathcal{D}(A) \subset \mathcal{D}(C)$, and for some (hence for all) $\mu \in \rho_{M_1}(A)$, the operator $C(A - \mu M_1)^{-1}$ is bounded. We denote $F(\mu) = (C - \mu M_3)(A - \mu M_1)^{-1}$.

 (H_4) The lineal $\mathcal{D}(B) \cap \mathcal{D}(D)$ is dense in X, and for some (hence for all) $\mu \in \rho_{M_1}(A)$, the operator $D - C(A - \mu M_1)^{-1}B$ is closable. We will denote by $S(\mu)$ the closure of the operator $D - (C - \mu M_3)(A - \mu M_1)^{-1}(B - \mu M_2)$.

The following theorem gives some sufficient conditions for the closeness of L_0 .

Theorem 4.1. [7] Suppose that the conditions (H_1) - (H_3) are satisfied and the lineal $\mathcal{D}(B) \cap \mathcal{D}(D)$ is dense in X. Then the operator L_0 is closable if and only if the operator $D - C(A - \mu M_1)^{-1}B$ is closable in X, for some $\mu \in \rho_{M_1}(A)$. Moreover, the closure L of L_0 is given by:

$$L = \mu M + \begin{pmatrix} I & 0 \\ F(\mu) & I \end{pmatrix} \begin{pmatrix} A - \mu M_1 & 0 \\ 0 & S(\mu) - \mu M_4 \end{pmatrix} \begin{pmatrix} I & G(\mu) \\ 0 & I \end{pmatrix}.$$

For $\lambda \in \mathbb{C}$ and $\mu \in \rho_{M_1}(A)$, we will denote $A_{\lambda M_1} = \lambda M_1 - A$ and $S_{\lambda M_4}(\mu) = \lambda M_4 - S(\mu)$. Then $L_{\lambda M}$ can be written as follows:

$$L_{\lambda M} := UV(\lambda)W - (\lambda - \mu)\mathcal{R}(\mu), \tag{1}$$
where $U = \begin{pmatrix} I & 0 \\ F(\mu) & I \end{pmatrix}, W = \begin{pmatrix} I & G(\mu) \\ 0 & I \end{pmatrix}, V(\lambda) = \begin{pmatrix} A_{\lambda M_1} & 0 \\ 0 & S_{\lambda M_4}(\mu) \end{pmatrix}$
and $\mathcal{R}(\mu) = \begin{pmatrix} 0 & M_1 G(\mu) - M_2 \\ F(\mu)M_1 - M_3 & F(\mu)M_1 G(\mu) \end{pmatrix}.$

In [5, Theorem 3.3.2], the authors constrict the measures of noncompactness in cartesian product of a given finite collection of Banach spaces. More precisely, we have:

Lemma 4.2. [5, Theorem 3.3.2] Let E_1 , ..., E_n be a finite collection of Banach spaces, let $\mu_1, ..., \mu_n$ the measures of noncompactness in $E_1, ..., E_n$ respectively. Assume the function $F : ([0, +\infty[)^n \rightarrow [0, +\infty[$ is convex and $F(x_1, ..., x_n) = 0$ if and only if $x_i = 0$ for i = 1, ..., n. Then

$$\mu(x) = F(\mu_1(\pi_1(x)), ..., \mu_n(\pi_n(x)))$$

defines a measure of noncompactness in $E_1 \times E_2 \times ... \times E_n$ *.*

Here $\pi_i(x)$ *denotes the natural projection of x into* E_i .

According to the previous lemma, for all $A \in M_{X^2}$, the quantity $\gamma(A) = \max(\gamma(\pi_1(A)), \gamma(\pi_2(A)))$ defines a measure of noncompactness in X^2 . For $T = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, consider the measure of noncompactness of T

$$\alpha_{X\times X}(T) = \sup\left\{\frac{\gamma(T(A))}{\gamma(A)}; A \in M_{X^2} \text{ and } \gamma(A) > 0\right\}.$$

Define a measure of noncompactness of *T* by:

$$\alpha(T) := \max\{\alpha(A) + \alpha(B); \alpha(C) + \alpha(D)\}.$$

The following proposition gives the relationship between $\alpha(T)$ and $\alpha_{X \times X}(T)$.

Proposition 4.3. $\alpha_{X \times X}(T) \leq \alpha(T)$.

Proof. For all $H \in M_{X^2}$, we have $H \subset \pi_1(H) \times \pi_2(H)$. Hence, $T(H) \subset T(\pi_1(H) \times \pi_2(H))$. If we denote by $H_i := \pi_i(H), i = 1, 2$, then

$$\begin{aligned} \alpha_{X\times X}(T) &= \sup\left\{\frac{\gamma(T(H))}{\gamma(H)}; \ H \in M_{X^{2}} \ \text{and} \ \gamma(H) > 0\right\} \\ &\leq \sup\left\{\frac{\max(\gamma(A(H_{1})) + \gamma(B(H_{2})), \ \gamma(C(H_{1})) + \gamma(D(H_{2})))}{\max(\gamma(H_{1}), \ \gamma(H_{2}))}, \ \gamma(H_{j}) > 0, \ \forall j = 1, 2\right\} \\ &\leq \max\left\{\sup\left\{\frac{\sup\left\{\frac{\gamma(A(H_{1}))}{\gamma(H1)}, \ H_{1} \in M_{X}, \ \gamma(H_{1}) > 0\right\} + \sup\left\{\frac{\gamma(B(H_{2}))}{\gamma(H_{2})}, \ H_{2} \in M_{X}, \ \gamma(H_{2}) > 0\right\}; \\ &\sup\left\{\frac{\gamma(C(H_{1}))}{\gamma(H1)}, \ H_{1} \in M_{X}, \ \gamma(H_{1}) > 0\right\} + \sup\left\{\frac{\gamma(D(H_{2}))}{\gamma(H_{2})}, \ H_{2} \in M_{X}, \ \gamma(H_{2}) > 0\right\}; \\ &\leq \max\{\alpha(A) + \alpha(B); \alpha(C) + \alpha(D)\}. \end{aligned} \end{aligned}$$

Unless otherwise stated in all what follows, we suppose that, for some $\mu \in \rho_{M_1}(A)$, $F(\mu)$ and $G(\mu)$ satisfy the condition:

$$(H): \max\left(\alpha(G(\mu)), \ \alpha(F(\mu))\right) < 1.$$

Furthermore we take λ in the disk with center μ and radius 1.

Theorem 4.4. (*i*) Suppose that there exist $A_{\lambda M_1}^l$ a left-Fredholm inverse of $A_{\lambda M_1}$ and $S_{\lambda M_4}^l(\mu)$ a left-Fredholm inverse of $S_{\lambda M_4}(\mu)$. Suppose further that:

$$\alpha(S_{\lambda M_4}^l(\mu)F(\mu)M_1) < \frac{1}{2} and \alpha(A_{\lambda M_1}^lM_1G(\mu)) < \frac{1}{2}$$

Then $L_{\lambda M} \in \Phi_l(X \times X)$ *and* $i(L_{\lambda M}) = i(V(\lambda))$ *.*

(ii) Suppose that there exist $A_{\lambda M_1}^r$ a right-Fredholm inverse of $A_{\lambda M_1}$ and $S_{\lambda M_4}^r(\mu)$ a right-Fredholm inverse of $S_{\lambda M_4}(\mu)$. Suppose further that:

$$\alpha(S_{\lambda M_4}^l(\mu)M_1G(\mu)) < \frac{1}{2} \text{ and } \alpha(A_{\lambda M_1}^lF(\mu)M_1) < 1$$

Then $L_{\lambda M} \in \Phi_r(X \times X)$ *and* $i(L_{\lambda M}) = i(V(\lambda))$ *.*

(iii) Suppose that the hypotheses of (i) and (ii) hold true. Then

$$L_{\lambda M} \in \Phi(X \times X)$$
 and $i(L_{\lambda M}) = i(V(\lambda))$.

Proof.

(*i*) Let $T_{\lambda} = UV(\lambda)W$ and $V_{\lambda}^{l} = \begin{pmatrix} A_{\lambda M_{1}}^{l} & 0 \\ 0 & S_{\lambda M_{4}}^{l}(\mu) \end{pmatrix}$. It is easy to see that V_{λ}^{l} is a left-Fredholm inverse of $V(\lambda)$. Thus, $T_{\lambda}^{l} = W^{-1}V_{\lambda}^{l}U^{-1}$ is a left-Fredholm inverse of T_{λ} . On the other hand, we have:

$$T_{\lambda}^{l}\mathcal{R}(\mu) = \begin{pmatrix} -G(\mu)S_{\lambda M_{4}}^{l}(\mu)(F(\mu)M_{1} - M_{3}) & A_{\lambda M_{1}}^{l}(M_{1}G(\mu) - M_{2}) - G(\mu)S_{\lambda M_{4}}^{l}(\mu)F(\mu)M_{2} \\ S_{\lambda M_{4}}^{l}(\mu)(F(\mu)M_{1} - M_{3}) & S_{\lambda M_{4}}^{l}(\mu)F(\mu)M_{2} \end{pmatrix}$$

Now, since M_2 and M_3 are compact operators, then

$$\begin{aligned} \alpha(T_{\lambda}^{l}\mathcal{R}(\mu)) &\leq \max\{\alpha(S_{\lambda M_{4}}^{l}(\mu)F(\mu)M_{1}) + \alpha(A_{\lambda M_{1}}^{l}M_{1}G(\mu)); \alpha(S_{\lambda M_{4}}^{l}(\mu)F(\mu)M_{1})\} \\ &\leq \alpha(S_{\lambda M_{4}}^{l}(\mu)F(\mu)M_{1}) + \alpha(A_{\lambda M_{1}}^{l}M_{1}G(\mu)). \end{aligned}$$

By hypotheses, we get $\alpha(T_{\lambda}^{l}\mathcal{R}(\mu)) < 1$. Hence, by the fact that $\mathcal{R}(\mu)$ is T_{λ} -bounded and $|\lambda - \mu| < 1$, we deduce that $\alpha((\lambda - \mu)T_{\lambda}^{l}\mathcal{R}(\mu)) < 1$. Finally, the results follow from Proposition 4.3 and Theorem 3.1(*i*).

(*ii*) Let $V_{\lambda}^{r} = \begin{pmatrix} A_{\lambda M_{1}}^{r} & K_{1}' \\ K_{2}' & S_{\lambda M_{4}}^{r}(\mu) \end{pmatrix}$ be such that K_{1}' and K_{2}' are compact operators. In the same way one checks that $T_{\lambda}^{r} = W^{-1}V_{\lambda}^{r}U^{-1}$ is a right-Fredholm inverse of T_{λ} . Arguing as in the proof of (*i*) and according to the hypotheses we obtain:

$$\alpha((\lambda - \mu)\mathcal{R}(\mu)T_{\lambda}^{r}) < 1.$$

Finally, the results follow from Proposition 4.3 and Theorem 3.1 (ii).

(*iii*) Is a deduction from (*i*) and (*ii*).

Now, the question is to find out under what conditions we have that $L_{\lambda M}$ has a Fredholm inverse. For this we consider $H(\mu) = S(\mu) - CG(\mu)$ and $H_{\lambda M_4}(\mu) = \lambda M_4 - H(\mu)$, $\mu \in \rho_{M_1}(A)$.

Theorem 4.5. (*i*) Suppose that $A_{\lambda M_1}$ (resp. $H_{\lambda M_4}(\mu)$) has a left-Fredholm inverse $A_{\lambda M_1}^l$ (resp. $H_{\lambda M_4}^l(\mu)$). Suppose further that:

 $H_{\lambda M_4}^l(\mu)C$ and $A_{\lambda M_1}^lA_{\mu M_1}G(\mu)$ are compact operators and $\alpha(A_{\lambda M_1}^lM_1G(\mu)) < 1$. Then

$$V(\lambda) \in \Phi_l(X) \text{ and } i(L_{\lambda M}) = i(V(\lambda)).$$

(ii) Suppose that $A_{\lambda M_1}$ (resp. $H_{\lambda M_4}(\mu)$) has a right-Fredholm inverse $A^r_{\lambda M_1}$ (resp. $H^r_{\lambda M_4}(\mu)$) satisfying:

 $\begin{cases} \bullet A_{\mu M_1} G(\mu) H^r_{\lambda M_4}(\mu) \text{ and } CA^r_{\lambda} \text{ are compact operators.} \\ \bullet \alpha(H^l_{\lambda M_4}(\mu) M_1 G(\mu)) < \frac{1}{2} \text{ and } \alpha(A^l_{\lambda M_1} F(\mu) M_1) < \frac{1}{2}. \end{cases}$

Then

 $V(\lambda) \in \Phi_r(X)$ and $i(L_{\lambda M}) = i(V(\lambda))$.

(iii) Suppose that B and C are compact operators. Then

 $V(\lambda) \in \Phi(X)$ and $i(L_{\lambda M}) = i(V(\lambda))$.

To prove Theorem 4.5 we shall need the following lemma.

Lemma 4.6. (i) Suppose that there exists $H^l_{\lambda M_4}(\mu)$ (resp. $A^l_{\lambda M_1}$) a left-Fredholm inverse of $H_{\lambda M_4}(\mu)$ (resp. $A_{\lambda M_1}$) satisfying:

 $H^{l}_{\lambda M_{4}}(\mu)C$ and $A^{l}_{\lambda M_{1}}A_{\mu M_{1}}G(\mu)$ are compact operators.

Then $L_{\lambda M}$ has a left-Fredholm inverse defined by: $L_{\lambda M}^{l} = \begin{pmatrix} A_{\lambda M_{1}}^{l} & K_{1} \\ K_{2} & H_{\lambda M_{4}}^{l}(\mu) \end{pmatrix}$, where K_{1}, K_{2} are compact operators.

(*ii*) Suppose that there exists $H^r_{\lambda M_4}(\mu)$ (resp. $A^r_{\lambda M_1}$) a right-Fredholm inverse of $H_{\lambda M_4}(\mu)$ (resp. $A_{\lambda M_1}$) satisfying:

 $A_{\mu M_1}G(\mu)H_{\lambda M_4}^r(\mu)$ and $CA_{\lambda M_1}^r$ are compact operators.

Then $L_{\lambda M}$ has a right-Fredholm inverse defined by: $L_{\lambda M}^r = \begin{pmatrix} A_{\lambda}^r & K_1' \\ K_2' & H_{\lambda M_4}^r(\mu) \end{pmatrix}$, where K_1', K_2' are compact operators.

Proof of Theorem 4.5

(*i*) According to the hypotheses and using Lemma 4.6, there exist tow compact operators K_1 and K_2 such that $L_{\lambda M}^l = \begin{pmatrix} A_{\lambda M_1}^l & K_1 \\ K_2 & H_{\lambda M_4}^l(\mu) \end{pmatrix}$ is a left-Fredholm inverse of $L_{\lambda M}$. Then we have: $L_{\lambda M}^l \mathcal{R}(\mu) = \begin{pmatrix} K_1(F(\mu)M_1 - M_3) & A_{\lambda M_1}^l(M_1G(\mu) - M_2) + K_1F(\mu)M_1G(\mu) \\ H_{\lambda M_4}^l(\mu)(F(\mu)M_1 - M_3) & K_2(M_1G(\mu) - M_2)) + H_{\lambda M_4}^l(\mu)F(\mu)M_1G(\mu) \end{pmatrix}$.

Given that M_2 and M_3 are compacts, the hypotheses yield $\alpha(L^l_{\lambda M}\mathcal{R}(\mu)) < 1$. Finally, the results follow from Proposition 4.3 and Theorem 3.1.

(*ii*) From the hypotheses there exist tow compact operators K'_1 and K'_2 such that $L^r_{\lambda M} = \begin{pmatrix} A^r_{\lambda M_1} & K'_1 \\ K'_2 & H^r_{\lambda M_4}(\mu) \end{pmatrix}$ is a right-Fredholm inverse of $L_{\lambda M}$. Thus, according to the hypotheses, we obtain: $\alpha(\mathcal{R}(\mu)L^r_{\lambda M}) < 1$. Finally, the results follow from Proposition 4.2 and Theorem 2.1 the results follow from Proposition 4.3 and Theorem 3.1.

(iii) Is a deduction from (i) and (ii).

Theorem 4.7. The following assertions hold.

(i) Suppose that, for each $\lambda \in \Phi_{lM_1}(A) \cap \Phi_{lM_4}(S(\mu)) \cap \Phi_{lM_4}(H(\mu))$, we have $H^l_{\lambda M_4}(\mu)C$ and $A^l_{\lambda M_1}A_{\mu M_1}G(\mu)$ are compact operators and

$$\alpha(S_{\lambda M_4}^l(\mu)F(\mu)M_1) < \frac{1}{2} and \alpha(A_{\lambda M_1}^lM_1G(\mu)) < \frac{1}{2}$$

Then $\sigma_{le,M}(L) = \sigma_{le,M_1}(A) \cup \sigma_{le,M_4}(S(\mu)).$

(*ii*) Suppose that, for each $\lambda \in \Phi_{rM_1}(A) \cap \Phi_{rM_4}(S(\mu)) \cap \Phi_r(H(\mu))$, we have $A_{\mu M_1}G(\mu)H^r_{\lambda M_4}(\mu)$, $CA^r_{\lambda M_1}$ are compact operators and

$$\alpha(S_{\lambda M_4}^{l}(\mu)M_1G(\mu)) < \frac{1}{2}, \, \alpha(A_{\lambda M_1}^{l}F(\mu)M_1) < 1, \, \alpha(H_{\lambda M_4}^{l}(\mu)M_1G(\mu)) < \frac{1}{2}.$$

Then

$$\sigma_{re,M}(L) = \sigma_{re,M_1}(A) \cup \sigma_{re,M_4}(S(\mu)).$$

(iii) Suppose that B and C are compact operators, then

$$\sigma_{eF,M}(L) = \sigma_{eF,M_1}(A) \cup \sigma_{eF,M_4}(S(\mu)) \text{ and } \sigma_{eW,M}(L) = \sigma_{eW,M_1}(A) \cup \sigma_{eW,M_4}(S(\mu)).$$

If in addition, $\mathbb{C}\setminus\sigma_{eF,M}(L)$, $\mathbb{C}\setminus\sigma_{eF,M_1}(A)$ and $\mathbb{C}\setminus\sigma_{eF,M_4}(S(\mu))$ are connected, $\rho(L) \neq \emptyset$ and $\rho(S(\mu)) \neq \emptyset$, then

$$\sigma_{eB,M}(L) = \sigma_{eB,M_1}(A) \cup \sigma_{eB,M_4}(S(\mu)).$$

Proof (*i*) Suppose that, for each $\lambda \in \Phi_{lM_1}(A) \cap \Phi_{lM_4}(S(\mu))$, $\alpha(S_{\lambda M_4}^l(\mu)F(\mu)M_1) < \frac{1}{2}$ and $\alpha(A_{\lambda M_4}^lM_1G(\mu)) < \frac{1}{2}$, then by apply Theorem 4.4(i), we get

$$\sigma_{le,M}(L) \subset \sigma_{le,M_1}(A) \cup \sigma_{le,M_4}(S(\mu)).$$

Suppose that, for each $\lambda \in \Phi_{lM_1}(A) \cap \Phi_{lM_4}(H(\mu))$, $H^l_{\lambda M_4}(\mu)C$ and $A^l_{\lambda M_1}A_{\mu M_1}G(\mu)$ are compact operators and $\alpha(A_{\lambda M_1}^l M_1 G(\mu)) < \frac{1}{2}$, then according to Theorem 4.5(i), we obtain

$$\sigma_{le,M_1}(A) \cup \sigma_{le,M_4}(S(\mu)) \subset \sigma_{le,M}(L).$$

The same reasoning as (i) and by apply Theorem 4.4(i) and Theorem 4.5(i), we prove the assertion (ii).

The first part of assertion (*iii*) is a deduction from (*i*) and (*ii*). To describe the Browder essential spectrum of *L*, we have $\sigma_{eE,M}(L) \subset \sigma_{eB,M}(L)$. Thus, since $n(L_{\lambda M})$ and $d(L_{\lambda M})$ are constant on any component of $\Phi_M(L)$ except possibly on a discrete set of points at which they have large values (see for example, [8, 11]), then $\sigma_{eB,M}(L) \subset \sigma_{eF,M}(L)$ and therefore $\sigma_{eB,M}(L) = \sigma_{eF,M}(L)$. Using the same reasoning as before, we show that $\sigma_{eB,M_1}(A) = \sigma_{eF,M_1}(A)$ and $\sigma_{eB,M_4}(S(\mu)) = \sigma_{eF,M_4}(S(\mu))$.

The following corollary provides an extension of Theorem 2 in [12].

Corollary 4.8. *The following assertions hold.*

(i) Suppose that $G(\mu)$ is compact and, for each $\lambda \in \Phi_{IM_1}(A) \cap \Phi_{IM_4}(S(\mu))$, we have $\overline{D^l_{\lambda M_4}}C$ is a compact operator, then $\sigma_{le,M}(L) = \sigma_{le,M_1}(A) \cup \sigma_{le,M_4}S(\mu)).$

Q.E.D.

(*ii*) Suppose that, for each $\lambda \in \Phi_{rM_1}(A) \cap \Phi_{rM_4}(S(\mu)) \cap \Phi_r(H_\lambda(\mu))$, we have $CA^r_{\lambda M_1}$ and $F(\mu)M_1A^r_{\lambda M_1}$ are compact operators, then

$$\sigma_{re,M}(L) = \sigma_{re,M_1}(A) \cup \sigma_{re,M_4}(S(\mu)).$$

(iii) Suppose that the hypotheses of (i) and (ii) hold, then

$$\sigma_{eF,M}(L) = \sigma_{eF,M_1}(A) \cup \sigma_{eF,M_4}(S(\mu))$$
 and $\sigma_{eW,M}(L) = \sigma_{eW,M_1}(A) \cup \sigma_{eW,M_4}(S(\mu))$

If in addition, $\mathbb{C}\setminus\sigma_{eF,M}(L)$, $\mathbb{C}\setminus\sigma_{eF,M_1}(A)$ and $\mathbb{C}\setminus\sigma_{eF,M_4}(S(\mu))$ are connected, $\rho(L) \neq \emptyset$ and $\rho(S(\mu)) \neq \emptyset$, then

$$\sigma_{eB,M}(L) = \sigma_{eB,M_1}(A) \cup \sigma_{eB,M_4}(S(\mu)).$$

Remark 4.9. Suppose that $G(\mu)$ and $F(\mu)M_1$ are compact operators, then $\mathcal{R}(\mu)$ is compact. Thus according to the equation (1)

$$\sigma_{le,M}(L) = \sigma_{le,M_1}(A) \cup \sigma_{le,M_4}S(\mu)),$$

$$\sigma_{re,M}(L) = \sigma_{re,M_1}(A) \cup \sigma_{re,M_4}(S(\mu)),$$

$$\sigma_{eI,M}(L) = \sigma_{eI,M_1}(A) \cup \sigma_{eI,M_4}(S(\mu)), \quad \forall I \in \{F, W\}$$

References

- B. Abdelmoumen, Essential Spectra of Some Matrix Operators by Means of Measures of weak noncompactness, Volume 8, Number 1 (2014), 205-216. doi:10.7153/oam-08-11.
- B. Abdelmoumen and H. Baklouti, Fredholm Perturbations and Seminorms Related to Upper Semi-Fredholm Perturbations, Filomat 27:6 (2013), 1147–1155 DOI DOI: 10.2298/FIL1306147A.
- B. Abdelmoumen and H. Baklouti, Perturbation results on semi-Fredholm operators and applications, J. Ineq. Appl., (2009), Article ID 284526, 13 pages doi:10.1155/2009/284526.
- [4] F. V. Atkinson, H. Langer, R. Mennicken and A. Shkalikov, *The essential spectrum of some matrix operators*, Math. Nachr., **167** (1994), 5-20.
- [5] J. Banaś and K. Geobel, Measures of noncompactness in Banach spaces, Lect. Notes in Pure and Appl. Math., Vol. 60, Marcel Dekker, New York, (1980), 259-262.
- [6] G. Darbo, Punti uniti in transformazioni a codominio non compatto, Rend. Sem. Mat. Padova, 24 (1955), pp. 84-92.
- [7] M. Faierman, R. Mennicken and M. Möller, A boundary eigenvalue problem for a system of partial differential operators occuring in magnetohydrodynamics, Math. Nachr. 141-167 (1995).
- [8] K. Gustafson, and J. Weidmann, On the essential spectrum, J. Math. Anal. Appl., 25, (1969), 121-127.
- [9] K.B Laursen and M. Neumann, An Introduction to Local Spectral Theory, London, UK, 2000.
- [10] V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras, Birkhäuser (2007).
- [11] M. Schechter, Principles of Functional Analysis, Academic Press, New York, 1971.
- [12] A. A. Shkalikov, On the essential spectrum of some matrix operators, Math. Notes, 58, 6 (1995), 1359-1362.